Req 5.4.5

Title:

Flat-field - fringing

Objective:

Determine the fringe pattern of the background.

Fringing due to variable strength of several skylines, mostly apparent at the
long wavelengths, requires a different approach to background subtraction.
Normally, after flatfielding, the background can be expected to be flat over
the entire image, and a median of the image, excluding 50 outliers, would in
principle be sufficient to subtract the background.

In images that suffer from fringing we have to deal with a background that
is variable on small (<< 1’) scales within the image, and can not be distin-
guished from sources. The image itself can, therefore, not be used to determine
the background. However, given the fact that most observations are taken in
jitter or dither mode, the information of several images can be combined to
determine a background. This average should include enough observations to
properly exclude contamination from sources, and, because the standard jit-
ter/dither patterns only include 5 pointings, one background computation per
jitter/dither is probably not sufficiently accurate. On the other hand, because
the fringing pattern may vary with time and telescope position, a straight mean
(the supersky) over an entire nights worth of data may also not be usable.

A suitable strategy to construct a fringed background image, usable for sub-
traction, thereby removing the fringe pattern, remains to be determined. If the
fringe pattern is stable over the night, a decomposition of the night-sky flat in
an additive and multiplicative term is feasable. The assumption that the high-
frequency spatial component in the night-sky flat are fringes, while the lowest
frequency components represent gain variations has been used with reasonable
success.

Fulfilling or fulfilled by:

Data reduction of science and photometric standard observations
When performed/frequency:

Commissioning and when long wave science frames are taken.
Sources, observations, instrument configurations:

Use science and standard data to determine background

Inputs:

Raw science images



CalFile— 541 Master Bias frame
CalFile— 546 Master flatfield
CalFile— 522 Hot pixel map

CalFile- 535 Cold pixel map

Outputs:
CalFile—- 545 ff-fringe
Estimated time needed:

Observation: None. Reduction: 5 min./CCD /filter for 15 science frames.

Priority:
very important
TSF:

Use same data as for night sky flat (req.544)

Recipe:

Fringe_Flat -i <raw_science_frames> -b bias -f flat [-c cold] [-

h hot]

[-oc OVERSCAN_CORRECTION]

raw_science_frames
bias

flat

cold

hot

in

: the
: the
: the
: the
: the
OVERSCAN_CORRECTION :

raw science images
master bias image
master flat image
cold pixel map
hot pixel map

overscan correction mode (integer).
Description of allowed values:

0:
1:

apply no overscan correction (default)
use median of the prescan in the
x—direction

: use median of the overscan in the

x-direction

: use median of the prescan in the

y-direction

: use median of the overscan in the

y—direction

: use the per-row value of the prescan

the x-direction

2



6: use the per-row value of the overscan
in
the x-direction

Before applying this recipe, use Recipe— Split—which is documented in seq.—
631—with the -t science option to split the raw multi-extension FITS input
files.

Needed functionality:

image - processing (eclipse.trim_and_overscan)

image - arithmetic (eclipse.image_sub_local, eclipse.image_div_local)
image - statistics (eclipse.stat, eclipse.iter_stat)

image - stacking (eclipse.cube)

cube - median average (eclipse.cube_avg_median)

pixelmap - binary AND (eclipse.pixelmap_binary AND)

CA:

RawScienceFrame

Cal541
Master Bias |—
BiasFrame

req545 _| Cal545
FRINGE FLAT 7| fi-fringe

FringeFrame

Cal546
Master flatfield
MasterFlatFrame

YYVVY

Cal522
Hot pixel map ——
HotPixelMap

Cal535
Cold pixel ma
ColdPixelMap

Fig 5.4.5 Dataflow and object class names (in small italic font) for req545

Process (make):

1. Check that at least three input science images are given; this is necessary

3



to calculate a median average of a cube of these.

2. Construct a mask from input hot and cold pixel maps.

3. Trim, overscan correct, de-bias and flat-field the input science images.
4. lteratively estimate the statistics of the resulting science images.

5. Normalize each image by dividing by its median pixel value as determined
above.

6. Stack these science images in a cube.

7. Determine the median average of the cube (this is an image).

8. Normalize the fringe map obtained in 7. (use mask obtained in 2.).

9. Subtract 1.0 from the normalized fringe map.

10. Assign bad pixels a value of 0 (use mask obtained in 2.).

Verification (verify):

TBD

CAP:

mask = eclipse.pixelmap_binary_AND(hot, cold)
cube = []

for frame in raw_science_frames:
frame = eclipse.trim_and_overscan(frame)
frame = eclipse.image_sub(frame, bias)
frame = eclipse.image_div(frame, flat)
stats = eclipse.iter_stat(frame)
frame = eclipse.image_div(frame, stats.median)
cube . append (frame)

fringemap = eclipse.cube_avg_median(fringemap)

stats = eclipse.stat(fringemap, pixmap=mask)

fringemap = eclipse.image_div(fringemap, stats.avg_pix)
fringemap = eclipse.image_sub(fringemap, 1.0)
fringemap = eclipse.image_mul(fringemap, mask)



