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Abstract—Most workflow systems that support data prove-
nance primarily focus on tracing lineage of data. Data prove-
nance by data lineage provides the derivation history of data
including information about services and input data that
contributed to the creation of a data product. We show that
tracing lineage by means of full backward chaining not only
enables users to share, discover and reuse the data, but also
supports scientific data processing through storage, retrieval
and (re)processing of digitized scientific data. In this paper,
we present Astro-WISE, a distributed system for processing,
analyzing and disseminating wide field imaging astronomical
data. We show how Astro-WISE traces lineage of data and
how it facilitates data processing, retrieval, storage, archiving.
Particularly we show how it solves issues related to the
changing data items typical for the scientific environment, such
as physical changes in calibrations, our insight in these changes
and improved methods for deriving results.

Keywords-data lineage, persistence, provenance, target pro-
cessing, dependencies

I. INTRODUCTION

The nature of today’s scientific experiments requires inno-
vative dynamic approaches, in which results can be dissem-
inated, re-derived, customized to each user’s specific needs
and shared between research groups. Scientific research
involves distributed communities, running complex analysis
techniques on data stored in heterogeneous archives. Such
experiments are therefore characterized by repeatability of
data derivation, support for collaboration, data sharing/re-
use and the ability to verify data quality. Scientists always
desire to verify the correctness of data or to follow through
the derivation process to find out the cause of an abnormality
that could have been discovered in the data. Repeating part
of the derivation process could verify data quality, reveal
the cause of the abnormality and also show which other
datasets could have been affected by the same procedure.
Thereafter, any new data generated as a result of such
verification procedures does not replace old data but is stored
as new data. Such procedures coupled with technological
advances in the data acquisition techniques/equipment (e.g.
design of sensor equipment like CCD Mosaics, wireless
antennas) are creating accumulations of petabytes of raw and
processed data. Then linking and maintaining dependencies
between data (i.e. data lineage) becomes very important
for the processing storage, archiving and retrieving of data.

Following lineage data in the system, file storage, retrieval
and archiving should be transparent to the application and
or user.

Besides tracing lineage, e-Science systems should be flex-
ible enough to enable researchers to work with and change
methods on the fly while capturing all processing activi-
ties/events. Analogous to commercial databases that operate
fixed programmes (e.g. mortgage plan) and variable data
(e.g. interest), in a scientific environment the reverse applies.
The processing methods and observational data continuously
change. Scientists often focus on newly retrieved datasets for
a certain period of time and also study variations between
observational data. What happens when new releases of code
or new computational methods become available? or there
is new data for the same physical phenomena? Scientists
may want to evaluate specific questions about the datasets,
apply their own mining algorithms and visualization tools
on datasets and derive their results following their insights.
Preferably this knowledge is fed back into the system at
the disposal of other researchers who optionally want to
take advantage of the progress of this insight. It is therefore
necessary to develop very high level abstractions of the data
and the connection between dependent data items and use
the connections to guide the researcher to knowledge, data
and process.

The problem of tracing lineage (or provenance) of data has
been extensively studied in the context of providing deriva-
tion history of data [1] [2]. We could leverage on existing
lineage tracing techniques but our work goes beyond just
tracing lineage of data and uses lineage data for scientific
processing. Hence the current lineage tracing techniques fail
short in two ways.

Firstly, provenance models proposed include workflow
representation [3] [4], a description of data derivation and
documentation of causal flow of events [5] [6]. Lineage data
collected in such models is at the message level and therefore
is insufficient as-is for re-using within the system to support
scientific data processing. Lineage tracing in databases also
assumes data is produced by relational operators and data
stored in the database [7]. Accordingly, such methods fail
to trace lineage when arbitrary programs are used and
reside outside the database, which is typical of scientific
applications. Other forms of lineage tracing include earlier
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work in [8] which uses a weak reverse and verification
function to compute a set of input data from a set of the
output data. However today’s scientific computations are
complex therefore reversibility is not generally possible.

Secondly, most scientific applications use a Database
Management System (DBMS) for data storage and the
processing is done independent of the DBMS. Provenance
models for such applications have been designed to capture
the derivation process of a data item in the context of the
application. Such applications fail to capture lineage for
database manipulations done outside the application [9].
Accurate lineage is a combination of the scientific processes
and database manipulations.

With distributed communities working on enormous data
floods, scientific research demands for new approaches for
managing and supporting scientific data processing. To ad-
dress the above challenges, in our approach we load data
into a database and make the database an integral part
of all processing. The integration of the processing and
the database ensures that all objects and references (links
between all dependant data items) are stored and effectively
become part of the system. By means of full backward
chaining we leverage on lineage data for processing, retriev-
ing and archiving of data. This paper presents the Astro-
WISE Framework for data processing and data lineage. We
show how Astro-WISE traces the lineage of data and how
data lineage is used to facilitate data processing, retrieving,
storage and archiving of data. Finally, we implemented the
system and tested it with real astronomical applications.

The remainder of this paper is organized as follows. In
Section II, we present an overview of Astro-WISE and
give the details of Astro-WISE’s framework for tracing
lineage. We then show how data lineage is used to facilitate
data processing in Section III. In Section IV, we show
the implementation of the lineage framework. We test our
implementation using a real astronomical application in
Section V. Related work and the Conclusion appears in
Section VI.

II. ASTRO-WISE

Astro-WISE enables astronomers to perform scientific
experiments in a distributed environment. We make full
use of the peer-to-peer architecture to explore and process
data in the federated interconnected databases. The main
components are: distributed storage, distributed databases
and high-performance computing clusters. The dataservers
(storage) and the databases store pixel data and metadata
respectively. Metadata includes any data other than pixel
data. The computing cluster decomposes and executes a job
on a piece of hardware where the processing is optimal.

A. The Framework

Astro-WISE has been built to handle very large datasets
and terabytes of catalogue data. It begins as a basic system

Figure 1. A simplification of a target diagram: It allows processing
of a target (an end data product) and any of its dependencies. The
dependency chain is followed back towards the raw data (backward
chaining, arrows as shown above) to make sure only those objects
requiring processing are actually processed

to an intelligent system (‘quick look system’) as new data
and information is continuously processed and added to the
system.

The core of the system exploits three properties in a
database environment. Firstly, we apply the principle of
inheritance using Object Oriented Programming (Python),
where all Astro-WISE objects inherit key properties for
database access, such as persistency of attributes. Secondly,
the linking (associations or references) between instances of
objects in the database is completely maintained. Thirdly,
continuous growth of the database through the addition of
new information or improvements made to existing informa-
tion. We expand on these features in the remainder of this
section.

B. Database Architecture and Persistence Objects

The Persistent Object Hierarchy is the core of Astro-
WISE pipeline processing and data lineage. Processing is
done through invocation of methods on these objects. Since
these objects are persistent, all operations and attributes of
these objects are automatically saved into a database.

All the I/O of the pipeline processes makes use of a
database. This includes all information about the processing
of data and the processing history. The database stores all
persistent objects, attributes and raw data either as fully
integrated objects or as descriptors. Only pixel values are
stored outside the database in image and other data files.
However, their unique filenames are stored in the database.
Data can therefore only be manipulated through interaction
with the database. A query to the database will provide
all information related to the processing history and to the
locations of all stored associated files, attributes and objects.
Thus, the system provides the user with transparent access
to all stages of the data processing and thereby allows the

476



data to be re-processed and knowledge fed back into the
system. We utilize inbuilt security and authorization features
of the database to enable sharing data in the system without
breaking the dependency chain.

Access to the database is provided through Python. Python
is used for both the Data Definition Language and the Data
Manipulation Language. The database interface maps class
definitions that are marked as persistent in Python to the
corresponding SQL data definition statements.

C. Extendable Schema

The database provides an extendable schema that allows
extending and modifying object attributes and method def-
initions through inheritance and polymorphism. This then
allows end-users to define new persistent data products.
Because schema modification complicates history tracking,
we support schema evolution through inheritance and poly-
morphism to introduce new classes (or processing routines)
to the pipeline. That way, any new processing routines can
be defined and added. Users can modify functionality in
modules, insert them into the system, or add a module on
top of what currently exists, as long as these modules obey
the standard data model.

D. Version Control and Preservation Management

The python source code is stored in a Concurrent Version-
ing System (CVS) database. Although CVS enables tracking
versions of source code, CVS cannot distinguish between a
method (subroutine) and a class in source code. It does not
know that a couple of lines together form a method and can
not tell if the changes made to the class/method substantially
affects the meaning and structure of objects created through
this class/method. At the lowest level, it is the connection
between these classes and the created objects that we want to
keep track of. We assign versions to classes through the class
version attribute and use class descriptors to track version
changes. All this is stored with the object (object versioning).

Preservation management addresses object inconsistencies
(mismatches) created as a result of schema modification.
An object mismatch occurs when the retrieving system tries
to retrieve a particular object whose own generating class
was different in the storing system, and whose structure is
inconsistent with what the retrieving system is expecting.
In a dynamic research environment, classes often change.
Research prototypes propose a one-time conversion of old
objects. Such a solution does not scale for a large persistent
store. Astro-WISE has been designed to compare versions
of data and classes. If there is an improved version of an
object or a class, all dependent objects become outdated. A
request for an outdated object will cause the object to be
computed on-the-fly.

III. DATA LINEAGE AND DATA PROCESSING

Astro-WISE follows a ‘pull-based’ i.e. backward-chaining
approach while processing data. This allows the end user to
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Figure 2. The Figure shows the interaction between the Target
processor and DBObjectMeta class which controls persistent class
creation and delegates persistent object instantiation to the database.
The Solid lines represent processing chain and the dashed arrows shows
data movement to and from persistent storage and the boxes represent
the different services(targets)
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Figure 3. Transparent mapping from a class definition to a table in
a relational database. Attributes may refer to other persistent objects

trace the data product, following all its dependencies up to
the raw observational data and, if necessary, to re-derive
the result with better data, and/or improved methods. It is
unlike ‘push-based’ i.e. forward-chaining systems, where
the end user has little or no influence on what happens
upstream. This paradigm is characterized by a fixed set
of homogeneous, well-documented data products. Operators
have a task to push the input data through the stream, often
by means of a pipeline, irrespective of whether the derived
data items are actually used by the end users.

The Target Processor (TP)

Astro-WISE is built to handle queries by the user for
his/her desired result, which we call a Target. The Target
processor employs the dependency logic that is constructed
using lineage data. Figure 1 shows a simplification of a
Target diagram based on the system’s object model.

The Target processor has three principal components:
service, pipeline and a Target. A service is analogous to
a class/method. Pipelines specify processing in terms of
targets and dependencies. A Target is built by calling the
appropriate service in the pipeline using a make method for
that object. The make method follows the unix software de-
velopment’s make metaphor and describes the dependencies
between objects. A Target is a database object representing
a file or metadata that is passed as input to and generated
as output from a process. For example, a Target could be
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any calibrated image, or the results for a set of calibration
parameters, or a list of parameter values describing an
astronomical object.

Targets have dependencies that may themselves be targets.
Targets are rebuilt in a recursive cascade as shown in
Figure 4. If the requested target already exists, the system
will check all its dependencies up to the raw data taken at
the telescope. If all its dependencies are up-to-date the target
object is returned. If all or some dependencies are not up-to-
date, they will be recomputed on-the-fly or if new versions
exist of the classes that created the objects, the target will
also be recomputed.

Based on the information (data) in the database, the
Target processor will reduce the processing tasks to only
those required to generate new data products. In some cases
the target processor will return the final data product if
it already exists (i.e. processed before) and is up-to-date
without any processing. A similar feature exists in Pegasus
[10] called workflow reduction. However, Pegasus depends
on the Replica Location Service (RLS) to determine which
intermediate data has been registered and uses this data
for processing. This method does not check the state of
dependant data and therefore we cannot be sure that the
final product is up-to-date.

IV. TRACING LINEAGE IN ASTRO-WISE

A. Implementation

For each persistent class, a number of methods are defined
which interact with the federated database. All class instan-
tiations are automatically made persistent in the database
forming an archive of all targets. To achieve this, the
following major classes are implemented.

• DBObject is the root class of the hierarchy of the
persistent classes. This class defines the primary key
object_id of all objects.

• DBObjectMeta is the metaclass of DBObject. This
is the class that is responsible for class creation and
object instantiation.

• DBProperties is the module that defines all
persistent attribute types which are defined by
persistent.

• DBSelect implements a query language that is a
natural extension to Python and that incorporates data
lineage in the query syntax.

• DBProxy is an abstract interface to database vendor
specific operations.

To use the persistency and query mechanisms only
DBObject and persistent are required.

B. Lineage capture and Storage

We will show how data lineage is captured as dependen-
cies between persistent objects that refer to another persistent
object. The simplest persistent class has only one persistent
attribute, like

Figure 4. Target processing: A tree view is given of the target(s).
This tree view gives an overview of the target dependencies. Green
dependencies are up-to-date, red dependencies are out-of-date and for
orange dependencies indicate a newer version exists.

class ClassA(DBObject):
attribute = persistent(’Description’,

attribute_type, default_value)

In this example attribute will have the type
attribute_type. Atomic attribute types, such as
integer, string or float, are translated into their
database equivalents when an object is made persistent.
If attribute_type is a subclass of a DBObject, the
attribute will be a link to an object of that subclass. If
default_value is an empty list, then the attribute will
be an array of objects of attribute_type.
class ClassB(Object):

e = persistent(’A link’, ClassA, None)
f = persistent(’List of links’, ClassA, [])
g = persistent(’Link to object of ClassB’)

ClassB defines three persistent attributes:

• e is a link to an instance of ClassA,
• f is a array of links to instances of ClassA (default

empty), and
• g is a link to another instance of ClassB.

Invoking a procedure to make an object instantiates all
classes recursively. This makes all objects persistent in the
database forming a dynamic archive of all targets. The
database thus has full awareness of all dependencies. See
Figure 3 for the transparent mapping from the persistent
class to a database table. Any definition, instantiation and
querying of a persistent class is translated to the corre-
sponding SQL statement. To support the storage of files in
a similar way, the DataObject class is used.
class DataObject(DBObject):

filename = persistent(’File part’, str, ’’)
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The filename attribute is used to implement store()
and retrieve() methods to transfer files to and from
dataservers. Because the filename is kept in the database the
storage and retrieval of files is transparent to the application.
In the following example the file example.txt is made
persistent by storing the file and committing the object of
which it is part. Then we can search for all the files with
a name that starts with example and fetch the first one
(g[0])found from the dataservers.
example = DataObject(pathname=’example.txt’)
example.store()
example.commit()
g = DataObject.filename.like(’example*’)
g[0].retrieve()

C. Accessing and Querying Lineage Information

Given the system architecture and the implementation
above, we can track any bit that was involved in the deriva-
tion of a data item. The end-to-end dependency linkages
built into the system are used for query processing and data
processing. Queries such as “find the process that led to or
that caused a data item to be as it is” or “Find out the
‘on-the-fly’ or processable dependencies which can be used
to recreate a SourceList (sList)” can be answered. Lineage
data can be retrieved in three ways: (i) using Python scripts
which are translated into SQL statements automatically, (ii)
by using a web service object viewer tool and (iii) and using
the dependency Cutout web service. Items (ii) and (iii) are
demostrated in SectionV.

V. EXPERIENCE WITH ASTRO-WISE

We used a case of Creating and analyzing multi-
dimensional data in Astro-WISE. We used data observed
by the ESO WFI@2.2meter telescope at La Silla, Chile.
Data was observed for 12 nights spread over a period of
4 months. About 9 images of the field were taken for
each night. This observational data was run through image
reduction and calibration pipelines and co-added to produce
a CoaddedRegriddedFrame (re-gridded composite of several
science images) for each night. It is on this frame the science
can be performed. We extract a list of sources (a SourceList)
from this frame. Using an association tool, a cross-match
between different SourceLists is made based on the position
on the sky. This tool works fully in the database and creates
database references lists called AssociateLists, which con-
tain cross-references to matched sources. One AssociateList
is made from two or more SourceLists. Quality control
can be checked by comparing data from SourceLists taken
on different nights. If we are happy with the quality, we
associate all SourceLists to that of the first night to create
one big AssociateList. Note that all lineage data is ingested
into the database and everything here can be reprocessed.
For purposes of this paper, the visualization steps have been
omitted.

The processing described above is done recursively fol-
lowing dependencies to the raw observational data. We can
(re)create all the objects that were involved in the processing,
on-the-fly, using new parameters if dependencies and trans-
formational programs have changed. (refer to Figure 4). We
can also retrieve parameter values for the matched sources
across the different nights. If we suspect any wrong element
in the process, we can trace backwards or, more importantly,
rerun only that part of the derivation process and compare
results. All this data (old and new) is included and becomes
part of the system. We demonstrate by use of the Object
Viewer (Section V-A) and the Cutout Service (Section V-B)
how to view lineage data in the system. Other methods not
included in this paper include use of Python scripts or SQL
Statements to retrieve lineage data.

A. Object Viewer

The object viewer queries and displays all history process-
ing information for an object from the Astro-WISE database.
This tool will show everything related to a derivation of a
certain object including attributes, parameters, dependencies
and software that were used to create the object. A tree-
like view of the object is shown below of all ancestors of a
SourceList with ID 609571. Leaves in the tree correspond to
attributes that have an atomic type and branches correspond
to links/references to objects. By expanding a branch one
can have a more detailed look at the referenced object. Most
information displayed by the object viewer has been left out
due to space limitations.
Main-Object : SourceList
|- SLID | 609571
|- creation_date | 2009-05-13 14:30:51
|- filename | tmp1242225046.....cat
|- llDEC | -0.669179059846
|- llRA | 150.083649984
|- lrDEC | -0.669552489367
|- lrRA | 149.952231788
|- name | GAS-Sci-WVRIEND-WFI----
---#842-ccd56-Red---Sci-54964....fits.slist
|-+number_of_sources | 30
|-+sexparam
|-+sources
| +[level : 2] AstrometricParameters -->
| | +[level : 3] Chip
| | +[level : 3] Filter
| | +[level : 3] Instrument
| | +[level : 3] ObservingBlock
| | +[level : 3] PreastromConfig
| | +[level : 3] AstrometricParameters
| | +[level : 3] ReducedScienceFrame
| | | +[level : 4] Astrom
| | | +[level : 4] BiasFrame
| | | +[level : 4] Chip
| | | +[level : 4] ColdPixelMap
| | | +[level : 4] Filter
| | | +[level : 4] MasterFlatFrame
| | | +[level : 4] HotPixelMap
| | | +[level : 4] IlluminationCorrection
| | | +[level : 4] Imstat
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(a) (b) (c) (d) (e) (f)

Figure 5. The images above show all image cutouts of one of the sources. The (a) RawFrame, (b) ReducedFrame, (c) RegriddedFrame (d)
CoaddedRegriddedFrame were used in the Image Pipeline and (e) Illumination Correction and (f) MasterBias were used in the calibration
pipelines during the processing of SourceList

[.... some output omited .....]

B. Dependency Cut-out Service

This service provides methods to create cutouts of a
requested size from the all dependant images (i.e. images
generated or used in the processing of an object). The
service follows lineage in the system to find all dependant
images and the actual location of the object on the dependant
images. Figure 5 shows an example of image cutouts of
some of the images that were created or used during the
processing of one of the sources.

VI. RELATED WORK AND CONCLUSION

Many provenance models exist today, interested readers
are referred to [1] and [2] for more details. We have used
object oriented design and database support for persistent
objects to trace lineage (provide provenance) of data and
support e-science research. Although our approach differs
from existing models, it does not necessarily replace existing
methods, especially for those readers who are interested in
only the derivation history of data. We introduce another
concept in lineage tracing and use of lineage in e-science that
may incite further research in this area. Already applications
of provenance data (e.g. [11]) have started to gain attention.

In this paper, we have described the Astro-WISE data
lineage Framework. We have shown how Astro-WISE traces
lineage of data, how it uses the same data for retrieving,
archiving and processing of scientific data which has rel-
evance to e-science data processing needs. Using object
persistence, inheritance and polymorphism, users can extend
functionality of the system, create, store and distribute links.
The target processor, the main processing engine, follows
the dependency logic and lineage of data while processing
targets. The full end-to-end linking of all dependent data
items facilitates this break-through. This abstraction enables
Astro-WISE to guide the user to that intrinsic information
by forcing full backward and forward chaining in the data
modeling. Experimentation has been done using real astro-
nomical examples. These examples demonstrate that lineage
information is highly effective in scientific processing and
greatly benefits scientific users of the system. Further exten-
sions to Astro-WISE include using lineage for sub-image
(re)processing, which involves running part of derivation
process on a subsection of an image.
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