
Req 6.3.3

Title:

Construct individual weight maps.

Objective:

Construct individual weight maps.

In addition to the effects of hot and cold pixels, individual images are contam-
inated by saturated pixels, cosmic ray events, and may be affected by satellite
tracks. For purposes of subsequent analysis and image combination, pixels af-
fected by these effects need to be assigned a weight of zero in weight maps
that are unique to each image.

Saturated pixels are pixels whose counts exceed a certain threshold. In addition,
saturation of a pixel may lead to ’dead’ neighbouring pixels, whose counts lie
below a lower threshold.

Cosmic-ray events can be detected using special source detection filters (retina
filters), with Sextractor. These are essentially neural networks, trained to rec-
ognize cosmic rays, taking a set of neighbouring pixels as input (see Section
7.1 for further details).

Satellite tracks can be discovered by a line-detection algorithm such as the
Hough transform, where significant signal along a line produces a ’peak’ in the
transformed image. This peak can be clipped, and transformed back into a
pixelmap that masks the track (see Section 7.1 for further details).

Since the variance is inversely proportional to the Gain, which is proportional
to the flatfield, the weight is given by:

Wij = GijPhotPcoldPsaturatedPcosmicPsatellite

where P are binary maps where good pixels have a value of 1 and bad pixels
have a value of 0.

To take into account the illumination correction, as described in req.548, the
weight should be divided by the illumination image.

Inputs:

SeqFile– 631 Raw science frame (for saturated pixelmap)
SeqFile– 632 Reduced science frame (for cosmic and satellite)
CalFile– 522 Hot pixel map

CalFile– 535 Cold pixel map

CalFile– 546 Master flatfield

CalFile– 548 Illumination correction

1



Outputs:

SeqFile– 633A Saturated pixel map

SeqFile– 633C Cosmic pixel map

SeqFile– 633S Satellite track map

SeqFile– 633 Weight image

Estimated time needed:

Approximately 1 min/CCD

Recipe:

This is covered by Recipe– Reduce which is documented in seq.– 632.

Needed functionality:

image - cosmic ray detection; image - mask; image - satellite detection; image
- arithmetic; image - statistics

CA:

Saturated Pixel Map:

Process (make):
1. Create a pixelmap by applying a threshold to the raw data

Cosmic Map:

Process (make):
1. Construct a weight map from the flatfield, saturated, hot and cold pix-
elmaps.
2. Subtract the background from the reduced science image.
3. Multiply by the square-root of the weight to produce a SNR image.
4. Run Sextractor with a cosmic retina to produce a segmentation image and
a catalogue of of cosmic-ray detections.
5. Use the segmentation image to produce a cosmic pixelmap.
6. Use the catalogue to count the number of cosmic ray events.

Satellite Map:

Process (make):
1. Construct a weight map from the flatfield, saturated, hot and cold pix-
elmaps.
2. Subtract the background from the reduced science image.
3. Multiply by the square-root of the weight to produce a SNR image.
4. Create a Hough-transformed image for pixels > 5σ.

2



5. Create a pixelmap by inverting the clipped Hough image.

Weight Image:

Process (make):
1. Combine the hot, cold, saturated, cosmic and satellite pixelmaps (logical
AND).
2. Multiply the combined pixelmap with the master flatfield.
3. Divide the weight by the illumination correction.

CAP:

Saturated Pixel Map:
saturated = eclipse.threshold2pixelmap(raw, THRESHOLD_LOW, THRESH-

OLD_HIGH)

Cosmic Pixel Map:
Constants:

COSMIC_CONFIG : SExtractor configuration parameters and their

values

in case they differ from the SExtractor defaults.

CHECKIMAGE_TYPE = ’SEGMENTATION’

ANALYSIS_THRESH = 3.0

CATALOG_TYPE = ’ASCII’

DETECT_MINAREA = 1

DETECT_THRESH = 5.0

GAIN = 1

MEMORY_PIXSTACK = 100000

BACKPHOTO_THICK = 24

BACK_TYPE = ’AUTO’

BACK_VALUE = 0.0, 0.0

FILTER = ’Y’

FILTER_NAME = ’cosmic.ret’ # Retina filter for

SExtractor

CHECKIMAGE_NAME = ’cosmic.fits’ # Image with cosmic

ray events

mask = eclipse.pixelmap_2_image(hot & cold & saturated)

weight = eclipse.image_mul(flat, mask)

weight = eclipse.image_div_local(weight, illumination)

3



eclipse.image_pow_local(weight, 0.5)

snr_image = eclipse.image_mul(reduced, weight)

sextractor(snr_image, COSMIC_CONFIG)

cosmic = eclipse.threshold2pixelmap(cosmic, -0.5, 0.5)

Satellite Pixel Map:
mask = eclipse.pixelmap_2_image(hot & cold & saturated)

weight = eclipse.image_mul(flat, mask)

weight = eclipse.image_div_local(weight, illumination)

eclipse.image_pow_local(weight, 0.5)

snr_image = eclipse.image_mul(reduced, weight)

stat = eclipse.stat_iter(snr_image)

hough = eclipse.hough_transform(snr_image,

stat.stdev*DETECTION_THRESHOLD)

satellite = eclipse.inverse_hough_transform(hough, HOUGH_THRESHOLD)

Weight image
mask = eclipse.pixelmap_2_image(hot & cold & saturated & cos-

mic & satellite)

weight = eclipse.image_mul(flat, mask)

weight = eclipse.image_div_local(weight, illumination)

4


