
Towards a Provenance Framework for Sub-image
Processing for Astronomical Data

Johnson Mwebaze
Kapteyn Astronomical Institute

The Netherlands
jmwebaze@cit.ac.ug

John McFarland
Kapteyn Astronomical Institute

The Netherlands
mcfarland@astro.rug.nl

Danny Booxhorn
Kapteyn Astronomical Institute

The Netherlands
danny@astro.rug.nl

Edwin Valentijn
Kapteyn Astronomical Institute

The Netherlands
valentine@astro.rug.nl

ABSTRACT
While there has been advances in observational equipment
that generate huge high quality images, the processing of
these images remains a major bottleneck. We show that
provenance data collected during the processing of data can
be reused to perform selective processing of data and sup-
port network collaboration without clogging distribution net-
works. We introduce the idea of sub-image processing (SIMP)
in the context of processing a subset of pixels of an image
and the use of provenance data to assemble pipelines and to
select processing metadata for SIMP. We describe an imple-
mentation of SIMP in Astro-WISE1.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems; H.4
[Information Systems Applications]: Workflow Man-
agement; J.2 [Physcial Sciences and Engineering]: As-
tronomy

General Terms
Design, Experimentation

1. INTRODUCTION
Much of modern and scientific research such as virtual

astronomical observations, bioinformatics and high-energy
physics involves the accumulation of huge amount of digi-
tized data and requires global participation for processing
and visualization. Such observations provide image data
with catalogues of millions of objects, each object with hun-
dreds of associated parameters. Raw data is often collected
from shared observational instruments, while end-users of

1www.astro-wise.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

this data perform analysis and/or visualization at local sta-
tions in their research centers. Because of the distributed
nature of data, people and the processes; processing of these
huge datasets is becoming problematic [9].

End-users can no longer visualize and manipulate these
large data on their local workstations and over networks in
real time because of the high pixel images coupled with the
narrow network bandwidth. The processing is also increas-
ing in complexity requiring laboriously sophisticated tech-
niques and high end distributed computing resources. Such
processing requires trying different datasets and processing
techniques, tweaking parameters, verifying data quality, re-
peating this data derivation and customization of the re-
sults. Although most of the processes are run in a separate
dataflow, they have a certain amount of overlap. (e.g. share
some input and sometimes intermediate data). Its clearly
wasteful to run the same processes repeatedly without ref-
erence to (or the use of) already existing processed data.

Astronomical systems have been built to work with and
process data based on the telescope’s detector or chip (full-
image) [2, 6]. All metadata and processing parameters are
based on an instrument with fixed detector properties (e.g.,
image size, calibration frames, overscan regions, etc.). An
image from an observation may have a catalogue of millions
of sources, each source with hundreds of associated param-
eters. By source we mean a celestial objects such as stars,
planets, comets, nebulae, star clusters and galaxies. How-
ever, most often users are interested in a source that lies on
a few pixels of an image. The current approach allows the
processing of a full-image even if the source of interest exists
on a few pixels of an image. Accordingly, out of millions of
images in a survey, it is nearly impossible and wasteful to
process the whole data volume. Instead of processing the
whole dataset, a user should only select, retrieve and pro-
cess only relevant pixels on an image where the source exists.
These pixels are extracted and processed as a sub-image.

Based on these observations, we motivate the need to
record fine-grained provenance and also the need to use
provenance to enable sub-image processing (SIMP). Data
provenance in scientific experiments has been used to under-
stand results, the relationships between data products and
the programs that were used during processing by examin-
ing the sequence of steps that led to a result [3,4]. By using
provenance, we can simply the processing of data by exam-
ining previous reruns and relating them to current runs [8].

1277

In this context, since all pipelines for astronomical image
processing have been written for full-images, and all meta-
data and processing parameters are based on an instrument
(or full-image), we use provenance data to match and re-
trieve existing pre-processed information in the system from
which we build pipelines and select input data for the SIMP.
In the same line, we enable operations that are very difficult
(or impossible) to execute at sub-image level.

This paper presents our approach to providing these fun-
damental services in a distributed computing environment.
This papers focus on the use of provenance to support SIMP.
We specifically show how we trace fine-grained provenance
(at pixel level) and how we use this provenance data to per-
form SIMP. With SIMP the user controls the downloading
process by selecting, extracting and processing pixels with
their objects of interest. This schemes drastically reduces
the amount of data transferred over wide-area-networks.

To the best of our knowledge, this is the first work that
leverages provenance to support SIMP. The rest of the pa-
per is organized as follows; In Section 2, we briefly describe
our provenance model in Astro-WISE. We present the SIMP
framework in Section 3 and we review related work in Sec-
tion 5. We conclude in Section 6 where we outline directions
for future work.

2. LINEAGE IN Astro-WISE
In our previous work [7], we proposed a model that uni-

formly captures provenance during the course of data pro-
cessing. From that model, we explicitly assume that every
output depends on every input and parameters passed to the
function. Therefore, such proveance accounts for an output
product produced during the course of a dataflow execution
by displaying a connected graph of input, intermediate, out-
put data and also parameters and attributes used during the
processing. This level of granularity is in-sufficient for sub-
image processing. We need to trace fine-grained lineage to
include transformations at pixel/byte level. The challenge is
to determine which pixels of which input images were used
in the construction of the composite pixels in the output
image.

2.1 Pixel Lineage
We define F : V → V as a function on the space of astro-

nomical image processing, and δ : V × V → F as a function
that takes an input pixels pa and outputs pb, then for brevity
let δab(pa) = pb. If there exists δba such that δbaδab = e,
where e is an identity matrix, then there exists a 1-1 map-
ping between pixels of the iinput image to pixels to an output
image. Then it is possible to a find a mapping between pixels
of related images or connect all pixels from raw images inter-
mediate to the final objects. However, we can achieve this
if our sequence of operations consists of invertible atomic
operations. Specifically, suppose δab = fn ◦ · · · ◦f1 then each
fi must have a well-defined inverse. For example, if fi is
the operation of applying a distortion correction then, f−1

i

is the operation of removing the distortion correction.
Because of the nature of the source data as well as the

nature of the image processing and regridding algorithms,
invertibility is a very hard problem or impossible. For such
non-reversible transformation, pixel lineage is computed us-
ing numerical techniques. Thus pixel lineage becomes prob-
abilistic and different precision levels can be achieved . We
have implemented and tested such numerical techniques for

Figure 1: A tree view is given of the dependencies
This tree view gives an overview of the target de-
pendencies. Green dependencies are up-to-date, red
dependencies are out-of-date and for orange depen-
dencies indicate a newer version exists.
.
tracing pixel lineage. Early results are promising. A posi-
tional accuracy of approximately 5 orders of magnitude can
be achieved. The algorithm can be tuned to achieve any
precision, but its a trade-off between performance and accu-
racy. With this framework, we can trace and link all pixels
that have been processed in the system.

3. SUB-IMAGE PROCESSING
The ability to store and mine provenance data is required

to enable SIMP. This is because pipelines have been writ-
ten for full-images and designed for instruments with fixed
detector properties. No metadata and processing parame-
ters currently exist for SIMP. These parameters have to be
copied from provenance data, modified and new pipelines
for SIMP assembled. SIMP involves 4 basic steps;

3.0.1 Pipeline Matching
The basic idea behind our algorithm is to search for a

graph representation of the dataflow that was used in ear-
lier runs to process target. The starting point is a target and
a set of preconditions. E.g. consider the basic query find the
derivation path for a source ’S’ The answer to this query
may consists of the several paths rooted at the same Raw-
Data. It is possible that the same object can be computed
using different variations of method or parameters. To select
the required pipeline, we add more constraints to the query.
Using these constraints, the system matches and selects the
pipeline from all candidate pipelines by pairing nodes and
computing similarity between two adjacent nodes. From the
selected pipeline, the system builds a directed graph repre-
senting the data dependencies with nodes representing ob-

1278

jects and edges representing all dependencies attached to
object (Refer to Fig. 1). The graph begins with the top-
most node, which is the target to be made. New edges are
added starting at this trigger and expanding outward, using
the dependency logic derived from provenance data. The
dependency graph is built and checked recursively till the
last dependency (in this case raw data from the telescope).

3.0.2 Parameter and Attribute Selection
In this step we retrieve input data, processing parameters

and intermediate data products from the provenance store
based on the objects in the graph generated in section 3.0.1.
Each node in the graph is associated to an object. Each
object is identified with a unique ID which is used when
searching the database for provenance data related to a par-
ticular object. Part of the provenance includes input and
output data, processing parameters and attributes, meth-
ods/modules that were used to process the object. If part
of provenance is an image, a cutout is made of the pixels of
interest from this image and used as input to the module.
The pixels extracted as a cutout are determined through
pixel lineage. We also identified basic operations that are
useful for common querying tasks over provenance store that
simplify the query syntax. Some examples are listed below;

– get_inverse_properties(obj) returns all objects that
used obj

– get_dependencies(obj) returns all attributes of obj
– get_onthefly_dependencies(obj) returns all depen-

dencies of obj
– info(obj) displays a lineage tree for obj
– retrieve() makes a cutout from an image of a size

specified by the sub-image attribute

3.0.3 Pipeline Changes
In this frame-work there are two types of changes. Firstly,

pipelines must be modified to process sub-images and sec-
ondly a user might need to change processing parameters
or to switch to a different algorithm to improve a given
result while carrying out a detailed analysis or a compu-
tation to a specific region on an image. In any case we
build on already existing data from previous runs to enable
such changes. All changes required for this framework are
included in the system, as a new module, attribute or pa-
rameter without changing the overall data model. These are
automatically loaded whenever a user requests to process a
sub-image. However, the complete account on what changes
are made to the pipelines is beyond the scope of this paper.

3.0.4 Pipeline Building
Using the dependency graph generated in section 3.0.1,

we apply all changes as identified in section 3.0.3 and at-
tributes and parameters from section 3.0.2, and we build the
pipeline for SIMP. We apply all the changes (or additions)
and analyze the dependency graph. Only the modules, in-
termediate data or a dependency affected by the change will
be processed. If new versions exist of the classes that cre-
ated the dependencies, then these modules will also be rerun
using the new versions of the classes (refer to the caption of
Fig 1).

After assembling the pipeline and collecting all necessary
input data, processing of sub-image is then done. Source
extraction is then run on the sub-image resulting in a new

Processing Time (Seconds)

S
u
b
-i
m
a
g
e
S
iz
e
(K
B
)

Figure 2: A plot showing the time it takes to process
sub-images of different sizes

catalog of sky positions, and/or any other user specific pro-
cessing is done on the sources extracted.

4. USE CASE: FINDING DROPOUTS
Initially images are reduced, processed and source extrac-

tion carried out. After source extraction, it happens that
sources were detected in some frames(images) derived from
data taken in certain filters, we call ‘master filters’, and not
detected in other frames derived from data taken in some
other filters, we call ‘drop-out filters’. The task is to find
drop-out candidates, that is, those sources that were de-
tected in frames observed using the master filters, but not
appearing in the frames observed using dropout filters. Such
sources might be extremely high-redshift quasars. Precise
fluxes need to be determined in the master filters and flux
upper-limits in the drop-out filters. After identifying the
drop-out candidates, all the images need to be reprocessed
using new source parameters and new detection thresholds.
Rather than re-processing full-images, we extract and pro-
cess only the pixels surrounding the dropout candidates. By
doing this we save on computation and data transfer time.
Below, we present two tests to to demonstrate the power of
SIMP.

Processing Time: We create the experiment as explained
above. We process a full image using new source parame-
ters and new detection thresholds. We repeat the same test
using sub-images of various sizes. The results of this pro-
cessing are shown in Fig.2. The time it took to process each
different sized cutout was recorded. Notice from Fig.2 that
the processing time increases as the size of the cutout in-
creases. This therefore shows that there is significant saving
in computation time (and resources) while processing sub-
images compared to processing full-images.

File Retrievals; One common characteristic of all dataflow
programming frameworks is the requirement of locally staged
data for processing. In this test, we estimate how much time
is required to download 24 sub-images of 544k from a data
server to local PC compared to downloading the 24 full-
images of 384MB. we run this test over two links of different
capacities. The table below shows the results;

1279

Link No of Image Time (s) Transfer
Size Images Size(KB) Rate
1Gbit/s 24 544 0.4 1.22 MB/s

544 0.4 1.21 MB/s
544 0. 4 1.22 MB/s
544 0.7 737 KB/s

393216 22 17.7 MB/s
393216 21 17.9 MB/s
393216 23 17.1 MB/s
393216 23 16.6 MB/s

6Mbit/s 24 544 1.3 423 KB/s
393216 676 5822 KB/s

The time in seconds is the total time that the actual trans-
fer took, from the first byte to the last byte of each file. We
notice a significant difference when transferring sub-images
compared to full-images on a 1Gbit/s link. As you notice
downloading the sub-images on a 6Mbit/s takes almost the
same amount required as on a 1Gbit/s. However, the results
for transfer full-images 6Mbit/s are shocking and might ren-
der the system unusable.

5. RELATED WORK
We could not find anywhere in literature where SIMP has

been done and therefore we have no comparative analysis
to evaluate if there could be advantages or disadvantages
of our approach compared to any other approach. How-
ever, distributed data sharing systems e.g. grid systems [10]
have been developed to address performance and dataset
concerns. Such systems like [2], provide a scalable infras-
tructure for running image pipelines in a distributed way.
However even with such grid system, transferring of the data
to the processing node still suffers from delays due to con-
gestion on WAN links.

Provenance-aware scientific workflow systems [5] have also
been considered as the paradigm for representing and man-
aging complex distributed scientific computations. Systems
such as those surveyed in [4] have enabled scientists to carry
out complex scientific computations while capturing prove-
nance. Despite these developments, little or no support ex-
ists in current systems to recored provenance data and at
pixel level and most models do not allow end-users to use
lineage data in scientifically meaningful way in particular to
improve scientific processes. Our provenance model intro-
duced in this paper does trace lineage at the finest detail
(e.g., a pixel transformation process). This lineage captured
is then used for various scientific processes but most specif-
ically as introduced in this paper, this lineage at pixel level
has been used for SIMP.

The use of provenance we describe in this paper is anal-
ogous to how other authors have used provenance to solve
some use-cases. For example in Kepler [1] provenance has
been used to enable smart ‘reruns’. Kepler takes data de-
pendencies into account and only execute those parts of the
workflow affected by the parameter change. In [8] prove-
nance has been used for interactive design of workflows.

6. DISCUSSION AND CONCLUSIONS
We have described a framework that leverages provenance

to aid in selective retrieval and processing of data. All of the
discussed functionality has been implemented, however due
to the page size limitation, most of the interesting features
have not been mentioned. We plan to continue working on

the data models and make it available as a web-service in the
near future. This paper does not focus on the changes made
to the modules/pipelines process sub-images, but rather how
provenance can be used to support SIMP.

We can safely say that we have accomplished our design
goals of supporting network collaboration because users at
remote research centers could comfortably run and process
data, without limitations of huge data transfers and limi-
tations of resources on local clients. However our approach
is not foolproof, and there are cases where it may fail to
produce the results a user expects. For example, if a user
applies the methodology to a processing that involves neigh-
boring pixels to determine a result of a pixel, the pipelines is
likely to fail. However, when such a processing fails the user
can initially process the full image and extract all parame-
ters/needed to aid in processing of other sub-images derived
from the same image. The effect shall be slower performance
for the start, which improves significantly while processing
other sub-images.

Although we reduced the domain from a full frame to a
sub-image, we intend to further transform scientific systems
to process pixels rather than images. We are currently inves-
tigating how we can use databases to aid in such processing.

7. REFERENCES
[1] I. Altintas, B. Ludaescher, S. Klasky, and M. A. Vouk.

Introduction to scientific workflow management and
the kepler system. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 205,
New York, NY, USA, 2006. ACM.

[2] K. G. Begeman, A. N. Belikov, D. R. Boxhoorn,
F. Dijkstra, E. A. Valentijn, W.-J. Vriend, and
Z. Zhao. Merging grid technologies. Journal of Grid
Computing, 8:199– 221, 2010.

[3] J. Freire, D. Koop, and L. Moreau, editors.
Provenance and Annotation of Data and Processes:
Second International Provenance and Annotation
Workshop. Springer-Verlag, Berlin, Heidelberg, 2008.

[4] J. Freire, D. Koop, E. Santos, and C. T. Silva.
Provenance for computational tasks: A survey.
Computing in Science and Engineering, 10(3):11–21,
2008.

[5] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer,
G. Fox, D. Gannon, C. Goble, M. Livny, L. Moreau,
and J. Myers. Examining the challenges of scientific
workflows. Computer, 40(12):24–32, 2007.

[6] P. Greenfield. Reaching for the stars with python.
Computing in Science and Engg., 9(3):38–40, 2007.

[7] J. Mwebaze, D. Boxhoorn, and E. Valentijn.
Astro-wise: Tracing and using lineage for scientific
data processing. Network-Based Information Systems,
International Conference on, pages 475–480, 2009.

[8] C. Scheidegger, H. Vo, D. Koop, J. Freire, and
C. Silva. Querying and creating visualizations by
analogy. Visualization and Computer Graphics, IEEE
Transactions on, 13(6):1560 –1567, nov.-dec. 2007.

[9] A. S. Szalay. The sloan digital sky survey and beyond.
SIGMOD Rec., 37(2):61–66, 2008.

[10] J. Yu and R. Buyya. A taxonomy of scientific
workflow systems for grid computing. SIGMOD Rec.,
34(3):44–49, 2005.

1280

