The KIDS survey

Intro: what is KIDS

  • KIDS, the KIlo-Degree Survey, is a 1500 square degree public imaging survey in the Sloan colors (u',g',r',i',z') with patches in both the Northern and Southern skies. The survey will use the OmegaCAM instrument mounted on the VST (VLT Survey Telescope). It will start summer 2011.
  • A parallel survey called VIKING (VISTA Kilo-degree INfrared Galaxy survey) is taking place on the VISTA telescope on Cerro Paranal since February 2010. It covers the 1500 square degree of the VST-KIDS survey in the 5 broadband filters Z,Y,J,H,Ks. Combined with KIDS, this will yield a unique 9-band optical-IR survey with depth approximately 2 mag deeper than Sloan and 1.4 mag deeper than UKIDSS-LAS.

The proposal to ESO

Complete proposal text(PDF)
ESOFORM template pt. 1(PDF)
ESOFORM template pt. 2(PDF)
ESOFORM template pt. 3(PDF)
Management plan v.2006/4/15(PDF)

The time allocation

Here's what has been approved (in hours):
Period u,d,0.85-1.1 g,d,0.7-0.85 r,d,< 0.7 i,b,< 1.1 i-wide,b,< 1.1 calib,b,any
P77 60 60119 143 51 43
P78 60 60119 143 51 43
P79 60 60119 143 51 21
P80 60 60119 143 51 21
P81 60 60119 143 51 21
P82 60 60119 143 51 21
P83 60 60119 143 51
P84 60 60119 143 51
TOT4804809521144408170
GRAND TOT3634
P85 120
P86 120
P87 120
P88 120
TOT REPEAT480
GRAND TOT INC REPEAT4114

The fields

KIDS will target two patches, KIDS-N and KIDS-S. The total area is 1500 sq.deg.

KIDS-N runs along the equator in the NGC, from RA 10:00 to 15:52 (150 to 238 deg), and between declination -5 and +3 (with the exception of RA> 15, dec< -3). In addition it includes the area RA 8:40 to 9:08, dec -3 to -1.

KIDS-S is a single rectangular patch around the SGP, between RA=22:00 and 3:30, and dec -35 to -25.

The location of the fields, plotted on top of the Schlegel, Finkbeiner, & Davis 1998, ApJ, 500, 525 reddening maps, is shown below. The areas are outlined in green; B-V extinction is contoured at intervals of 0.05.
Click on the images for a larger version.
KIDS-N:
KIDS-S:

Order in which fields are to be observed

To increase the science return from the survey before it is completed, we have considered the best order in which to build up the survey. Relevant considerations are
  1. a desire to get a useful angular power spectrum on large scales
  2. a wish to maximize coverage of the GAMA AAO spectroscopic survey patch contained in KIDS-N
  3. not compromise schedulability
  4. build in some overlaps of adjacent fields to allow calibration to be checked and improved
The following proposal emerged from this (discussions KK, Wilman, Phleps, Schuecker). It is illustrated here for KIDS-N. (Click for a larger PS version).

The KIDS-N patch is divided into square blocks, 9x9 degrees. A half-hour integration, plus 25% overheads, takes about 38 minutes, and in this time the sky rotates 9 degrees on the equator. So on a good night one field can be observed from each block in r, or two fields in g (or u), etc.
The blocks come in two varieties, 'inc' and 'dec' (increasing and decreasing RA coverage). They alternate along the KIDS patch.
Within a block the sequence of observation is as shown in the lower panels of the figures. The first two declination strips are observed in opposite directions in the two blocks, so that where the blocks meet contiguous areas build up rather quickly. After about 1/4 of the patch is observed we will have a complete 2 degree-wide strip. From this point on, the remaining strips can be built up in order of increasing RA, and the distinction between Inc and Dec is no longer important.
The first fours strips to be completed are those between declinations -2 and +2, where the spectroscopic AAO survey will take place.

In the KIDS-S patch (declination -30) the sky rotates a factor 0.87 more slowly, so here the natural width of a block in RA is 8, not 9 degrees.

Tiling strategy

To avoid holes in the KIDS images, observations will be dithered with offsets sufficiently large to bridge the inter-CCD gaps of OmegaCAM. We will use 5 dithered exposures per field, which results in an exposure map that looks like

where white indicates the area covered in all 5 exposures, and progressively darker shades indicate lower and lower total exposure time.

At the edges of the fields, the exposure level decreases from 5 to 0, in a staircase pattern with step width equal to the dither steps (25 arcsec in X, 85 arcsec in Y).

The adjacent fields should mesh with each other in a nice way. Two possibilities are illustrated below (click on figure for postscript version):

These panels show the exposure levels at the edges of two adjacent dithered images. The top panels show the exposure versus X, the lower panels versus Y (which has bigger steps). The horizontal axes are labelled in pixels (below) and arcminutes (above), and the center of the field is at (0,0).
Option A is illustrated on the left. The field centers are separated by the full extent of the mosaic, so that the combined exposure level in the overlap area, obtained by summing the exposures from both dither sets, is everywhere nicely equal to 5. This minimizes the number of exposures but leaves no redundancy. It also means that in the data analysis results from different OBs need to be processed together, otherwise every pointing is surrounded by a rim where the total exposure is only 60% of that elsewhere.

The field centers are separated by 3673arcsec = 61.2arcmin in X, and 3700arcsec=61.7arcmin in Y.
Option B is shown on the right. The field centers are closer together than in option A (2 offset steps=50arcsec in X, 170 arcsec in Y closer). 80% exposure can now be achieved without having to add up observations from different fields, which simplifies the analysis. Moreover, there is now some redundancy: around each OB we have a strip that is 2 steps (50-170arcsec) wide, one degree long, that has received 4 exposures in one OB and 3 in another. The price for the overlap is (obviously) an increased number of field centers.

The field centers are separated by 3623arcsec = 60.4arcmin in X, and 3530arcsec=58.8arcmin in Y.
Because of the redundancy and operational simplicity, option B is preferred. The resulting exposure pattern from a 2x2 set of fields is then as illustrated below. The darkest shade of grey represents 3/5 of the total exposure time. The grey horizontal and vertical strips marked with a + are the overlap regions where 4 exposures from one field overlap with three exposures from the adjacent one.
+
+

Further notes on KIDS Tiling and PlateSystem (Edwin Valentijn 8 June 2006)



Case B has a minimum overlap between adjacent fields. In itself this is not a problem, as the OmegaCAM calibration plan forsees for each field an  independent photometric  and astrometric calibration.  However, some overlap is desired as an extra cross check on calibrations. Case B provides a few 100 pixels overlap with 1-3 dithers; and that is tight but just enough.

Here, we explore the possibility to adopt this scenario for a whole sky PlateSystem. ( see Tiling the Sky for OmegaCAM)


defs:
field of fieldsize_ra* fieldsize_dec has a fieldcenter.
A 5 point dither  points  with respect to this fieldcenter  has  2 times ++ and 2 times -- in steps ditherstep_dec and ditherstep_ra.

In fact for a 5 point dither the transitions at the edges of the fields will have number of frames
   ...... 5 5 6 7 7 7 7 6 5 5 ......... per ditherstep.
The central two 7 dither strips are composed of 3+ 4 and 4 +3  dithers of the two fieldcenters.
Thus these two   strips  have a minimum of 3 dithers per fieldcenter, which is what we define the overlap.

This grid has the property: seperation_fieldcentersfieldsize - 2 * ditherstep.

This means that without ditherstepping single fields overlap 2 dithersteps.

When designing  a grid for a whole hemisphere this condition is kept as a strict  minimum.
In practice, several effects cause a larger overlap than this minimum:
  • in RA and DEC: putting an integer number of fields in a RA strip, and on the meridian
  • in RA: the cos (delta_dec) term over the 1 degree fieldsize_dec, which is larger than 200 px at dec <-45 at the top of an image compared to the bottom..
  • in RA and DEC:  when ADC is in, the scale at the focal plane changes from 0.2134 to 0.2149 arcsec/pixel, enlarging the  fieldsize_ra from 1.01270 to 1.01982 degrees, and the fieldsize_dec from 1.02451  to 1.02738  degrees, which implies  an extra overlap of 112 px  in both directions.
  • In Dec: differential atmospheric refraction enlarges fieldsize_dec

Case B also has the property that the average separation between fields in degrees is  larger in Dec than in RA direction because of the large horizontal gaps between the CCDs ( 100 px in Ra= ditherstep_RA,  374 px in Dec= ditherstep_Dec).

For the two-lens corrector:
fieldsize_ra =  1.01270 degree
fieldsize_dec= 1.02451 degree

With these setttings PlateSystem instantiates a Grid::


requested overlap ra= 1.186 % 
requested overlap dec= 4 %

fieldsize dec = 1.02451 degrees,  fieldsizera= 1.0127 degrees
achieved distance fieldcenters in dec: 0.989010989011 degrees
achieved overlap in dec: 3.58934444444 %
Version for parents of KIDS

The following table lists some properties for each of the dec strips:
sequence    Dec  number       overlap-ra
         [degrees]                 [min%] min[px] +top[px]
       1       0.50       360       1.3   203      2
       2       1.49       360       1.3   206      7
       3       2.48       359       1.0   168     12
       4       3.47       359       1.1   180     17
       5       4.46       359       1.2   197     22
       6       5.45       358       1.1   173     27
       7       6.43       358       1.2   200     32
       8       7.42       357       1.2   186     37
       9       8.41       356       1.1   177     42
      10       9.40       355       1.1   172     47
      11     10.39       354       1.1   173     52
      12     11.38       353       1.1   178     56
      13     12.37       352       1.2   188     61
      14     13.36       351       1.3   204     66
      15     14.35       349       1.1   177     71
      16     15.34       348       1.3   202     76
      17     16.32       346       1.2   186     80
      18     17.31       344       1.1   173     85
      19     18.30       343       1.3   213     90
      20     19.29       341       1.3   211     95
      21     20.28       339       1.3   213     99
      22     21.27       336       1.1   173    104
      23     22.26       334       1.2   185    108
      24     23.25       332       1.3   202    113
      25     24.24       329       1.1   175    117
      26     25.23       327       1.3   202    122
      27     26.21       324       1.2   184    126
      28     27.20       321       1.1   171    131
      29     28.19       319       1.3   213    135
      30     29.18       316       1.3   210    139
      31     30.17       313       1.3   212    144
      32     31.16       309       1.0   166    148
      33     32.15       306       1.1   177    152
      34     33.14       303       1.2   193    156
      35     34.13       300       1.3   214    161
      36     35.12       296       1.2   186    165
      37     36.10       293       1.4   217    169
      38     37.09       289       1.2   198    173
      39     38.08       285       1.1   184    176
      40     39.07       281       1.1   174    180
      41     40.06       277       1.1   169    184
      42     41.05       273       1.1   168    188
      43     42.04       269       1.1   172    192
      44     43.03       265       1.1   182    195
      45     44.02       261       1.2   196    199
      46     45.01       257       1.3   216    202
      47     45.99       252       1.1   177    206
      48     46.98       248       1.3   207    209
      49     47.97       243       1.1   177    213
      50     48.96       239       1.4   218    216
      51     49.95       234       1.2   197    219
      52     50.94       229       1.1   179    222
      53     51.93       224       1.0   166    225
      54     52.92       219       1.0   157    228
      55     53.91       215       1.4   228    231
      56     54.90       210       1.4   230    234
      57     55.88       204       1.0   158    237
      58     56.87       199       1.1   169    240
      59     57.86       194       1.2   185    242
      60     58.85       189       1.3   207    245
      61     59.84       184       1.5   235    247
      62     60.83       178       1.1   179    250
      63     61.82       173       1.4   218    252
      64     62.81       167       1.0   168    254
      65     63.80       162       1.4   219    257
      66     64.79       156       1.1   175    259
      67     65.77       151       1.5   241    261
      68     66.76       145       1.3   205    263
      69     67.75       139       1.1   172    265
      70     68.74       134       1.6   261    267
      71     69.73       128       1.5   237    268
      72     70.72       122       1.4   216    270
      73     71.71       116       1.2   198    272
      74     72.70       110       1.1   183    273
      75     73.69       104       1.1   171    275
      76     74.68        98       1.0   163    276
      77     75.66        92       1.0   160    277
      78     76.65        86       1.0   160    278
      79     77.64        80       1.0   166    279
      80     78.63        74       1.1   179    280
      81     79.62        68       1.2   198    281
      82     80.61        62       1.4   227    282
      83     81.60        56       1.7   268    283
      84     82.59        50       2.0   323    284
      85     83.58        44       2.5   401    284
      86     84.57        38       3.2   510    285
      87     85.55        32       4.2   667    285
      88     86.54        25       1.6   259    286
      89     87.53        19       2.8   453    286
      90     88.52        13       5.3   848    286
      91     89.51         7      12.7  2030    286 


With this grid, PlateSystem  produces the following plots of the fields  for some Survey areas
(rectangles depict the actual field size of  OmegaCAM  and overlap corresponds to at least two dithersteps)

I have included the anticipated survey areas for other surveys, like VESUVIO-Horlogium and VESUVIO-Hercules.
PlateSystem will really pay off when we can convince the various surveys  to adopt  the same tiling (common archive, data reductions-overlap handling!). Note that  2 hours/field  propagates to  5*300 = 1500 field/year  or 15000 fields/10 year.
So when only half of the anticipated lifetime of OmegaCAM  will be devoetd to this kind of survey work 7500 fields can end  up into the archive, which is about  36% of  the southern Sky!  So PlateSystem could become a power tool for our quest for larger area.


All Southern Sky

dd
KIDS-North

dd
KIDS North2

dd
KIDS South part 1
dd
KIDS South part 2
dd
VESUVIO- Hercules

ddd
VESUVIO Horologium area

ddd
pole
dd
Example overlap