Reg 5.2.2

Title:

CCD bad/hot pixel map

Objective:

Determine CCD bad/hot pixels.

 5σ outliers in the master bias frame are bad-hot pixels. These pixels should be recorded and ignored (assigned a weight of 0) in dedithering and dejittering, as well as source extraction. For this purpose the bad/hot pixel map is used to assign a weight of zero to the affected pixels in the weight map (seq. 633). The search for hot pixels would also identify traps.

Fulfilling or fulfilled by:

Additional data reduction of **CalFile**— **541** *Master Bias frame* to determine cold pixels

When performed/frequency:

daytime- Commissioning, in RP twice per week.

Inputs:

CalFile- 541 Master Bias frame

CalFile- 522 Bad/hot pixel map previous version

Outputs:

CalFile- 522 Bad/hot pixel map, number of hot pixels

Required accuracy, constraints:

Number of hot pixels to be determined by experience/lab values.

The total number of bad pixels (hot pixels + cold pixels) is less than 80000 (checked in **req. 535** Cold pixels

Difference in number of hot pixels w.r.t. reference value, less than 100.

Estimated time needed:

Observation: None. Reduction: < 20 sec./CCD.

Priority:

essential

TSF:

Use master bias (req.541)

Recipe:

Hot_Pixels -i master_bias [-max MAXIMUM_ITERATIONS]

[-rej REJECTION_THRESHOLD]

master_bias : master bias image

MAXIMUM_ITERATIONS : maximum number of iterations for statistics

measurement (integer).

Range of allowed values: 2 - 10. Default:

5

REJECTION_THRESHOLD : rejection threshold for bad pixels in sigma

(float).

Range of allowed values: 1.0 - 10.0. Default:

5.0

Needed functionality:

image - statistics (eclipse.iter_stat)
image - mask (eclipse.image_threshold2pixelmap)

CA:

Processing (make):

- 1. Iteratively estimate statistics (mean, σ) of the input bias.
- 2. Construct a pixelmap using thresholds $(-\infty, mean + 5\sigma)$.
- 3. Count the number of bad pixels in the pixelmap.

Verification (verify):

1. The number of bad pixel should be less than TBD

Trend Analysis (compare):

1. The difference in number of bad pixels should be less than 100

CAP:

```
stats = eclipse.iter_stat(bias,
```

MAXIMUM_ITERATIONS, REJECTION_THRESHOLD)

threshold = stats.avg_pix + REJECTION_THRESHOLD * stats.stdev
pixelmap = eclipse.threshold2pixelmap(bias, -1E20, threshold)

eclipse pixelmap counts good pixels
count = pixelmap.lx * pixelmap.ly - pixelmap.count
if abs(count-previous.count) > MAXIMUM_HOTPIXELCOUNT_DIFFERENCE:
 HOTPIXELCOUNT_DIFFERENCE_TOO_LARGE = 1