Reg 5.2.1

Title:

CCD read noise

Objective:

Measure the CCD read noise (in ADU's) as a standard health check.

The read noise is measured from pairs of bias exposures. The rms scatter of the differences between two exposures is computed and divided by $\sqrt{2}$. Monitor variations. This is the first order daily health check.

Fulfilling or fulfilled by:

Selfstanding

When performed/frequency:

daytime- Commissioning, during all operations: daily health check.

Inputs:

2 raw bias frames CalFile- 521 Readout noise older versions

Outputs:

CalFile- 521 Readout noise in ADU's

The CalFile correponds to QC parameter read_noise (a single number).

Required accuracy, constraints:

Readout noise less than 5e⁻

Variation in readout noise w.r.t. reference value less than 0.5e⁻.

These are lab values. The corresponding limits in ADU can be calculated using the e^-/ADU conversion factor from **req.**523.

Estimated time needed:

Observation: 5 min. Reduction: 5 sec/CCD.

Priority:

essential

TSF:

```
Mode- Stare N=2
(TSF- OCAM_img_cal_bias, N=2)
= TSF- OCAM_img_cal_readnoise
```

Recipe:

```
Read_Noise -i bias1 bias2 [-max MAXIMUM_ITERATIONS]
[-rej REJECTION_THRESHOLD]
```

bias1, bias2 : the two raw bias images

MAXIMUM_ITERATIONS : maximum number of iterations for statistics

measurement (integer).

Range of allowed values: 2 - 10. Default:

5

 ${\tt REJECTION_THRESHOLD} \ : \ {\tt rejection} \ \ {\tt threshold} \ \ {\tt for} \ \ {\tt bad} \ \ {\tt pixels} \ \ {\tt in} \ \ {\tt sigma}$

(float).

Range of allowed values: 1.0 - 10.0. Default:

5.0

Before applying this recipe, use **Recipe**— **Split**—which is documented in **seq.**—**631**—with the -t bias option to split the raw multi-extension FITS input files.

previous : previous measurements

Needed functionality:

image arithmetic (eclipse.image_sub)
image statistics (eclipse.iter_stat)

CA:

Process (make):

- 1. Subtract the two bias frames to produce a difference image.
- 2. Iteratively reject outliers in the difference image.
- 3. Compute the mean, median and rms of the remaining pixels of the difference image.
- 4. The readout noise is the rms divided by $\sqrt{2}$.

Verification (verify):

- 1. The read noise should be less than the equivalent of 5e⁻ in ADUs
- 2. The mean of difference image should be less than the equivalent of $1e^-$ in ADUs

Trend Analysis (compare):

1. The difference between consecutive read noise measurements should be less than $0.5\mathrm{e}^-$

CAP:

MAXIMUM_READNOISE : Quality Control (default 5.0)

MAXIMUM_BIAS_DIFFERENCE : Quality Control (default 1.0)
MAXIMUM_READNOISE_DIFFERENCE : Quality Control (default 0.5)

QC Flags:

READNOISE_TOO_HIGH BIAS_DIFFERENCE_TOO_HIGH READNOISE_DIFFERENCE_TOO_HIGH

read_noise = stats.stdev / sqrt(2)

mean_diff = stats.avg_pix
median_diff = stats.median

$$\label{eq:control_of_self_control} \begin{split} &\text{if } \mathsf{read}_n oise > MAXIMUM_R EADNOISE : READ_N OISE_T OO_H IGH = \\ &1ifmean_d iff > MAXIMUM_B IAS_D IFFERENCE : BIAS_D IFFERENCE_T OO_H \\ &1ifabs(read_n oise-previous.read_n oise) > MAXIMUM_R EADNOISE_D IFFERENCE_T OO_H IGH = 1?endverbatim \end{split}$$