
Astro-WISE Environment

User and Development Manual

October 16, 2015

Coordinator

Contents

I User’s and Developer’s 1

1 Introduction 2
1.1 Overview . 2

1.1.1 History . 2
1.1.2 Basic Philosophy . 3
1.1.3 Hardware . 4
1.1.4 Software . 5

1.2 Web Services . 5
1.2.1 Database Viewer . 5
1.2.2 Database “Editor” . 5
1.2.3 Processing Web Interface . 6
1.2.4 Image Handling Services . 6

1.3 Further Websites . 6

2 Data Reduction Concepts and Walk-throughs 7
2.1 Processing steps . 7
2.2 Ingesting raw data into the database . 7
2.3 Data processing . 8

2.3.1 Interactive processing . 8
2.3.2 Non-parallel processing . 9
2.3.3 Parallel processing . 10
2.3.4 The bias pipeline . 10
2.3.5 The flat-field pipeline . 10
2.3.6 The photometric pipeline . 11
2.3.7 The image pipeline . 11

2.4 Timestamps . 12
2.5 Interfaces to other programs . 12

2.5.1 SQL interface, interaction with the database 12
2.5.2 Eclipse interface . 12
2.5.3 SWarp interface . 13
2.5.4 SExtractor interface . 14
2.5.5 LDAC interface . 14

2.6 A short example . 15
2.6.1 Outline . 15
2.6.2 The image pipeline . 15
2.6.3 Finding the result in the database . 15
2.6.4 Retrieving the images to check the results 15

2.7 A lengthy example . 16
2.7.1 Ingesting (skip in case of demo, process on local machine) 16

ii

CONTENTS CONTENTS

2.7.2 Image calibration files . 17
2.7.3 Photometric calibration files . 17
2.7.4 Image pipeline . 18
2.7.5 Coaddition . 18
2.7.6 Source lists . 19

3 Quality Control 20
3.1 General concepts . 20

3.1.1 Timestamps . 20
3.2 Quality control of biases, flat-fields and fringing 20

3.2.1 General scheme . 21
3.2.2 SubWinStat Class . 21
3.2.3 RawBiasFrame . 21
3.2.4 RawDomeFlatFrame . 22
3.2.5 RawTwilightFlatFrame . 22
3.2.6 BiasFrame (MASTER BIAS) . 22
3.2.7 DomeFlatFrame (MASTER DOME) . 23
3.2.8 TwilightFlatFrame (MASTER TWILIGHT) 23
3.2.9 MasterFlatFrame (MASTER FLAT) . 24
3.2.10 Fringing . 24
3.2.11 NOTES (OAC) . 25
3.2.12 Quality flags . 25

3.3 Quality control of the astrometry . 26
3.3.1 Astrometric calibration using overlap . 29

3.4 Quality control of the photometry . 29
3.4.1 Catalog creation . 29
3.4.2 Atmospheric extinction . 30
3.4.3 Zeropoint . 31
3.4.4 Suggestions and comments . 31
3.4.5 The inspect methods . 32

3.5 Quality control of the image pipeline . 33
3.5.1 General ideas . 33
3.5.2 Comments from OAC (Mario & Roberto) 35

3.6 Quality control of the PSF . 35

4 Development 36
4.1 Key concepts . 36

4.1.1 Persistent classes . 36
4.1.2 Verification and quality control . 38

4.2 The Astro-WISE class hierarchy . 39

5 Database Tasks 42
5.1 Setting up the database for general use . 42
5.2 Keeping database synchronized with STABLE sources 43
5.3 Database Type Evolution . 44

5.3.1 Database Type Evolution . 44
5.3.2 Overview . 44
5.3.3 The SQL representation of persistent Python class 45
5.3.4 Finding information about the SQL types, tables and views 45
5.3.5 Adding a persistent class . 45
5.3.6 Removing a persistent class . 45

iii

CONTENTS CONTENTS

5.3.7 Adding persistent attributes to a class . 46
5.3.8 Removing presistent attributes from a class 46
5.3.9 Renaming a persistent attribute . 46
5.3.10 Changing the type of a persistent attribute 46
5.3.11 Moving a persistent subclass to a different parent class 47
5.3.12 Error messages . 47

6 Persistency Interfaces 48
6.1 Introduction . 48
6.2 Background . 48

6.2.1 Object Oriented Programming . 48
6.2.2 Persistency . 49
6.2.3 Relational Databases . 49

6.3 Problem specification . 50
6.4 Interface Specification . 50

6.4.1 Persistent classes . 51
6.4.2 Persistent Objects . 52
6.4.3 Queries . 53
6.4.4 Functionality not addressed by the interface 53

II HOW-TOs 54

7 Getting Started 55
7.1 HOW-TO: Start . 55

7.1.1 Access to the AWE database . 55
7.1.2 Preparing the Astro-WISE Environment . 55
7.1.3 Starting the Astro-WISE Environment . 56
7.1.4 Access to the AWE software . 56
7.1.5 Access to the AWE dataservers . 57

7.2 HOW-TO Documentation . 58
7.2.1 HOW-TOs . 58
7.2.2 The Manual . 58
7.2.3 Documentation from the Code . 58
7.2.4 The Code Itself . 63

7.3 HOW-TO: CVS . 64
7.3.1 AWBASE and test version . 64
7.3.2 Getting access . 64
7.3.3 Using your CVS checkout . 65
7.3.4 Using CVS . 65
7.3.5 Moving the AWBASE tag . 67

7.4 HOW-TO: Schedule observations . 68
7.4.1 Data requirements . 68
7.4.2 Notes on specific instruments . 70
7.4.3 Standard tiling and pixelation of the sky 70
7.4.4 Viewing observations already in the Astro-WISE system 70

7.5 HOW-TO: Ingest . 71
7.5.1 Preparations for the ingest . 71
7.5.2 Ingesting data . 73

7.6 HOW-TO: Work with Dates and Times in AWE . 74
7.6.1 Observing nights . 74

iv

CONTENTS CONTENTS

7.6.2 Input from the user . 74
7.6.3 Time stamps . 75
7.6.4 Dates in the database . 75
7.6.5 Conversions between local time and UTC 75

7.7 HOW-TO: Parallel Process . 77
7.7.1 Summary . 77
7.7.2 Viewing the queue . 78
7.7.3 Processing in AWE . 78
7.7.4 Using your local (changed) code when processing remotely 79
7.7.5 Options . 80
7.7.6 Logs and job identifiers . 80
7.7.7 Cancelling jobs . 80

7.8 HOW-TO: Use DARMA . 81
7.8.1 DARMA Header Interface . 81
7.8.2 On-demand Header Verification . 82
7.8.3 Special Keywords . 82
7.8.4 Saving and Advanced Creation . 84
7.8.5 Information . 85

8 Astro-WISE Environment 87
8.1 HOW-TO: awe-prompt . 87

8.1.1 Introduction . 87
8.1.2 Key combinations . 88
8.1.3 Imported package: pylab (plotting) . 89
8.1.4 Imported package: numpy (numerical Python) 89
8.1.5 Imported package: eclipse . 89
8.1.6 Imported packages: os, sys, glob (standard Python) 89
8.1.7 Started: Distributed Processing Unit interface 90

8.2 Images and catalogs in Astro-WISE . 91
8.2.1 Images . 91
8.2.2 Catalogs . 91

8.3 HOW-TO: Database Querying . 93
8.3.1 General syntax, comparison operators, AND and OR 93
8.3.2 Using wildcards (like) . 94
8.3.3 Querying list attributes (contains) . 95
8.3.4 Ordering by attribute values (order by) 95
8.3.5 Ordering returning maximum, minimum (max, min) 96
8.3.6 Querying project specific data (project only) 96
8.3.7 Querying user specific data (user only) . 96
8.3.8 Querying privileges specific data (privileges only) 97
8.3.9 Project favourite (project favourite) . 97
8.3.10 Related: retrieving images from the fileserver (retrieve) 98
8.3.11 The select method, quicker queries . 98
8.3.12 More examples . 99

8.4 HOW-TO: Configure Parameters . 102
8.4.1 Overview . 102
8.4.2 Via awe-prompt: overall user interface to configure parameters 102
8.4.3 Via Target Processor: overall user interface to configure parameters . . . 103

8.5 HOW-TO: Context . 104
8.5.1 Astro-WISE Context . 104
8.5.2 Using Context . 106

v

CONTENTS CONTENTS

8.5.3 Publishing of data objects . 109
8.5.4 Deletion . 111

9 AWE Tutorials 112
9.1 Tutorial Introduction . 112
9.2 Astro-WISE basics . 113

9.2.1 Setting up your environment . 113
9.2.2 At the awe-prompt: Looking Around . 114
9.2.3 The power of querying . 118
9.2.4 More Advanced Queries . 120
9.2.5 System Calls from the awe-prompt . 121
9.2.6 Understanding Python errors/exceptions/backtrace 121

9.3 Calibrating data . 122
9.3.1 Database projects and privileges . 122
9.3.2 Processing science frames . 122
9.3.3 Inspect the results: ReducedScienceFrame 124

9.4 Astrometric calibration . 127
9.4.1 Find ReducedScienceFrames to run astrometry on 127
9.4.2 Derive astrometric calibration . 127
9.4.3 Visually inspect astrometry . 128

9.5 Photometric Pipeline . 129
9.5.1 Deriving zeropoint and extinction . 129
9.5.2 Standard Star Catalog operations . 130

9.6 SourceList and AssociateList Exercises . 131
9.7 Data Mining Exercises . 134

9.7.1 Investigating Twilight Behavior from RawTwilightFlatFrames 134
9.7.2 Bias level for OmegaCAM . 134

9.8 Galaxy surface brightness analysis . 136
9.8.1 Selecting your source . 136
9.8.2 GalPhot: Isophotal analysis: GalPhot . 136
9.8.3 GalFit: 2D Parametric fits to a galaxy surface brightness distribution . . 137

9.9 Interoperability between Astro-WISE and Virtual Observatory software 139
9.9.1 SAMP . 139

9.10 Where to go next after this tutorial . 142
9.10.1 Manual, HOW-TO’s and other documentation 142
9.10.2 Web-services . 142
9.10.3 Source code . 142
9.10.4 Links . 143

10 Calibration Pipeline: overview 144
10.1 The atomic tasks and their context . 144

10.1.1 The bias and flatfield pipelines . 144
10.1.2 The photometric pipeline . 144

10.2 Examples of running the atomic tasks with the DPU 144

11 Calibration: Read noise 147
11.1 HOW-TO: Readnoise . 147

11.1.1 What is the read noise? . 147
11.1.2 Querying . 147
11.1.3 Deriving the read noise . 147

vi

CONTENTS CONTENTS

12 Calibration: Bias 148
12.1 HOW-TO: Bias . 148

12.1.1 Bias correction using a bias image . 148
12.1.2 Bias correction using pre- or overscan regions 149
12.1.3 AWE: combining both methods . 149
12.1.4 Syntax, examples . 150

13 Calibration: Hot pixels 151
13.1 HOW-TO: Hot-Pixels . 151

13.1.1 What is a hot pixel map? . 151
13.1.2 Making a hot pixel map . 151

14 Calibration: Cold pixels 153
14.1 HOW-TO: Cold-Pixels . 153

14.1.1 What is a cold pixel map? . 153
14.1.2 Making a ColdPixelMap . 153

15 Calibration: Gain 155
15.1 HOW-TO: Gain . 155

15.1.1 Definition . 155
15.1.2 Deriving the gain . 155

16 Calibration: Flat-field 156
16.1 HOW-TO: Flat-field . 156

16.1.1 Flat-fielding . 156
16.1.2 Dome flat fields . 156
16.1.3 Twilight flat fields . 157
16.1.4 Night-sky (”super”) flats . 157
16.1.5 Combining flats into a master flat . 157
16.1.6 Syntax, examples . 157
16.1.7 Using the master dome or master twilight directly 158
16.1.8 Using night sky flats . 158

17 Calibration: De-fringing 159
17.1 HOW-TO: De-fringing . 159

17.1.1 Creating a FringeFrame . 160
17.1.2 De-fringing science images . 160

18 Calibration: Astrometry 161
18.1 HOW-TO: Astrometry . 161

18.1.1 AstrometricParametersTask Example . 161
18.1.2 Astrometric calibration - a detailed description 161

18.2 HOW-TO: GAstromSourceList . 164
18.3 HOW-TO: GAstrom . 165

18.3.1 GAstromTask Example . 165
18.3.2 Finding your GAstrometric object . 165
18.3.3 Getting the best GAstrometric solution . 166

18.4 HOW-TO: QC Astrometry . 167
18.4.1 AstrometricParameters and GAstrometric inspect() methods 167
18.4.2 Applied inspection methods . 168
18.4.3 Image inspection method . 169

vii

CONTENTS CONTENTS

18.4.4 Overlaying a calibrated catalog . 170
18.4.5 Examine the AstrometricParameters values 170

18.5 HOW-TO: Troublshoot Astrometry . 171
18.5.1 Errors in LDAC . 171
18.5.2 Quality Control (QC) Values Exceeded 172
18.5.3 Problems with the Solution . 174

19 Calibration: Photometry 177
19.1 HOW-TO: Photometric Reference Catalog and Extinction Curve 177

19.1.1 The Photometric Reference Catalog . 177
19.1.2 The standard extinction curve . 183

19.2 HOW-TO: Photometric Source Catalog . 184
19.2.1 Content of the Photometric Source Catalog 184
19.2.2 Making photometric catalogs from the awe-prompt 184
19.2.3 Configuring the photometric catalog . 185
19.2.4 Inspecting the contents of the photometric catalog 185
19.2.5 Query methods . 187
19.2.6 Querying the database . 187

19.3 HOW-TO: Transformation Tables . 190
19.3.1 The data structure of a transformation table 190
19.3.2 Using a transformation table . 190
19.3.3 Retrieving a transformation table from the database 191
19.3.4 Inserting a transformation table into the system 191

19.4 HOW-TO: Extinction and Zeropoint . 193
19.4.1 Deriving the atmospheric extinction . 193
19.4.2 Making the zeropoint from the awe-prompt 195

19.5 HOW-TO: Illumination Correction . 198
19.5.1 Characterising the illumination variation 198
19.5.2 Creating an illumination correction frame 200

20 Calibration: Miscellaneous 201
20.1 HOW-TO Set Timestamps from the awe-prompt 201
20.2 HOW-TO: Subtract Sky Background . 202

20.2.1 Overview . 202
20.2.2 Configuring background subtraction . 202

20.3 HOW-TO: Subwindow statistics . 204
20.3.1 How to work with subwindows . 204
20.3.2 Verify . 205
20.3.3 Deriving SubWinStat yourself . 205

20.4 HOW-TO: Weights . 206
20.4.1 Science frames and their weight . 206
20.4.2 Weights created by SWarp . 207
20.4.3 Weights in quality control . 210

21 Image Pipeline 212
21.1 HOW-TO: Image Pipeline: overview . 212

21.1.1 The atomic tasks and their context . 212
21.1.2 Astrometry in the image pipeline . 212
21.1.3 Running the image pipeline with the DPU 212

21.2 HOW-TO: ReduceTask . 216
21.2.1 Making ReducedScienceFrames using the DPU 216

viii

CONTENTS CONTENTS

21.2.2 Making a ReducedScienceFrame using the ReduceTask 217
21.2.3 Making a ReducedScienceFrame using the basic building blocks 217
21.2.4 Output Logs . 218
21.2.5 Viewing the results . 219

21.3 HOW-TO: Astrometric Solution . 221
21.4 HOW-TO: RegridTask . 222

21.4.1 Making RegriddedFrames using the DPU 222
21.4.2 Making a RegriddedFrame using the RegridTask 223
21.4.3 Making a RegriddedFrame using the basic building blocks 223

21.5 HOW-TO: CoaddedRegriddedFrame . 226
21.5.1 DPU Method . 226
21.5.2 Non-DPU Method . 226
21.5.3 Coadd algorithm . 227
21.5.4 Coadd units . 227

21.6 SourceLists in the Astro-WISE System . 229
21.6.1 HOW-TO: Create Simple SourceLists From Science Frames 229
21.6.2 SegmentationImage . 230
21.6.3 Using SourceList with SExtractor double-image mode 230
21.6.4 HOW-TO: Use External SourceLists . 231
21.6.5 HOW-TO: Use SourceLists . 232
21.6.6 HOW-TO: Associate SourceLists . 234
21.6.7 Scientific Examples Using AssociateLists 239
21.6.8 Visualizing associated sources: creating a skycat catalog 240
21.6.9 HOW-TO: CombinedList . 240

22 Analysis Tools 249
22.1 HOW-TO: Galfit . 249

22.1.1 Introduction . 249
22.1.2 Astro-WISE implementation . 249
22.1.3 Running GalFit . 250
22.1.4 Querying the database for GalFitModel results 252
22.1.5 Configuring GalFitModel . 253
22.1.6 Description of useful methods of GalFitModel 257
22.1.7 Caveats . 257

22.2 HOW-TO Use TinyTim . 258
22.2.1 Running TinyTim . 259

22.3 HOW-TO: Galphot . 260
22.3.1 Introduction . 260
22.3.2 Astro-WISE implementation . 260
22.3.3 First step: making a SourceList or querying existing SourceLists 260
22.3.4 Running Galphot; using the GalPhotTask 261
22.3.5 Configuring GalPhotModel . 261
22.3.6 Masking other sources in the field . 261
22.3.7 Using an existing model as initial values 263
22.3.8 Using GalPhotList . 263
22.3.9 Querying for results . 264
22.3.10Description of useful public methods of GalPhotModel 265

22.4 HOW-TO: Photometric redshifts . 267
22.4.1 PhotRedConfig . 267
22.4.2 PhotRedCatalog . 268
22.4.3 The output SourceLists . 269

ix

CONTENTS CONTENTS

22.4.4 The visualization routines . 269
22.4.5 An example from users view . 269
22.4.6 Ingestion of Filters and SEDs . 270

22.5 HOW-TO: MDia . 272
22.5.1 Introduction . 272
22.5.2 Astro-WISE implementation . 272
22.5.3 Compiling and installing the C++ code 272
22.5.4 Creating a ReferenceFrame . 272
22.5.5 Creating Lightcurves . 273

22.6 Documentation . 274
22.7 HOW-TO: VODIA . 275

22.7.1 Introduction . 275
22.7.2 Astro-WISE implementation . 275
22.7.3 Compiling and installing the C code . 275
22.7.4 Running VODIA . 276
22.7.5 Documentation . 277

22.8 HOW-TO: GalacticExtinction . 278
22.8.1 SFD extinction map: for extragalactic sources 278
22.8.2 Arenou extinction map: inside the Galaxy 278

22.9 Coordinate transformation . 279
22.10HOW-TO: SourceCollection . 281

22.10.1Overview . 281
22.10.2An Astro-WISE Session . 281
22.10.3Pushing SourceCollections . 284
22.10.4The SourceCollectionTree in the Background 287
22.10.5AttributeCalculatorDefinitions . 292
22.10.6SAMP Interaction and Query Driven Visualization 292

23 Visualization 293
23.1 HOW-TO Inspect . 293

23.1.1 Image Inspect Plot . 293
23.1.2 Image Inspect Method . 294
23.1.3 Image Display Method . 295

23.2 HOW-TO: Photometric Association Catalog . 296
23.3 HOW-TO: Mosaicing with Multi-extension FITS 297
23.4 HOW-TO: Image Services . 300

23.4.1 Visualizing and Navigating the Database with DBviewer 300
23.4.2 Visualizing FITS Images . 300
23.4.3 Visualizing FITS Cut-out Images . 301
23.4.4 Examples from the awe-prompt . 301

23.5 HOW-TO: PSF Information . 304
23.6 HOW-TO: ObsViewer . 307
23.7 HOW-TO: Trend analysis . 311

23.7.1 Summary . 311
23.7.2 Examples . 311

23.8 HOW-TO: SAMP . 314
23.8.1 SAMP HUB and Clients . 314
23.8.2 SAMP Astro-WISE integration . 315
23.8.3 Query Driven Visualization through SAMP 320
23.8.4 Data Pulling Messages . 321
23.8.5 Object Messages . 321

x

CONTENTS CONTENTS

23.8.6 More and future features . 322
23.8.7 SAMP Protocol . 322
23.8.8 Query Driven Visualization Message Details 325

23.9 HOW-TO: Query Driven Visualization . 328
23.9.1 Bootstrapping SAMP . 328
23.9.2 Simple Puller . 328
23.9.3 Tree Explorer . 329
23.9.4 Object Viewer . 329

24 Development 332
24.1 HOW-TO: New Instrument . 332

24.1.1 Summary . 332
24.1.2 Defining a New Instrument . 332

25 Frequently Asked Questions 333
25.1 General . 333

25.1.1 Introductory Material . 333
25.1.2 Getting Started . 333
25.1.3 Documentation . 334
25.1.4 Concurrent Versions System (CVS) . 335
25.1.5 Data Preparation . 335
25.1.6 Ingesting . 336
25.1.7 Dates and Times . 336
25.1.8 Parallel Processing . 336
25.1.9 awe-prompt . 337
25.1.10Queries . 338
25.1.11Process Parameters . 339
25.1.12Context . 339

25.2 Astro-WISE Environment . 339
25.3 AW Tutorials . 340
25.4 Calibration . 340
25.5 Image Pipeline . 340
25.6 Visualization . 340
25.7 Development . 341

III Appendix 342

A Installing the basic Astro-WISE Environment 343

B Installation of database software 344

C Installation of various Astro-WISE Servers 345
C.1 The Database Viewer . 345
C.2 The Dataservers . 346
C.3 The Distributed Processing Server . 347
C.4 Sample startup script . 349

xi

CONTENTS CONTENTS

D Adding a node to the Astro-WISE federation 351
D.1 Firewall setup . 351
D.2 Database creation and configuration . 351
D.3 Streams configuration . 353
D.4 Maintenance . 354

D.4.1 Cleaning up deleted files and database objects 354
D.4.2 Archivelog backup . 354

xii

Part I

User’s and Developer’s

1

Chapter 1

Introduction

This document describes the Astro-WISE data reduction environment, AWE or the Astro-WISE

Environment. It is aimed at both the beginning and the advanced user with reference for admin-
istrators (these more advanced topics will be indicated). Don’t be fooled by the term developer.
Any user who has ever looked into a source file and made even minor modifications is considered
a developer here. There are things in this manual for all levels of user/developer, from beginner
to advanced.

The first part of this document describes data processing in AWE, quality control in AWE,
concepts for developing AWE code, database tasks, and AWE interface background. The second
part consist of HOW-TOs: short, task-specific manuals showing how various aspects of the
system work. The HOW-TOs will be referenced throughout the document.

New users should read this introduction chapter then move on to either the data reduction
cookbook for a step-by-step walk-through, or go straight to the HOW-TOs for a task-by-task
approach. There is an online version of the HOW-TOs for convenience at the Astro-WISE Portal:

http://portal.astro-wise.org/

1.1 Overview

1.1.1 History

The Astro-WISE Environment (AWE) was created by The Astro-WISE Consortium, a partnership
of:

• OmegaCEN-NOVA at the Kapteyn Institute in Groningen, The Netherlands,

• Osservatorio Astronomico di Capodimonte in Napoli, Italy,

• Terapix at IAP in Paris, France,

• ESO in Garching bei München, Germany, and

• Universitäts-Sternwarte München , Germany,

and coordinated by OmegaCEN-NOVA. AWE was conceived as the solution to handle the vast
amounts of astronomical data generated by all-sky surveys, particularly those to be observed
with OmegaCAM on the VLT Survey Telescope (VST) on Cerro Paranal in Chile.

While waiting for OmegaCAM and VST completion, AWE has been expanded to include data
from many different sources. Currently supported data sources include the Wide-Field Imager (WFI)

2

http://portal.astro-wise.org/
http://www.astro.rug.nl/omegacen/
http://www.na.astro.it/
http://terapix.iap.fr/
http://www.eso.org/
http://www.usm.uni-muenchen.de/
http://www.astro.rug.nl/~omegacam/
http://vstportal.oacn.inaf.it/
http://www.ls.eso.org/lasilla/sciops/2p2/E2p2M/WFI/

1.1 Overview Introduction

on the 2.2m MPG at La Silla, the Wide-Field Camera (WFC) on the INT at La Palma, and
SuprimeCAM (SUP) on Subaru at Mauna Kea. The public portions of these datasets can be
browsed at the Supported Data Sources section of the Astro-WISE Portal.

1.1.2 Basic Philosophy

• General

– The Astro-WISE Environment (AWE) is an information system for the scientific
analysis of extremely large datasets. It utilizes federated databases and dataservers,
and parallel compute clusters to manage these vast amounts of data.

– It was originally designed and developed specifically for astronomical wide-field imag-
ing surveys, but has been used for the analysis of large datasets of handwritten
archives and can be applied to any application involving very large datasets.

– AWE is a federated system: data can be made any one-location in the federated
system, but used everywhere in the federated system. This allows collaboration
between diverse working groups.
NOTE: AWE is currently operational in The Netherlands (Groningen and Leiden),
Germany (Bonn and Munich), and Itlay (Naples)

– Raw data is sacred in AWE. All data in the system is derived from raw data and
can be traced back to the raw data within the system. This facilitates on-the-fly
re-processing (OTFR) whenever improved methods or data is available.

– All data in AWE is linked via backward chaining. Thus system is an all-in-one system:
ALL input and output of processes are stored in the information system.

– In AWE, the most recent product of a series of processes is considered the best: newer
is better. Processes in AWE automatically use the latest versions of calibration files
and software codes, which are both assumed to be the best.

– The processing of data in AWE is split up such a way that it is embarassingly parallel.
For astronomical data, this means all processes are per CCD.

– AWE makes extensive use of the Python programming/scripting language in all its
aspects.

• Object Model

– Data are represented as Python objects with attributes corresponding to both pixel-
data and meta-data, and methods corresponding to actions to perform on the object
and its attributes.

– Each object is considered a target that can be “made” with Tasks (e.g., found in
the astro/recipes directory) which set mandatory dependencies and run the target’s
make() method. Every make() fills in the newly instantiated (i.e., created) object.
For example:

awe> bias = BiasFrame()

instantiates an EMPTY bias frame object.

awe> bias.make()

completes/fills in the object’s attributes such as the observation date, pixel and header
data, data statistics, etc.

3

http://www.ing.iac.es/Astronomy/instruments/wfc/
http://www.naoj.org/Observing/Instruments/SCam/
http://www.astro-wise.org/portal/aw_datasources.shtml

1.1 Overview Introduction

– With the Target Processor, the concept of a UNIX “make” is duplicated where all
dependencies are checked for up-to-dateness (this includes existence) and will have
their own make() method run if they are not up-to-date. This occurs recursively back
to the raw data.

NOTE: This recursive “making” of objects does not extend to the Tasks as the
dependencies are only checked for existence.

– Each object has verify(), inspect(), and compare() methods. These ensure optimum
data quality.

• Code Access

– Users have direct access to the Python code base via CVS checkout at http://cvs.astro-wise.org/

– Users have the ability to add their own code or modify certain existing code.

– The core parts of the system should not be modified by users.

– Recipes can be modified for convenience in the users own checkout.

– All the other parts of the system should only be modified if there is a bug, and
preferably by the maintaniner of that part.

– See §1.1.4 for more information.

• Documentation

– The Astro-WISE portal (http://portal.astro-wise.org/) is the primary location
of documentation for AWE.

– The HOW-TOs (http://www.astro-wise.org/portal/aw_howtos.shtml) are the
main source of documentation for operating the system. They describe all aspects of
data processing in AWE, contain tutorials and troubleshooting guides, and all other
things AWE.

– For issues not addressed in the documentation, and general AWE news items, mailing
lists exist:
Issues mailing list
News mailing list

– Documentation for the code can be found at http://doc.astro-wise.org/ or from the
AWE prompt via Python’s help() function.

• Services

– See §1.2 for the various web-based interfaces to the system.

1.1.3 Hardware

In the architecture of the Astro-WISE system, three main components are identified: a file-server,
a database, and a high-performance compute cluster.

The file-server stores FITS-files, while the database keeps track of the relations between
these files and their processing history. It is also through this database that decisions are made
about which files to retrieve during the various processing steps. The compute cluster is used
to process the data. During processing, requests are made to the database for the raw science
data and for the necessary calibration files, which are then retrieved from the file-server.

NOTE: The only files the user has direct access to locally (e.g., current directory)
are data products retrieved and/or created during processing on the local machine.
Normal processing using the compute cluster will leave no such data products, but
only log files at most.

4

http://cvs.astro-wise.org/
http://portal.astro-wise.org/
http://www.astro-wise.org/portal/aw_howtos.shtml
http://www.astro-wise.org/portal/issues_mailing_list.shtml
http://www.astro-wise.org/portal/news_mailing_list.shtml
http://doc.astro-wise.org/

1.2 Web Services Introduction

1.1.4 Software

The software consists of code written in Python, and includes an interactive command line
environment (see §8.1), along with web services for viewing and editing the database (see
§1.2). On a lower level a number of existing C programs are used, such as SExtractor, LDAC,
SWarp, and Eclipse. (see §2.5).

Python and Object Oriented Programming

The code for the Astro-WISE system is written in Python, which is a language highly suitable
for Object Oriented Programming (OOP). Within the OOP style in which the code is written,
classes are associated with the various conventional calibration images, data images, and other
derived data products. For example, in our system, bias exposures become instances of the
RawBiasFrame class, and twilight flats become instances of the RawTwilightFlatFrame class.
These instances of classes are the “objects” of OOP.

Classes may have incorporated methods and attributes. Methods perform a task on the object
they belong to, while attributes are properties such as constants, flags, or links to other objects
that may be needed by methods. In Astro-WISE various recipes have been coded that control
the creation of instances of these classes. There may be different ways to create an instance of
a class depending on which attributes are set to what values, and which methods are used. A
ColdPixelMap object, for example, can be instantiated from the database (i.e. as the result of
a query or search) or it can be created by using its “make()” method. In the latter case the
ColdPixelMap can be derived either from a DomeFlatFrame or a TwilightFlatFrame, depending
on which of those two objects are specified as the “flat” attribute of the ColdPixelMap object.

Within the Object Oriented Programming style, inheritance is an important and powerful
concept. Classes can inherit attributes and methods from other classes. For example, both the
DomeFlatFrame and TwilightFlatFrame classes are derived from the base class BaseFlatFrame;
both are flat-fields afterall. Any method or attribute defined by the BaseFlatFrame class is
inherited by both classes and both classes are free to redefine (this is called polymorphism)
those methods or attributes and even add new ones as needed.

The bottom line is that Astro-WISE turns data into objects that are instances of Python

classes with attributes and methods that can be inherited.
There is a significant amount of on-line documentation available for Python. Please see the

Python web site http://www.python.org for further background on Python and for Python

tutorials.

1.2 Web Services

1.2.1 Database Viewer

A web-service is available to view the database content and pixel data. It can be found at the
following address:

http://dbview.astro-wise.org/

Help pages are provided by the webservice itself.

1.2.2 Database “Editor”

For a limited number of operations editing of database values is allowed. Specifically, it is
possible to change valid ranges of calibration data (timestamps), and flags, to disqualify bad
data. A special web-service tool to change these values can be found at the following web-site:

5

http://www.python.org/
http://terapix.iap.fr/soft/sextractor/
ftp://ftp.strw.leidenuniv.nl/pub/ldac/software/pipeline.pdf
http://terapix.iap.fr/soft/swarp/
http://www.eso.org/projects/aot/eclipse/
http://www.python.org
http://dbview.astro-wise.org/

1.3 Further Websites Introduction

http://calts.astro-wise.org/

Help pages are provided by the webservice itself.

1.2.3 Processing Web Interface

The Target Processor is the culmination of all the benefits of the Astro-WISE system. It allows
processing of a target (an end data product such as a ReducedScienceFrame or SourceList) and
any of its dependencies that require it, on a parallel (e.g., compute cluster) or on a single (e.g.,
local machine) host. The dependency chain is followed back towards the raw data (backward
chaining) to make sure only those objects requiring processing are actually processed.

http://process.astro-wise.org/

A web-based version of the awe-prompt command-line interface also exists for convenience
(account required).

http://process.astro-wise.org/AWE

1.2.4 Image Handling Services

Services involving image sections (dependency cutouts, RGB generator, etc.) can be found in
the IMGView service:

http://imageview.astro-wise.org/

1.3 Further Websites

The OmegaCAM web site:

http://www.astro.rug.nl/~omegacam/

The Astro-WISE web site:

http://www.astro-wise.org/

The Astro-WISE Web Services web site:

http://portal.astro-wise.org/

6

http://calts.astro-wise.org/
http://process.astro-wise.org/
http://process.astro-wise.org/AWE
http://imageview.astro-wise.org/
http://www.astro.rug.nl/~omegacam/
http://www.astro-wise.org/
http://portal.astro-wise.org/

Chapter 2

Data Reduction Concepts and
Walk-throughs

This chapter is intended as an introduction and simple reference document for data processing.
It will provide examples of how to use the system, but it will not show how to set up the
different necessary components. In particular it is assumed the user has a working system, and
has access to the database, a parallel computing cluster and his/her own CVS checkout of the
code. Once you have obtained the code, an environment variable called $AWEPIPE should point
to the installation directory (awe). This variable is referenced repeatedly in the following text.

2.1 Processing steps

Several key points can be distinguished in the data reduction process:

• Ingesting raw data into database/data-server

• Producing calibration files

• Producing calibrated science data (applying calibration files)

• Coaddition of calibrated science data

• Source extraction

• User specific (much more so than previous steps at least)

This is also the order in which various pipelines (recipes) need to be run so that the necessary
calibration files are present in the database. See §§2.3.4, 2.3.5, 2.3.6, and 2.3.7 for more specific
information about the pipelines.

2.2 Ingesting raw data into the database

See §7.5.

The first step in data reduction is the ingestion of the raw data into the database. This is
handled by a recipe called Ingest.py, which can be found in $AWEPIPE/astro/toolbox/ingest.
The recipe is invoked from the Unix command line with the following command :

7

2.3 Data processing Data Reduction Concepts and Walk-throughs

awe $AWEPIPE/astro/toolbox/ingest/Ingest.py -i <raw data> -p <purpose> [-commit]

where <raw data> is a list of input data (filenames) to ingest, and <purpose> the purpose for
which the input data was obtained. The input data should be be unsplit and uncompressed.

2.3 Data processing

This section will distinguish three general ways of using the system to do data reduction. The
first, most laborious one, is to do this interactively, step-by-step at the Python prompt. While
unsuitable to process a lot of data quickly, this gives a lot of insight into the inner workings of
the code, and it may show the strengths of the system fairly evidently. It is also possible to use
recipes to reduce data on a single machine. This is helpful while testing. Finally it is possible to
use a parallel cluster, which is the most convenient way to process large volumes of data quickly.

Three characteristics of the Astro-WISE Environment (AWE) should be known prior to cali-
brating data with it.

1 The newest versions of calibration files present in AWE are considered best by default.

2 Each calibration file in the system has its individual period of validity associated with it,
which is called its timestamp.

3 Any calibration file in the system can be flagged as invalid to ensure that it will not be used
in data calibration. The flag is called the superflag.

The implication of these characteristics for automated calibration with AWE can be illustrated
well with an example. Assume that a science exposure is to be automatically calibrated. AWE

will search for calibration files (e.g., BiasFrame, MasterFlatFrame, etc.) that have a timestamp
which encompasses the time at which the exposure was taken and have no superflag. If, for
example, one BiasFrame exists it will be used. If more than one exists, the last created one will
be used. (If none exist the system might try to construct one in some situations.)

An instrument specific note: to facilitate automated calibration for data from the ESO
Wide Field Imager (WFI), calibration files have been created which have timestamps encom-
passing the times of all WFI images. The creation date of these “forever valid” data is set to
a date before any of the other calibration data present in the system. The calibration files
are ReadNoise, BiasFrame, GainLinearity, HotPixelMap, ColdPixelMap, DomeFlatFrame,
TwilightFlatFrame, MasterFlatFrame, FringeFrame, photometric zeropoints and exinction
curves, and bandpass transformations. The filter dependent calibration files have been derived
for the U (#841, #877), B (#842, #878), V (#843) , R (#844) and I (#845, #879) broad-band
filters. Thus for the calibration of WFI science image through such filters, the calibration files
will always be available. For optimal reduction of a specific science dataset one should keep in
mind that these defaults might not represent the best calibration files.

2.3.1 Interactive processing

An example of interactive processing:

awe> from astro.main.BiasFrame import BiasFrame

awe> from astro.main.RawFrame import RawBiasFrame

awe> from astro.main.ReadNoise import ReadNoise

awe> rn = ReadNoise.select(instrument=’WFI’, chip=’ccd50’, date=’2001-02-01’)

awe> r = RawBiasFrame.select(instrument=’WFI’, date=’2001-02-01’, chip=’ccd50’)

awe> for raw in r: raw.retrieve()

8

2.3 Data processing Data Reduction Concepts and Walk-throughs

...

awe> b = BiasFrame()

awe> b.raw_bias_frames = list(r)

awe> b.read_noise = rn

awe> b.process_params.OVERSCAN_CORRECTION = 1

awe> b.set_filename()

awe> b.make()

awe> b.store()

awe> b.commit()

This will select a readnoise calibration file from the database, raw bias frames for the night of
January 2nd, 2001, retrieve the FITS files from the data-server, create a masterbias frame, then
upload the image to the data-server (store) and finally commit its dependencies and meta-data
to the database. Note that a process parameter was tweaked. Whenever there is a possibil-
ity to adjust parameters, this is done by changing their values in the associated -Parameters
class designated by the process params attribute of BiasFrame. See §8.4 for a more exhaustive
explanantion of how process parameters are set in the system.

Note that in interactive processing you may be tempted to use loops such as the following
wrong code:

awe> sl = SourceList()

awe> query = RegriddedFrame.filename.like(’*MYNAME*ccd52*.fits’)

awe> for frame in query:

... sl.frame = frame

... sl.make()

... sl.commit()

This is incorrect code in AWE because of the way objects are stored in the database (made
persistent). A new instance of SourceList has to be created for every SourceList that you want
to commit to the database. That is, the instantiation of the SourceList object should be done
within the loop in this example:

awe> query = RegriddedFrame.filename.like(’*MYNAME*ccd52*.fits’)

awe> for frame in query:

... sl = SourceList()

... sl.frame = frame

... sl.make()

... sl.commit()

2.3.2 Non-parallel processing

Python classes are available to do any of the calibration steps; these classes act as recipes.
They are located in $AWEPIPE/astro/recipes/, and must be imported into the Python

interpreter, and can then be ’run’:

awe> from astro.recipes.DomeFlat import DomeFlatTask

awe> task = DomeFlatTask(instrument=’WFI’, date=’2000-04-28’, chip=’ccd50’,

filter=’#842’, commit=1)

awe> task.execute()

It is possible to call the help file on these classes:

9

2.3 Data processing Data Reduction Concepts and Walk-throughs

awe> help(DomeFlatTask)

A page containing docstrings, methods etc. defined in DomeFlatTask will be shown. Hit “q” to
exit this page.

2.3.3 Parallel processing

See §7.7.
When the awe-prompt starts, an instance of the class “Processor” is automatically created

and given the name “dpu” (Distributed Processing Unit). Using this class you can run tasks in
parallel. Start a task as follows:

awe> dpu.run(’ReadNoise’, d=’2000-04-28’, i=’WFI’, c=’ccd50’, oc=6, C=1)

Here the first argument is the task name, the possible arguments can be found in table 10.1.
The other arguments are query arguments, “d” is the “date” at the start of the observing night
for which this ReadNoise object is derived, “i” is the “instrument” identifier, “c” is the “chip”
(CCD) identfier (omit this argument to process the data for all the CCDs of “instrument”
simultaneously), “oc” is the “overscan” correction method, and “C” is the “commit” switch.

Any invalid input to the processor is caught and a usage message is printed. Also note that
if you have a local checkout of the code, this code and any changes to it are sent to the DPU
and used there.

2.3.4 The bias pipeline

See section 10.
Recipes used:

• ReadNoise.py

• Bias.py

• HotPixels.py

• GainLinearity.py

2.3.5 The flat-field pipeline

See section 10.
Recipes used:

• DomeFlat.py

• ColdPixels.py

• TwilightFlat.py

• MasterFlat.py

• NightSkyFlat.py

• FringeFlat.py

10

2.3 Data processing Data Reduction Concepts and Walk-throughs

2.3.6 The photometric pipeline

See section 10.
Recipes that can be used:

• PhotCalExtractResulttable.py

• PhotCalExtractZeropoint.py (this recipe represents the OmegaCAM pipeline)

These recipes and their underlying Task classes are described in detail in the chapters dedicated
to the photometric pipeline.

2.3.7 The image pipeline

See §21.1.
The image pipeline is used to process raw science data and needs the outputs from the various

calibration pipelines. The calibration steps performed are de-biasing, flatfielding, astrometric
calibration and photometric calibration. The recipes that relate to the image pipeline are:

• Reduce.py

• Astrometry.py

• GAstrometricSourceList.py

• GAstrom.py

• Regrid.py

• Coadd.py

The Reduce recipe de-biases and flat-fields the raw science data. Astrometry can be done in
two ways. First Astrometry derives a astrometric solution. After Astrometry has been run, it
is possible to try to improve the astrometric solution by using overlap regions of all the images
in a dither pattern. To this end GAstrometricSourceList creates a SourceList that may be
used when running the GAstrom recipe. Regrid resamples a ReducedScienceFrame into a new
grid of pixels, so that RegriddedFrames can be easily coadded into CoaddedRegriddedFrames.

Starting the image pipeline in single-CCD mode is quite easy. To reduce the data of a given
raw science frame from the awe-prompt:

awe> r = ReduceTask(raw_filenames=[’<input name>’], commit=1)

awe> r.execute()

where <input name> is the filename of the raw science frame to calibrate. Or:

awe> r = ReduceTask(instrument=<instrument>, date=<date>, filter=<filter>,

chip=<chip>, object_name=<object name>, commit=1)

awe> r.execute()

The recipe for running the image pipeline in parallel mode is the same one as used for
running the calibration pipelines. In this case, however, the -task switch is set to either Reduce
or Science. The command issued to run the pipeline is:

awe> dpu.run(’Reduce’, i=<instrument name>, d=<date>, f=<filter name>,\

... o=<object name>, C=<commit: 0 or 1>)

Raw images that are ingested into the database have an attribute ”OBJECT”, which is
matched to ”object name” in the above statement. This OBJECT is the value of the header
keyword OBJECT from the raw image. It is possible to use the wildcards ”?” and ”*” in the
object name, which act similar to Unix command line wildcards.

11

2.4 Timestamps Data Reduction Concepts and Walk-throughs

Photometric calibration in the image pipeline

The photometric calibration in the image pipeline is achieved by writing the zeropoint and
extinction information from calfile 563 into the header of the science frame. In order for this to
work, these calfiles (obviously) have to be present in the database for every combination of chip
and filter. The quick creation of these calfiles without having to run the photometric pipeline
is decribed in the relevant chapters on the photometric pipeline.

2.4 Timestamps

For the smooth running of the image pipeline, some manual adjustments of the contents of the
database are sometimes necessary. This is particularly true for the timestamping of the various
calibration files, because the selection of the right calibration file depends on these timestamps.

Every calibration file has three timestamps, of which two determine the validity range of
the file. These timestamps are timestamp start, timestamp end, and creation date, respec-
tively. The default timestamps that are created in the calibration pipeline are set to reflect the
calibration plan of OmegaCAM. However, these timestamps are not really suited for ‘random’
sets of data, or for data which are not subjected to a rigorous calibration plan. It is there-
fore necessary to adjust the timestamps of the calfiles produced so that these fit the ‘observing
schedule’ of the data at hand. This can be done using the database timestamp editor (see
http://calts.astro-wise.org/).

2.5 Interfaces to other programs

2.5.1 SQL interface, interaction with the database

See §8.3 for information about this interface.

2.5.2 Eclipse interface

For image arithmetic the C library Eclipse is used. In order to use this library in AWE a Python

wrapper/interface was written. There are three main classes used in the AWE in this interface:
image, cube, and pixelmap, representing much used data structures. Here is an example of
its use:

awe> import eclipse

awe> bias = eclipse.image.image(’bias.fits’)

awe> flat = eclipse.image.image(’flat.fits’)

awe> sci = eclipse.image.image(’science.fits’)

awe> result = (sci-bias) / flat

awe> result.save(’sci_red.fits’)

Note that in the above example ”science.fits” is a trimmed image that has to be equal in shape
and size to the bias and flat. Master bias and master flat files retrieved from the database are
trimmed, while raw science data is not. Also note that a new header is created for ”result” in
the example above. You may want to keep the header of the science image though:

awe> hdr = eclipse.header.header(’science.fits’)

awe> result.save(’sci_red.fits’, hdr)

12

http://calts.astro-wise.org/

2.5 Interfaces to other programs Data Reduction Concepts and Walk-throughs

NOTE: Eclipse headers can be used at this low level, but for compatibility and
advanced functionality like header verification, AWE uses DARMA headers based on
the PyFITS interface (see §7.8 for more details).

Regions can be cut from images:

awe> region = result.extract_region(1,1,100,100)

awe> region.save(’sci_red.region.fits’)

If you specify the header for saving here it will adjust values such as ”NAXIS1” and ”NAXIS2”
to reflect the real size of the image.

Statistics can be calculated in the following way (assume that ”coldpixels.fits” is an 8-bit pix-
elmap FITS file locating cold pixels):

awe> coldpixels = eclipse.pixelmap.pixelmap(’coldpixels.fits’)

awe> mask = ~coldpixels

awe> stats = result.stat_opts(pixelmap=mask, zone=[1,1,100,100])

awe> stats.median

1412.8621

Note the bitwise negation operator (∼) to switch between ”masks” (bad pixels 0) and ”flags”
(bad pixels 1). A mask is optional for calculating the statistics.

Images (i.e. image objects) can be stacked in a cube:

awe> b1 = eclipse.image.image(’bias1.fits’)

awe> b2 = eclipse.image.image(’bias2.fits’)

awe> b3 = eclipse.image.image(’bias3.fits’)

awe> c = eclipse.cube.cube([b1,b2,b3])

awe> med_av = c.median()

we> med_av.save(’med_av.fits’)

Other functionalities such as Fourier transforms, image filtering, etc. are supported. For further
information, import eclipse in Python and use the help functionality provided by Python. (See
§7.2.)

2.5.3 SWarp interface

SWarp is an image coaddition program, that performs pixel remapping, projections etc. This
interface is very straightforward, as it simply writes a configuration file such as used by this
program (similar to SExtractor) and then calls the program itself.

awe> from astro.external import Swarp

awe> from astro.main.Config import create_config

awe> swarpconfig = create_config(’swarp’)

awe> swarpconfig.COMBINE = ’N’

awe> swarpconfig.RESAMPLE = ’Y’

awe> files = [’file1.fits’, ’file2.fits’, ’file3.fits’]

awe> Swarp.swarp(files, config=swarpconfig)

The first argument of Swarp.Swarp is a list of files to be SWarped. The second is the optional
Config object whose options can be set in multiple ways (see below), including the direct setting
as shown above.

13

http://terapix.iap.fr/rubrique.php?id_rubrique=49/

2.5 Interfaces to other programs Data Reduction Concepts and Walk-throughs

2.5.4 SExtractor interface

SExtractor is used to extract sources from images. While this is handled by the Catalog class,
one can also call the SExtractor interface directly.

awe> from astro.external import Sextractor

awe> from astro.main.Config import create_config, create_params

awe> sexconf = create_config(’sextractor’)

awe> sexconf.set_from_keys(DETECT_THRESH=2.0, CATALOG_NAME=’mycatalog.cat’)

awe> sexparams = create_params(’sextractor’)

awe> sexparams.update_list([’FLUX_ISOCOR’])

awe> sci = ’sci_1.fits’

awe> Sextractor.sex(sci, params=sexparams, config=sexconf)

In general, the first argument of Sextractor.sex is the detection (and measurement) image,
the second is an optional measurement image, the third is possible extra output parameters other
than those specified in the interface in the form of a Parameters object (from astro.main.Config).
The final argument is the configuration (a Config object), which can be updated from separate
keyword arguments in KEYWORD1=’value1’, KEYWORD2=’value2’, etc. format as shown in
the ‘set from keys’ call.

The mycatalog.cat catalog is a FITS table. Here follows an example of one way to work with
the data in mycatalog.cat.

awe> import pyfits

awe> hdu=pyfits.open(’mycatalog.cat’)

awe> flux_isocor=hdu[2].data.field(’FLUX_ISOCOR’)

The use of the Catalog class is discouraged, but explained below for completeness:

awe> from astro.main.Catalog import Catalog

awe> from astro.main.BaseFrame import BaseFrame

awe> cat = Catalog(pathname=’mycatalog.cat’)

awe> cat.frame = BaseFrame(pathname=’sci_1.fits’)

awe> cat.sexparam = [’FLUX_ISOCOR’]

awe> cat.sexconf[’DETECT_THRESH’] = 2.0

awe> cat.make()

The above can be extended with:

awe> cat.make_skycat()

This will make a skycat catalog called ”mycatalog.scat”, which can be overlayed on the FITS
image (”sci 1.fits”) when using ESO’s Skycat viewer.

2.5.5 LDAC interface

LDAC (Leiden Data Analysis Center) tools are used in the system to do tasks such as astrometry
and photometry. In particular, these tools provide a way to manipulate and associate binary
FITS catalogs. Hence catalogs as created in the previous section can be manipulated from
Python with the LDAC interface.

awe> from astro.external import LDAC

awe> incat = ’science.cat’

awe> outcat = ’science.filtered.cat’

awe> ldac = LDAC.LDAC()

awe> ldac.filter(incat, outcat, table_name=’OBJECTS’, sel=’FLUX_RADIUS > 5.0’)

14

http://terapix.iap.fr/rubrique.php?id_rubrique=91/
ftp://ftp.strw.leidenuniv.nl/pub/ldac/software/pipeline.pdf

2.6 A short example Data Reduction Concepts and Walk-throughs

These few lines will filter a catalog in file ”science.cat” so that only astrophysical objects with
a half-light radius larger than 5.0 pixels are placed in the output catalog. Note that LDAC is
very picky about the syntax of the ”sel” selection statement, so be careful here.

2.6 A short example

2.6.1 Outline

When reducing data, instrumental footprints are removed from the science data and it is cal-
ibrated astrometrically and photometrically. This is done by what we call the image pipeline.
This short demo skips the creation of the calibration data (biases, flat-fields etc.) and shows
how to reduce science data, and then find and inspect the results in the database.

Start the awe-prompt by typing awe.

2.6.2 The image pipeline

In this case we want to reduce data observed on the night of April, 28, 2000, on ESO’s 2.2m
WFI telescope, using the Johnson B filter (identifier: #842). This information is necessary to
give on the command line for the data to be found in the database:

awe> dpu.run(’Reduce’, d=’2000-04-28’, i=’WFI’, f=’#842’, C=1)

The job will be submitted to the queue. Check the DPU web page (Groningen). Wait for
the jobs to finish. Logs of the processing can be retrieved as follows:

awe> dpu.get_logs()

2.6.3 Finding the result in the database

Now we want to check the database for the created files, and obtain the reduced images to check
the result:

awe> query = ReducedScienceFrame.select(instrument=’WFI’, date=’2000-04-28’,

filter=’#842’, chip=’ccd50’,

object=’CDF4_B_3’)

awe> for frame in query: print frame.filename, frame.quality_flags,

... frame.chip.name, frame.filter.name,

... frame.OBJECT, frame.creation_date

...

Sci-DEMO-WFI-----#842-ccd50---Sci-53256.5263356.fits 0 ccd50 #842 CDF4_B_3

2004-09-08 12:38:06.00

The last item is the creation date of the ReducedScienceFrame, here you can check that the
ReducedScienceFrame(s) selected include those that were just made. It is possible to fully track
the history of each image this way.
Do not close the awe-prompt at this point (see next section).

2.6.4 Retrieving the images to check the results

It is now possible to download the images from the data-server(s). This can be done after
selecting the images after doing the above query:

15

http://dpu.hpc.rug.astro-wise.org/status

2.7 A lengthy example Data Reduction Concepts and Walk-throughs

awe> q = ReducedScienceFrame.filename == ’Sci-DEMO-WFI-----#842-ccd50---Sci-532

56.5263356.fits’

awe> frame = q[0]

awe> frame.retrieve()

Note that the result of the query is in the form of a list, even if the result of the query is only one
object. Hence obtain the first element and retrieve the image. The image can now be viewed
with your favourite FITS viewer.

2.7 A lengthy example

This section will recap the preceding ones to show how to proceed from the point of having a
data tape to a question such as: give me a plot of half-light radius versus magnitude for the
objects in this field. As data set for this example, 1/4th of the Capodimonte Deep Field (B
filter) is used. This area has a size of approximately 30’ × 30’ (the WFI field of view). The
observations for this data set were done on the 28th of April, 2000.

2.7.1 Ingesting (skip in case of demo, process on local machine)

It is assumed that we have copied all the data for this date from tape (presumably) to hard
disk, so that it is located in for example /Users/users/data/. It is now necessary to know the
type of (raw) data for each file (bias, twilight flat, dark etc.). The data set needs to be ingested
into the database: the multi-extension FITS files are split into single CCD parts and stored on
the data-server, and RawFrame objects are created in the database.

Since the total amount of files is considerable, it is convenient to list these by type in ascii
files. In our case a file called bias files.txt containing the bias file names looks like:

WFI.2000-04-28T00:01:00.fits

WFI.2000-04-28T00:01:30.fits

WFI.2000-04-28T00:02:00.fits

WFI.2000-04-28T00:02:30.fits

WFI.2000-04-28T00:03:00.fits

WFI.2000-04-28T00:03:30.fits

WFI.2000-04-28T00:04:00.fits

WFI.2000-04-28T00:04:30.fits

WFI.2000-04-28T00:05:00.fits

These biases can be ingested into the database by looping over this file as follows:

unixprompt>foreach i (‘cat bias_files.txt‘)

foreach? awe $AWEPIPE/astro/toolbox/ingest/Ingest.py -i $i -t bias -commit

foreach? end

Repeat (use option -t dome and -t twilight) for the dome- and twilight flats. The raw calibration
data should now be present in the database and data-server as RawBiasFrame, RawDomeFlat-
Frame and RawTwilightFlatFrame instances.

One can check this by using the database viewer (http://dbview.astro-wise.org).

16

http://dbview.astro-wise.org

2.7 A lengthy example Data Reduction Concepts and Walk-throughs

2.7.2 Image calibration files

Assuming everything went well, we are ready to start creating calibration files. This will be
done using a parallel computing cluster.

Use the following command to create read noise objects, which are necessary to create master
biases:

awe> dpu.run(’ReadNoise’, i=’WFI’, d=’2000-04-28’, C=1)

Check your DPU queue webpage to view the status of your job and wait for them to finish.
Then use the following command to create master biases for each CCD:

awe> dpu.run(’Bias’, i=’WFI’, d=’2000-04-28’, C=1)

Once a job is finished the log file for it can be obtained from the DPU:

awe> dpu.get_logs()

Once the biases finish the other necessary calibration steps need to be performed (in this order)
as follows:

awe> dpu.run(’HotPixels’, i=’WFI’, d=’2000-04-28’, C=1)

awe> # Wait for jobs to finish (check web page for queue)

awe> dpu.run(’DomeFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

awe> # Wait for jobs to finish (check web page for queue)

awe> dpu.run(’ColdPixels’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

awe> # Wait for jobs to finish (check web page for queue)

awe> dpu.run(’TwilightFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

awe> # Wait for jobs to finish (check web page for queue)

awe> dpu.run(’MasterFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

awe> # Wait for jobs to finish (check web page for queue)

2.7.3 Photometric calibration files

In order to run the image pipeline and do photometry, a PhotometricParameters object is
required. There are two ways to proceed here, as described in the sections below.

Manual values (essentially no photometry)

For relative photometric calibration in the case of WFI observations, values for the zeropoint
and extinction can be entered manually:

awe $AWEPIPE/astro/toolbox/photometry/ingest_photometrics.py -z 25.00 -c ccd50

-f #842 -e 0.19

-start 2000-01-01

-end 2000-12-31

awe $AWEPIPE/astro/toolbox/photometry/ingest_photometrics.py -z 24.95 -c ccd51

-f #842 -e 0.19

-start 2000-01-01

-end 2000-12-31

etc.

where the option ”z” is the zeropoint and ”e” the extinction. Repeat this for each CCD (ccd50-
ccd57) in the WFI detector. With these default PhotometricParameters objects in place it is
possible to run the image pipeline (§2.7.4).

17

2.7 A lengthy example Data Reduction Concepts and Walk-throughs

Using standard star fields (absolute photometry)

See §§19.2, 19.3, and 19.4 for detailed instruction on how to do accurate photometry. This is
outside the scope of this example.

2.7.4 Image pipeline

Now that all calibration files that are necessary have been produced, we can continue by applying
all these to the science data. This is done by running a recipe that represents the so-called image
pipeline:

awe> dpu.run(’Reduce’, i=’WFI’, d=’2000-04-28’, f=’#842’, o=’CDF4_B_?’, C=1)

The data used in the case of this example consists of 10 dithered exposures that we intend to
coadd into one image. The above example will select RawScienceFrames from the database, using
in particular the “like” functionality of the SQL interface in selecting for matches of the OBJECT
header keyword, and applies the calibration data. This results in 80 ReducedScienceFrames that
are stored in the database. In addition these reduced science frames are resampled to a new
grid. The grid centers for this system are fixed so that pixels in these RegriddedFrames can be
combined without resampling again first.

After the job completes there should be 80 new ReducedScienceFrames and 80 new Regridded-
Frames in the database. One can check this from the AWE/Python interpreter as follows:

awe> s = ReducedScienceFrame.select(instrument=’WFI’, date=’2000-04-28’,

... filter=’#842’)

awe> len(s)

361

If this search turns up more than 80 science frames as above, this means other data has been
reduced (possibly by other persons) for this filter and for this night. To get a better idea of
what is present in the database for this night one could proceed as follows:

awe> for f in s: print f.raw.filename, f.filter.name, f.chip.name,

f.EXPTIME, f.OBJECT

...

(press enter when prompted with ’...’ to close the statement block in the above loop)

2.7.5 Coaddition

The RegriddedFrames created in the previous step can be coadded into a single mozaic, to form
the intended contiguous region on the sky. In order to coadd the data, one can do the following:

awe> dpu.run(’Coadd’, i=’WFI’, d=’2000-04-28’, f=’#842’, o=’CDF4_B_?’, C=1)

A lot of files now need to be retrieved from the data-server, namely all the RegriddedFrames
and all WeightFrames associated with these. After processing finishes, you should now have a
nice image of 1/4th of the Capodimonte Deep Field.

18

2.7 A lengthy example Data Reduction Concepts and Walk-throughs

2.7.6 Source lists

See §21.6.

To make a source list of the image we made above, where the information of the sources is
available from the database, one can do the following:

awe> sl = SourceList()

awe> query = CoaddedRegriddedFrame.filename.like(’Sci*Coadd*.fits’)

awe> sl.frame = query[0]

awe> sl.frame.retrieve()

awe> sl.name = ’DEMO-sourcelist’

awe> sl.sexconf.DETECTION_THRESHOLD = 2.0

awe> sl.sexparam = [’MAG_AUTO’, ’MAGERR_AUTO’, ’FLUX_RADIUS’]

awe> sl.make()

awe> sl.commit()

One can now select the source list from the database and check its global properties or even
specific information about the sources in the source list.

awe> query = SourceList.name == ’DEMO-sourcelist’

awe> sl = query[0]

awe> print len(sl.sources)

180000

etc.

19

Chapter 3

Quality Control

3.1 General concepts

Explain:

• verify, compare, inspect paradigm

• timestamps as supreme QC tool.

• how to handle ’bad’ data -difference calibration pipeline, image pipeline

3.1.1 Timestamps

For the smooth running of the image pipeline, some manual adjustments of the contents of the
database are sometimes necessary. This is particularly true for the timestamping of the various
calibration files, because the selection of the right calibration file depends on these timestamps.

Every calibration file has three timestamps, of which two determine the validity range of
the file. These timestamps are timestamp start, timestamp end, and creation date, respec-
tively. The default timestamps that are created in the calibration pipeline are set to reflect the
calibration plan of OmegaCAM. However, these timestamps are not really suited for ‘random’
sets of data, or for data which are not subjected to a rigorous calibration plan. It is there-
fore necessary to adjust the timestamps of the calfiles produced so that these fit the ‘observing
schedule’ of the data at hand. This can be done using the database calts web-service (see
http://calts.astro-wise.org/).

It can happen that timestamp ranges overlap for two or more calibration files. In the pipeline
the one with the most recent creation date is used. To make a calibration file valid forever,
timestamp start should be set to January 1st, 1990, timestamp end should be set to January
1st, 2030 and the creation date should be set to January 1st, 1990.

3.2 Quality control of biases, flat-fields and fringing

Group composition: Juan Alcalà, Ewout Helmich, Roberto Silvotti, Philippe Heraudeau, Mike
Pavlov, Alfredo Volpicelli
Leader: Juan Alcalà

tool: tool: general small windows - flatness

20

http://calts.astro-wise.org/

3.2 Quality control of biases, flat-fields and fringing Quality Control

3.2.1 General scheme

The QC on biases, flat-fields and fringing pattern is based on two different steps:

1. A first simple QC on RawFrames (RawBiasFrame, RawDomeFlatFrame and RawTwilight-
FlatFrame) is done during the ingestion, based on the verify method only. If the verify
provides a negative result, the frame is flagged as bad and will never be used by the
pipeline.

2. The same concept as before is used for the Masters (Bias, Dome, Twilight); moreover a
compare method is also defined and used to compare the current master frame with the
previous one. Also in this case, if the compare method gives a negative result, the frame
is flagged as bad and will never be used by the pipeline. Finally, for what concerns the
MasterFlat and the FringingPattern, only the compare method is used.

Note that both the verify and compare methods can host many independents quality controls.
The idea is that each of these quality controls should be able to detect specific issues (indicated in
square brackets below) and hence check whether this problem is present or not in that particular
frame.

Note also that the values of all the parameters and in particular of all the thresholds, whose
default values are given in the following sections, will need a fine tuning in order to be optimized
for each particular instrument (WFI first and then OmegaCAM).

3.2.2 SubWinStat Class

Most of the QC tools described in the next sections make use of the SubWinStat Class, which
allows to derive, through eclipse, the statistical properties of a particular region (subwindow) of
a frame.
The Class SubWinStat by default uses 4 subwindows in x axis and 8 subwindows in y axis. The
user who wants to change the number of subwindows must operate in the following way:

awe> from astro.main.BiasFrame import BiasFrame

awe> from astro.main.SubWinStat import SubWinStat

awe> bias = BiasFrame.select(instrument=’WFI’, date=’2000-04-27’, chip=’ccd50’)

awe> subwinstat = SubWinStat()

awe> subwinstat.frame = bias

change number of windows in x

awe> subwinstat.process_params.NUMBER_OF_WINDOWS_X = 8

change number of windows in y

awe> subwinstat.process_params.NUMBER_OF_WINDOWS_Y = 16

calculate stats in subwindows

awe> subwinstat.make()

commit subwinstat into DB

awe> subwinstat.commit()

Note that for all the BaseFrame objects it is possible to use SubWinStat.

3.2.3 RawBiasFrame

Verify method: the following conditions must be satisfied:

21

3.2 Quality control of biases, flat-fields and fringing Quality Control

• standard deviation of the whole frame < 20

[remove noisy biases]

• (Max median in subwindows) - (Min median in subwindows) < 10

[check whether “flatness” is below a pre-defined value]

3.2.4 RawDomeFlatFrame

Verify method: the following condition must be satisfied:

• 5000 < mean < 45000

[remove saturated frames or frames with very low S/N ratio]

3.2.5 RawTwilightFlatFrame

Verify method: the following condition must be satisfied:

• 5000 < mean < 45000

[remove saturated frames or frames with very low S/N ratio]

3.2.6 BiasFrame (MASTER BIAS)

Verify method: the following conditions must be ALWAYS satisfied:

• standard deviation of the whole frame < MAXIMUM STDEV=10

[remove noisy master biases]

IF the frame is NOT OVERSCAN CORRECTED THEN
the following condition must be satisfied:

• (Max median in subwin) - (Min median in subwin) < MAXIMUM SUBWIN FLATNESS=10

[to check whether “flatness” is below a pre-defined value]

ELSE:

• abs(mean) < MAXIMUM ABS MEAN=10

[check whether the mean is close to zero]

Compare method: the following condition must be satisfied:

• abs(stdev whole frame - stdev previous frame) < MAXIMUM STDEV DIFFERENCE=5

[compare stdev of MASTER BIAS with that of the previous one]

The thresholds used by BiasFrame QC can be modified in an interactive way, as follows:

awe> from astro.main.BiasFrame import BiasFrame

awe> b = BiasFrame.select(instrument=’WFI’, date=’2000-04-27’, chip=’ccd50’)

awe> b.make_subwinstat()

awe> b.process_params.MAXIMUM_STDEV = 5

awe> b.process_params.MAXIMUM_SUBWIN_FLATNESS = 50.0

awe> b.process_params.MAXIMUM_ABS_MEAN = 8

awe> b.verify()

awe> b.process_params.MAXIMUM_STDEV_DIFFERENCE = 3.0

awe> b.compare()

22

3.2 Quality control of biases, flat-fields and fringing Quality Control

3.2.7 DomeFlatFrame (MASTER DOME)

Verify method: the following condition must be satisfied:

• (Max median in subwin - Min median in subwin) < MAXIMUM SUBWIN FLATNESS=0.05

[check whether the flatness is below e.g. 5%]

Compare method: the following condition must be satisfied:

• MAX (ratio i) – MIN (ratio i)< MAXIMUM SUBWIN DIFF=0.1

where ratio i is given by:

ratio i = median of subwindow i in present MASTER DOME
median of subwindow i in previous MASTER DOME

[check how different the shapes of the two MASTER DOME are]

Example of parameter change:

awe> from astro.main.DomeFlatFrame import DomeFlatFrame

awe> d = DomeFlatFrame.select(instrument=’WFI’, filter=’#842’,

date=’2000-04-27’, chip=’ccd50’)

awe> d.make_subwinstat()

awe> d.process_params.MAXIMUM_SUBWIN_FLATNESS = 0.02

awe> d.verify()

awe> d.process_params.MAXIMUM_SUBWIN_DIFF = 0.05

awe> d.compare()

3.2.8 TwilightFlatFrame (MASTER TWILIGHT)

Verify method: the following conditions must be satisfied:

• (Max median in subwin) - (Min median in subwin) < MAXIMUM SUBWIN FLATNESS=0.05

[check whether the flatness is below e.g. 5%]

Compare method: the following condition must be satisfied:

• MAX (ratio i) – MIN (ratio i)< MAXIMUM SUBWIN DIFF=0.1

where ratio i is given by:

ratio i = median of subwindow i in present MASTER TWILIGHT
median of subwindow i in previous MASTER TWILIGHT

[check how different the shapes of the two MASTER TWILIGHT are]

Example of parameter change:

awe> from astro.main.TwilightFlatFrame import TwilightFlatFrame

awe> t = TwilightFlatFrame.select(instrument=’WFI’, filter=’#842’,

date=’2000-04-27’, chip=’ccd50’)

awe> t.make_subwinstat()

awe> t.process_params.MAXIMUM_SUBWIN_FLATNESS = 0.02

awe> t.verify()

awe> t.process_params.MAXIMUM_SUBWIN_DIFF = 0.05

awe> t.compare()

23

3.2 Quality control of biases, flat-fields and fringing Quality Control

3.2.9 MasterFlatFrame (MASTER FLAT)

Compare method: the following condition must be satisfied:

• MAX (ratio i) – MIN (ratio i) < MAXIMUM SUBWIN DIFF=0.1

where ratio i is given by:

ratio i = median of subwindow i in present MASTER FLAT
median of subwindow i in previous MASTER FLAT

[check how different the shapes of the two MASTER FLATS are]

Example of parameter change:

awe> from astro.main.MasterFlatFrame import MasterFlatFrame

awe> m = MasterFlatFrame.select(instrument=’WFI’, filter=’#842’,

date=’2000-04-27’, chip=’ccd50’)

awe> m.make_subwinstat()

awe> m.process_params.MAXIMUM_SUBWIN_DIFF = 0.05

awe> m.compare()

3.2.10 Fringing

Compare method: once a reference fringing pattern (e.g. previous one) has been subtracted from
the current one:

Difference = FringeFrame – Previous FringeFrame

the following conditions on frame Difference must be satisfied:

• (MAX average in subwin) – (MIN average in subwin) < MAXIMUM SUBWIN MEAN DIFF=1000.
(e.g. presently excluded)

[check whether there are significant differences between the two FRINGE PATTERNS
(local differences, different slopes)]

• MAX (standard dev. in subwindows) < MAXIMUM SUBWIN STD=1000.
(e.g. presently excluded)

[check whether there are significant differences between the two FRINGE PATTERNS
(global differences, different S/N ratios)]

Example of parameter change:

awe> from astro.main.FringeFrame import FringeFrame

awe> f = FringeFrame.select(instrument=’WFI’, filter=’#842’,

date=’2000-04-27’, chip=’ccd50’)

awe> f.make_subwinstat()

awe> f.process_params.MAXIMUM_SUBWIN_MEAN_DIFF= 10

awe> f.compare()

24

3.2 Quality control of biases, flat-fields and fringing Quality Control

3.2.11 NOTES (OAC)

PRECONDITIONS: in the current version of the pipeline the minimum number of input frames
to produce a Master (bias, dome, twilight) is 2; this seems too low (in particular for the twilight
flat frames where residual stars are present). We suggest to increase these numbers to 5 (bias
and dome) and 3 (twilight).

The same applies to the fringing pattern: in order to determine a good fringing pattern (i.e.
without residual stars and with a sufficient S/N ratio) we need a number of scientific frames of
the order of 7-8.

OVERSCAN: presently there are 8 different methods to calculate the OVERSCAN:

0 – No overscan correction

1 – Use median of prescan x

2 – Use median of overscan x

3 – Use median of prescan y

4 – Use median of overscan y

5 – Use per-row value of prescan x

6 – Use per-row value of overscan x (default)

7 – Use per-row average of prescan x (smoothed)

8 – Use per-row average of overscan x (smoothed)

3.2.12 Quality flags

When any of the previous quality checks fails a flag (bit) will be set. The following gives an
overview of the different types of quality flags (bits) for every type of calibration image. First
the bit number is given, then flag name:

ReadNoise:

0 READNOISE_TOO_HIGH

1 BIAS_DIFFERENCE_TOO_HIGH

2 READNOISE_DIFFERENCE_TOO_HIGH

BiasFrame:

0 BIAS_ABS_MEAN_TOO_LARGE

1 BIAS_STDEV_TOO_LARGE

2 BIAS_STDEV_DIFFERENCE_TOO_LARGE

3 BIAS_SUBWIN_FLATNESS_TOO_LARGE

4 BIAS_SUBWIN_STDEV_TOO_LARGE

DomeFlatFrame:

0 DOME_SUBWIN_FLATNESS_TOO_LARGE

1 DOME_SUBWIN_DIFF_TOO_LARGE

TwilightFlatFrame:

0 TWILIGHT_SUBWIN_FLATNESS_TOO_LARGE

1 TWILIGHT_COUNT_OUTLAYERS_TOO_LARGE

2 TWILIGHT_SUBWIN_DIFF_TOO_$LARGE

MasterFlatFrame:

25

3.3 Quality control of the astrometry Quality Control

0 MASTER_SUBWIN_DIFF_TOO_LARGE

GainLinearity:

0 GAIN_LOW

1 GAIN_HIGH

2 GAIN_DIFFER

ColdPixelMap:

0 COLDPIXELCOUNT_TOO_LARGE

1 COLDPIXELCOUNT_DIFFERENCE_TOO_LARGE

HotpixelMap:

0 HOTPIXELCOUNT_TOO_LARGE

1 HOTPIXELCOUNT_DIFFERENCE_TOO_LARGE

3.3 Quality control of the astrometry

Group composition: Erik Deul, Mario Radovic, Emmanuel Bertin (TBC)
Leader : Erik Deul

This is a list of parameters that can be used as quality control parameters. For each param-
eter the name, an example output and sensible limits are given.

RMS and maximum residuals for reference stars

The RMS and maximum values (RMS and Max) in arcseconds of the residuals between the cal-
culated position after astrometric calibration application and the known positions of reference
catalog gives a good indication of the overall correctness of the astrometric solution.

The actual limiting values for which an astrometric solution is correct depends on a number
of input parameters. These are: the RMS of input reference star catalog, the resolution at
which the observations are performed and the seeing conditions at observation time. Further
parameters driving the astrometric correctness estimate are the number of extracted - reference
star pairs used in the astrometric solution and the degree of freedom for the sought polynomial
deformation.

The limiting RMS for the solution should not exceed the the square root of the summed
squares of the RMS for the reference stars and the positional accuracy for the extracted stars.
The latter is, for well defined stellar profiles (> 5σ) detections 0.1 times the pixel size.

The maximum value of the positional residual, should for a Gaussian distribution at 5σ
accuracy not exceed 5 times the RMS size. An example from one of the test runs from astrom

yields the following values: RMS 0.428727 and Max 1.290292.
Given a comfortable limiting range for these values, one should discard astrometric solutions

that have: RMS > 0.5arcsec and Max > 1.5arcsec.

Standard deviation on polynomial parameters

Statistical measures on the solution parameters of the astrometric calibration give good infor-
mation about the quality of the actual solution. Three notions are important here.

First, the statistics on the number of reference objects used in the fitting process. This
number is available for the case where a single frame is fitted, but in the case of solving multiple
overlapping frames the number of objects used in the overlap is also available.

For a good solution one would like to have enough data elements to restrain the polyno-
mial parameters. For each object pair (extracted - reference for single frames, and extracted
- extracted for overlapping frames) both the x and y pixel coordinates are available (yielding
to linear equations per pair). The number of required linear equations should well exceed the
number of free parameters (polynomial degree = 1: 6 parameters equal 3 pairs, polynomial

26

3.3 Quality control of the astrometry Quality Control

degree 2: 12 parameter equals 6 pairs, polynomial degree 3: 20 parameters equal 10 pairs). To
make sure individual random positional errors are well smoothed out a factor of 10 overrating
the number of required pairs is a minimum requirement.

For a test run on astrometry this may yield:

Number of reference stars: 275

Number of overlap stars: 0

A certain limit to the number of reference stars used would be: Nref > 100
Second, information about the derived offset parameters of the astrometric solution provides

quality measure. The standard deviation on the offset should be close to the largest RMS of
the input catalogs. An example run could give the following output:

arcseconds radians plate center

frame xoff yoff std xoff yoff std ra dec err

1 -2.78 2.04 0.26 -1.3e-05 9.9e-06 1e-06 2.5945597 -0.3620920 1e-06

For a std value that is < 0.4arcsec we will definitely throw away all astrometric solutions that
are grossly in error or are determined under condition that did not meet the above criteria.

Third, the information about the first and high order terms of the astrometric solution give
away precious detail about the correctness of the astrometry. This example is for non-overlap
case:

(arcseconds) (radians)

X Y err X Y err

-0.2383 0.000261 +/- 0.00013 -0.002369 2.594e-06 +/- 1.29e-06 X*1*Cheb0(F)

0.001006 0.2381 +/- 3.61e-05 1e-05 0.002366 +/- 3.59e-07 1*Y*Cheb0(F)

-3.276e-05 -7.776e-05 +/- 3.37e-05 -3.256e-07 -7.728e-07 +/- 3.35e-07 X**2*1*Cheb0(F)

0.0001374 0.0001613 +/- 1.55e-05 1.366e-06 1.603e-06 +/- 1.54e-07 X*Y*Cheb0(F)

5.862e-06 6.608e-05 +/- 8.41e-06 5.826e-08 6.568e-07 +/- 8.35e-08 1*Y**2*Cheb0(F)

The errors in the parameters should not exceed 0.3/Nref/Pdeg; where Nref is the number of
reference objects and Pdeg is the degree of the astrometric polynomial.

For OmegaCAM the set of polynomial parameters (particularly the first order) should be
strict and well known after commissioning. So limits on the range of X*1*Cheb0(F) and
1*Y*Cheb0(F) can be established.

Covariance matrix

A more detailed characterisation of the quality of the astrometric solution is presented by the
covariance matrix of the solution parameters. The covariance matrix gives an insight in the
dependencies of the individual parameters on each other. Of course each parameter should
depend fully on itself, so a unit matrix would be the ideal covariance matrix. However, several
of the parameters may depend on each other, such as the linear and second order moments of
one coordinate. This is a normal situation. The covariance matrix in astrom is constructed such
that the lines neighboring the diagonal should all have very small values. If not, two parameters,
principally x and y related parameters, depend on each other. This should not be the case for
a good astrometric solution.

In astrom the covariance matrix is normalised to 1000 to make a representable set of values
visible on output. An example run would yield the following output:

Matrix:

1000 0 989 0 0 984

0 1000 0 842 0 0

27

3.3 Quality control of the astrometry Quality Control

989 0 1000 0 0 951

0 842 0 1000 0 0

0 0 0 0 0 0

984 0 951 0 0 1000

For good astrometric solutions the diagonal elements should all be 1000 and the lines neigh-
boring diagonal should all be 0’s.

Residuals

The individual residuals between the positions of extracted objects and reference stars provides
a good measurement of the quality of the astrometric solution. This is a deepening of the first
quality control parameter which is only a global measure of these individual residuals. To assess
the individual residuals a table of residual positional information is created as an output catalog
element from the astrom program.

An example of such a residual information table is (This is a full description of the first few
objects from the RESIDUALS table.):

1 DRa Right Ascension residual [Deg]

2 DDec Declination residual [Deg]

3 Ra Right Ascension object [Deg]

4 Dec Declination object [Deg]

5 Xpos1 X position first object [Deg]

6 Ypos1 Y position first object [Deg]

7 Xpos2 X position second object [Deg]

8 Ypos2 Y position second object [Deg]

9 F1 Field number first object [Deg]

10 F2 Field number second object [Deg]

11 C1 Camera number first object [Deg]

12 C2 Camera number second object [Deg]

4.67403e-06 -1.98503e-05 148.896252 -20.732737 -1 -1 1539.47 23.6963 -1 0 -1 0

6.13633e-05 4.90936e-05 148.937179 -20.730045 -1 -1 960.152 65.9206 -1 0 -1 0

-6.7815e-06 3.59786e-05 148.985052 -20.729637 -1 -1 284.43 72.3624 -1 0 -1 0

-0.000305546 3.32008e-05 148.985371 -20.729634 -1 -1 284.43 72.3624 -1 0 -1 0

0.000115075 -6.66176e-06 148.986496 -20.728337 -1 -1 262.184 91.4185 -1 0 -1 0

9.21497e-05 2.76691e-05 148.967871 -20.724937 -1 -1 525.897 143.251 -1 0 -1 0

9.30769e-06 -3.25175e-05 148.924557 -20.724084 -1 -1 1139.5 154.804 -1 0 -1 0

-3.95176e-05 -1.28883e-05 148.863991 -20.723503 -1 -1 1996.41 163.188 -1 0 -1 0

-4.20375e-05 -5.40213e-05 148.866960 -20.721840 -1 -1 1954.53 187.785 -1 0 -1 0

To really inspect these residuals for specific inconsistencies one needs to make plots similar
to those presented in the OAC report. In fact one should plot each residual information item
as a function of all available other parameters to see if there are any systematic effects. Only if
no such effects are found to be present, the astrometric solution will have passed this test.

Of course it is almost impossible to inspect for each and every pointing the large number
of plots that can be created using this residuals table, therefore the global parameters RMS and
Max residual are created to provide a switch for going to this more tedious inspection of the
astrometric solution.

Individual object statistics

As part of the application of the astrometric solution to each extracted object, each will have an
associated set of information giving the statistical accuracy parameter: the RMS from statistical

28

3.4 Quality control of the photometry Quality Control

part of the solution. This does not incorporate measurement errors.
An example run would give (Only a subset of the available column information from the

OBJECTS table is presented here.):

1 Ra Right ascension object in world coordinates [Deg]

2 Dec Declination object in world coordinates [Deg]

3 RMS_RND Random positional error astrometric solution [Deg]

4 ERRA_IMAGE RMS position error along major axis [pixel]

148.872928 -20.733011 1.65109e-07 0.0186

148.956969 -20.734256 1.27054e-07 0.0255

148.896252 -20.732756 1.36571e-07 0.0124

148.951663 -20.732212 1.23105e-07 0.0218

148.868455 -20.731741 1.71571e-07 0.0172

For a comfortable limit to this parameter, providing a good segregation between correct
astrometric solution and flawed ones, a limiting value of < 0.3arcsec would be best.

3.3.1 Astrometric calibration using overlap

Introduction

At the moment the OmegaCAM pipeline processes individual CCD separately in the astrometric
calibration section of the pipeline. Only at the stage where the de-dithered image is created are
the individual CCD’s (parallel streams in the pipeline) synchronized.

For the purpose of deriving an astrometric solution using overlaps, the parallel threads have
to come together at an earlier stage (just before the LDAC astrom program is called) and then
disentangle after the derivation. The overhead in disk I/O is small because, for the astrometric
solutions, only catalogs are used. Overhead is created because the astrometric solution runs on
one CPU, while generally the data is spread over 32 CPU’s that have local disk storage.

Software Implications

The astrometric calibration procedure (AstrometricCatalog.do astrometry) will have to have a
synchronisation point. This can be generated by separating the procedure into two consecutive
procedures that are ‘called’ from the commanding make and by rearranging the top-level.

This way the astrometric calibration application (second procedural part) will be very similar
to the photometric calibration application.

3.4 Quality control of the photometry

Group composition: Ronald Vermeij, Mark Neeser, Roberto Silvotti, Juan Alcala
Leader: Ronald Vermeij

tool: tool: + colour - colour plots

3.4.1 Catalog creation

Quality control measures (to be) taken in the creation of catalogs. The first two QC measures
are taken during the catalog creation itself (it is part of the make), whereas the last item is more
of a check after the fact (part of the verify).

29

3.4 Quality control of the photometry Quality Control

Correctly identifying standard stars

The proper identification of standard stars on a frame obviously depends both on the quality
of the astrometric calibration, as well as on the accuracy of the catalogued coordinates of the
standard stars. Currently, the robustness of identification is improved by removing artifacts
from the catalog before association with the standard star catalog (hot pixels). Also, whenever
possible the catalogued coordinates of the standard stars are improved.

Removing sources that are ‘unfit for purpose’

Before association, saturated sources, blended sources, and sources with clipped or otherwise
de-formed apertures are removed from the catalog. This step serves the double purpose that it
does not only lower the chance of a mis-identification, but it also ensures that ‘corrupt’ standard
stars are removed before the final catalog enters the photometric pipeline. The cleaning of the
catalog depends on the flags set by SExtractor.

Checking the quality of the aperture photometry performed

As far as the quality control for the aperture photometry is concerned, things are under develop-
ment. The final catalog stores the MAG BEST output from SExtractor. The MAG BEST out-
put is either a value derived from aperture photometry using Kron-type apertures (MAG AUTO),
or a corrected isophotal magnitude (MAG ISOCOR). The choice for either one of these is de-
termined by SExtractor based on the effects of neighbouring stars on the measured magnitude
of the source.

To check the quality of the aperture photometry and to get a handle on the amount of
flux that could be missing, a selection of suitable standard stars from the final catalog could
be measured again by SExtractor but now using a set of apertures with increasing radii. The
flux measured at the ‘stabilization’ point could then be compared with the value stored in the
previously derived catalog. The results obtained from the whole ensemble of stars provides the
quality check. (This sounds like a complicated and time-consuming business that should be
delegated to a dedicated QC Task. Also, the number of standard stars used for this exercise
should be limited. Reprocessing hundreds of standard stars this way would be too costly.)

3.4.2 Atmospheric extinction

Quality control measures (to be) taken in deriving the atmospheric extinction, and simple QC
flags to be raised during monitoring.

Monitoring

In daily routine, the atmospheric extinction will be dealt with by the monitoring requirement
of the OmegaCAM pipeline (req 562). This requirement produces a report containing a mea-
surement of the extinction for every image of the polar field that goes into making it (at least
three). This measurement is obtained by fitting a standard extinction curve to the data that
has been simultaneously observed in every one of the four key-bands (composite filter). The QC
measures/flags in place are (broken down in the processing steps involved):

1. the measured zeropoints for all the stars observed in one kwadrant of the composite filter
are clipped for outliers before a single value for the extinction is determined from these.
This clipping will also remove any sources from the pipeline that have mistakenly been
identified as a standard star. After determining this value, the result is checked against
a standard extinction curve in the verify. This is a kind of sanity check on the result.

30

3.4 Quality control of the photometry Quality Control

Raising a QC flag at this point is only a first warning that something fishy might be going
on with the atmosphere. This QC warning is only send to the log. The error associated
with the derived extinction is, of course, also a QC parameter.

2. when for all the four kwadrants of the composite filter an extinction has been derived,
an extinction curve is fit to the four points to derive the ultimate extinction for that
particular moment in the night. The fit parameters are send to the log for perusal. These
fit parameters can e.g. be used to detect an unusual amount of reddening in the u’ band
(note that in that case a QC warning would already have been raised in the previous step
while processing the u’ kwadrant of the composite filter.)

3. after having processed all the polar images as described above, an assesment is made
of the quality of the night (QC = SHIFT OF CURVE VARIED), of the stability of the
overall transmission properties of the atmosphere (QC = SHAPE OF CURVE VARIED),
and of the validity of the assumed shape of the standard extinction curve (QC = IN-
VALID ASSUMPTION FOR SHAPE OF CURVE). These checks are done in the verify
of the overall monitoring recipe and is done using the whole collection of derived values
for the atmospheric extinction (which span a 2-dimensional space, in time and in photo-
metric band). The QC-flags are stored in the DB together with the separate values for
the extinction through the night, and the fitted shifts of the extinction curve.

It should be emphasized that many of the QC measures described deal with assesing the
quality of the night, i.e. conclusions drawn from the whole bunch of values for the atmosperic
extinction. The quality of one particular value of the atmospheric extinction is dealt with by
the verify functionality of the appropriate child of the BaseAtmosphericExtinction class.

3.4.3 Zeropoint

The zeropoint for a given chip/filter combination is derived by combining the extinction re-
sults from the monitoring with the raw zeropoints contained in the catalog for that particular
chip/filter combination. Note that these catalogs are derived from equatorial standard field
data. The error bar on the resulting zeropoint serves as a QC parameter; this number should be
within the specs as given in the requirements. For further QC, a comparison can be made with
the zeropoint derived the day before. To improve the result for the zeropoint, the input raw
zeropoint should be clipped. This again helps in removing mis-identified standard stars from
the mix. It might also be interesting to make a residual plot for validation.

Atmospheric extinction revisited

Although the recipe that derives the zeropoint by default uses the results from monitoring the
atmosphere, it is also capable of deriving the atmospheric extinction by itself in the ‘classical’
way, i.e. by combining two images of the same standard field observed at two different airmasses.
For this modus operandi, the same QC measures for deriving the atmosperic extinction are in
place as described in §3.4.2 under point 1.

3.4.4 Suggestions and comments

This space is for suggestions and comments from the community. Feel free to add them.

Comments from OAC:

1. In order to evaluate the quality of the photometric calibration, it would be usefull to
know the number of standard stars actually used to derive the ZP and the relative RMS.

31

3.4 Quality control of the photometry Quality Control

Moreover, even more important, we suggest to take also into account the color term of
each standard star: we propose to make a fit of the standard stars in a colour-mag plane:
MAG1-mag1=CT(MAG1-MAG2)+ZP1
where MAG1 and MAG2 are the tabulated magnitudes and mag1 is the instrumental one
(see for example http://www.na.astro.it/oacdf/OACDFPAP/node7.html). Note that it is
not necessary to use the instrumental colours (as we did in the OACDF). Note also that,
although the fit can be done even using only one free parameter (ZP), it is much more
convenient to assume two free parameters (ZP and CT). In this way CT can be compared
with the “standard” values stored in the DB, giving the possibility to detect “strange”
CT values and allowing also long-term trend analysis.

The raw zeropoints that go into deriving the zeropoint are now sigma-clipped with a con-
figurable sigma-clip level. Both the number of raw zeropoints (stars) that are present in
the input catalog, and the actual number of raw zeropoints used after sigma-clipping are
logged and stored in the database.

2. We suggest to take also into account the color term of each standard star: we propose
to make a fit of the standard stars in a colour-mag plane : MAG1-mag1=CT(MAG1-
MAG2)+ZP1, where MAG1 and MAG2 are the tabulated magnitudes and mag1 is the in-
strumental one (see for example http://www.na.astro.it/oacdf/OACDFPAP/node7.html).
Note that it is not necessary to use the instrumental colours (as we did in the OACDF).
Note also that, although the fit can be done even using only one free parameter (ZP), it
is much more convenient to assume two free parameters (ZP and CT). In this way CT
can be compared with the “standard” values stored in the DB, giving the possibility to
detect “strange” CT values and allowing also long-term trend analysis. If color terms are
needed, they are applied at the time the catalogs are created. A two-parameter fit to the
ZP, therefore, is unnecessary. However, making a plot of (MAG1 - mag1) vs (MAG1 -
MAG2) is an excellent idea for QC and should definitely be included in the system. (To
be implemented by OAC.) >>>>>>> 1.9

3. Concerning the usage of MAG BEST, it seems that its usage is not recommended (please
ask Emmanuel) and we think that aperture photometry is more appropriate in case of
standard (i.e. relatively bright) stars. This is related to the curve of growth: for standard
stars it is important to measure the entire flux before comparing the instrumental mag-
nitudes with the tabulated ones, otherwise the ZP will not be accurate. Note also that,
in any case, it will be sufficient to run SExtractor only once, with different parameters,
and this should not take significant CPU time. We will stick to aperture photometry for
now using a fixed aperture (using MAG APER from SExtractor). The aperture size to use
will be determined by the overall PSF model derived for the ‘input’ science frame, and a
configurable scaling factor. (To be implemented by RV in collaboration with USM.)

4. Finally, as a final check on the photometric accuracy, we suggest to plot the stars from
the final coadded Science images in a colour-colour plane and compare them with stellar
tracks from models. Obviously this could be done only at the catalog level, combining
data from different bands. This is a QC task that has to be done in the backend of the
system. It cannot be part of the photometric pipeline itself. (To be implemented by OAC.)

3.4.5 The inspect methods

The catalogs created for use in the photometric pipeline and the final zeropoints derived from
these can be viewed on screen. This is achieved by calling the inspect method of the objects
that represent these two items. The results are shown in Figure 3.1.

32

3.5 Quality control of the image pipeline Quality Control

Making EPS files from the plots generated by inspect

The inspect method always produces an output to screen. However, it is also possible to
save these plots as an EPS file. To do this, one has to work from the awe-prompt.

For making plots of the catalogs, go to the awe-prompt and do (for example):

awe> from astro.main.PhotSrcCatalog import PhotSrcCatalog

awe> from astro.plot.PhotometryPlot import PhotcatPlot

awe> photcats = (PhotSrcCatalog.filter.name == ’220’)

awe> photplot = PhotcatPlot()

awe> photplot.plot params.POSTSCRIPT OUTPUT = 1

awe> for photcat in photcats:

... photplot.plot(photcat)

where in the third line the database is queried for the catalogs, and in the fifth line the
PhotcatPlot object is configured to save the plot to a file.

For making plots of the zeropoints, go to the awe-prompt and do (for example):

awe> from astro.main.PhotometricParameters import PhotometricParameters

awe> from astro.plot.PhotometryPlot import PhotomPlot

awe> photoms = (PhotometricParameters.filter.name == ’220’)

awe> photplot = PhotomPlot()

awe> photplot.plot params.POSTSCRIPT OUTPUT = 1

awe> for photom in photoms:

... photplot.plot(photom)

where in the third line the database is queried for the zeropoints, and in the fifth line the
PhotomPlot object is configured to save the plot to a file.

Note 1 : for this to work properly, the objects retrieved from the database should, of course,
be fully qualified. That is, their make method should have been called.

Note 2 : the inspect methods themselves actually delegate the plotting to the same
PhotometryPlot class. In that case, however, the plot object is configured to put the result
on screen.

3.5 Quality control of the image pipeline

Group composition: Ewout Helmich, Edwin Valentijn, Mike Pavlov, Roberto Silvotti, Jan
Snigula
Leader: Ewout Helmich

tool: PSF tool: general small windows - flatness

3.5.1 General ideas

The established way of checking the overall quality of the image pipeline is to check for PSF
variations over the field of view before and after the regridding step in the pipeline. The check
could be done in several ways:

1. Use existing SExtractor parameters as a measure of PSF for whichever stars are present
in regions of an image and associate those from the ScienceFrame (before regridding) and
the RegriddedFrame (after regridding).

33

3.5 Quality control of the image pipeline Quality Control

Figure 3.1: The results of calling the inspect methods of PhotSrcCatalog (top panel) and Pho-
tometricParameters. These two classes represent the start and end point of the photometric
pipeline, respectively.

34

3.6 Quality control of the PSF Quality Control

2. Make PSF models of cutouts of the same regions in the ScienceFrame and RegriddedFrame
(by using PSFEx through the PSFModel class ? – RV).

A common aspect is that in order to get PSF Anisotropy information (PSF variations as a
function of X/Y position in the focal plane) a subdivision of each image is necessary, either in the
form of defined areas, or in the form of cutouts. Method (i) should be preferable computationally.
Only stars should be taken into account. This complicates matters, because a star-galaxy
separation is necessary.

In addition a check on the flatness of the background of the ScienceFrames could be useful.

3.5.2 Comments from OAC (Mario & Roberto)

Concerning the PSF variations, we do not see particular reasons why the PSF should change
after the regridding. A wrong astrometric solution would produce not perfectly overlapping
sources, but the shapes of sources in individual frames could be not affected at all. Troubles in
the astrometric solution would be therefore much more likely detected in the coadded image. We
propose to proceed as follows: - Measure the PSF in each ScienceFrame: from all ditherings, de-
rive an average PSF and RMS (¡PSF¿, RMS), and possibly min(PSF) and max(PSF); - Measure
the average PSF in the coadded image ¡PSF coadd¿; - Compute the value r=abs(¡PSF coadd¿-
¡PSF¿)/RMS: the result is acceptable if e.g. r¡=3 and min(PSF) ¡= ¡PSF coadd¿ ¡= max(PSF).
A more complex possibility would be to check the PSF in different CCDs separately or as a

function of the X/Y position: in this case the position in each ScienceFrame should be mapped
to the coadded image.

3.6 Quality control of the PSF

Group composition: Edwin Valentyn, Roberto Silvotti, Mark Neeser, Koen Kuijken, Ronald
Vermeij
Leader: ???

tool: tool:

35

Chapter 4

Development

In the next several sections we will describe some key concepts in the implementation of the
Astro-WISE library.

We assume a reasonable amount of familiarity with Python. In particular with the Python

notation (significance of white space), basic program control stratements (if...elif...else,
for...in), data structures (lists, tuples, dictionaries), defining functions and classes (def, and
class), instantiating objects, importing modules, and the meaning of dots in names. If you are
not familiar with one or more of these, you may want to have a look at one of the introductions
to Python, found at:

http://www.python.org/doc/Newbies.html

This document does not aim to give a comprehensive description of the Astro-WISE library.
Documentation for the library can be obtained using the pydoc documentation server. To browse
the documentation, start the server from the unix commandline:

>pydoc -p 8080

and point your browser to:

http://localhost:8080/

If the Astro-WISE library (i.e., the directory awe) is in your PYTHONPATH, then you should
see a link, near the top of the page, to the astro package containing the astronomy specific
modules, and the common package containing common modules. You can also simply point your
browser to: http://doc.astro-wise.org/.

4.1 Key concepts

4.1.1 Persistent classes

Astro-WISE data processing is performed by executing methods on instances of persistent
classes (persistent objects). This means that all processing results are recorded in the persistent
attributes of these objects, and the persistence mechanism ensures that these results are stored
in the data base. (See Chapter 6 for further details)

targets, dependencies, make

At the highest level, Astro-WISE data processing can be understood in terms of targets, de-
pendencies and make. To illustrate these concepts, let’s start with an example:

36

http://www.python.org/doc/Newbies.html
http://localhost:8080/
http://doc.astro-wise.org/

4.1 Key concepts Development

1 # example1.py

2 from astro.main import BiasFrame

3 from astro.main import RawFrame

4

5 def makebias(raw_bias_names, bias_name):

6 ’’’Make a master bias

7 raw_bias_names -- a list of names of raw bias FITS files

8 bias_name -- the name of the master bias FITS file

9 ’’’

10 bias = BiasFrame.BiasFrame(pathname=bias_name)

11 for name in raw_bias_names:

12 raw = RawFrame.RawBiasFrame(pathname=name)

13 bias.raw_bias_frames.append(raw)

14 bias.make()

15 return bias

The example defines one function (makebias) to make a bias frame. It takes a list of the names
of raw bias files and the name of the output file as arguments and returns a BiasFrame object.
This example illustrates how a user would use the library to process his own data. For example,
from the Python command line:

>>> from example1 import makebias

>>> bias = makebias([’ima01.fits’, ’ima02.fits’, ’ima03.fits’], ’bias.fits’)

Let’s go over this piece of code line by line (note that Python source code does not include
line-numbers):

lines 2-3 import two modules (BiasFrame and RawFrame) from the package astro.main

line 5 define a function (makebias) taking two arguments (raw bias names and bias name)

lines 6-9 the documentation for the function.

line 10 create a BiasFrame object. The BiasFrame class is defined in the BiasFrame module
which we imported in line 1. The BiasFrame object is defined with one argument; the
name of the bias image (bias name)

line 11 loop over the names contained in the list raw bias name, assign each name to name

line 12 create a RawBiasFrame object from each name

line 13 add the raw bias object to list of input frames (called raw bias frames) of the master
bias object bias

line 14 “make” the master bias object. By calling the method make, the processing necessary
to create the master bias data is executed.

line 15 we are ready, and return the result.

this description probably doesn’t add much to your understanding of the example. If you
don’t have the feeling that the description and the example are really equivalent, you should
probably first try to get to know Python a little bit better.

The example illustrates the fundamental steps in processing data:

37

4.1 Key concepts Development

1. create the target object (line 10)

2. assign objects to the dependencies (lines 11-13)

3. execute the make-methods (line 14)

In this case the target (a BiasFrame object), only depends on the raw data (RawBiasFrame
objects). In other cases the target may also depend on additional objects, including calibration
data and processing parameters. For example, to reduce science data we need a considerable
number of other objects besides the raw data, i.e. all calibration objects.

Note that a BiasFrame object is not a FITS file, it is an entity that describes a FITS file and
may execute a number of operations on FITS files. All pipeline processing is done by calling
methods on these kinds of objects.

The following methods can be used to inspect targets:

is made() return 1 if make() has been executed on a target and 0 otherwise. The value of the
special attribute process status is inspected to determine this.

set made() indicate that the target has been made. This is usually called from the make()

method. The value of the special attribute process status is updated to record this.

get dependencies() returns a list of attribute names on which the target depends.

The case of making a bias is probably the simplest example. Other examples can be found
by looking at the other recipes in the directory filerecipes of the library. Have a look at these
recipes, including the Bias recipe, to see that all look extremely similar to this example.

4.1.2 Verification and quality control

In order to verify the results of the data processing, makable objects (will) have verify(),
compare(), and inspect() methods. These methods implement basic quality control mecha-
nisms.

verify The verify() method inspects the values of various attributes of the object to see
if these are within the expected range for that object. The purpose of this method is
mostly to perform sanity-checks on measured results. It is assumed that the required
measurements (for example image statistics) are done during data reduction (i.e. while
executing make()), and stored in persistent attributes.

compare The compare() method is used for default trend analysis. This is done by comparing
with a previous version of the same object (last weeks bias, for example). This may be as
simple as comparing attribute values, but may also involve more complex computations
(e.g., subtracting the two images, and analysing the residuals)

inspect Visual inspection of the data remains a powerful tool in quality control. The inspect()
method provides the mechanism to record the results of visual inspection for posterity.

The make() and quality control methods set a flag in the processing status attribute to
record if these methods have been run. The following methods are available to inspect the
processing status of makable objects:

is verified() returns 1 if verify() has been succesfully executed, 0 otherwise.

is compared() returns 1 if compare() has been succesfully executed, 0 otherwise.

38

4.2 The Astro-WISE class hierarchy Development

is inspected() returns 1 if inspect() has been succesfully executed, 0 otherwise.

The quality control methods record their results by setting quality control flags. These
quality control flags are given in the class definition using the QCFlag() property. Flags are
stored in the special attribute quality flags, using bit masking. The following methods are
available to inspect these flags:

get qcflags() This method returns a list of the names of all possible flags.

get qcflags set() This method returns a list of those flags that have been set. If no flags
have been set, this returns an empty list.

The following class defines two quality control flags and a verify method that may set these
flags.

class MyScienceResult(DBObject, ProcessTarget):

TOO_MANY_GALAXIES = QCFlag(0, ’This is a bad sign’)

TOO_FEW_STARS = QCFlag(1, ’This is a really bad sign’)

def verify(self):

if self.galaxy_count > 1e6:

self.TOO_MANY_GALAXIES = 1

if self.star_count < 100:

self.TOO_FEW_STARS = 1

self.set_verified()

Here is an example session using this class

>>> m = MyScienceResult()

>>> m.galaxy_count = 10000

>>> m.star_count = 1000

>>> m.verify()

>>> m.is_ok()

1

>>> m.star_count = 10 # simulate a problem

>>> m.verify()

>>> m.is_ok()

0

>>> m.get_qcflags_set()

[’TOO_FEW_STARS’]

>>> m.galaxy_count = 10000000

>>> m.verify()

>>> m.TOO_MANY_GALAXIES

1

>>> m.get_qcflags_set()

[’TOO_MANY_GALAXIES’, ’TOO_FEW_STARS’]

>>> m.quality_flags # bits 0 and 1 were set

3

4.2 The Astro-WISE class hierarchy

At the heart of the Astro-WISE library lies the persistence class hierarchy, These classes provide
the definition of the object that are operated on when processing and analyzing data. Since

39

4.2 The Astro-WISE class hierarchy Development

these classes are persistent, the results of these operations will be automatically saved in a
database.

Figure 4.1 gives an overview of this class hierachy. Remember that derived classes inherit
attributes and methods from base classes. For example, BaseFrame, the base class for all classes
representing image data, inherits from DataObject, which represents all objects that represent
some sort of data on disk.

The following key classes are defined in the hierarchy

DBObject All objects deriving from DBObjects are persistent. Hence, all these objects can
be saved and retrieved from a database

DataObject All DataObject objects have associated bulk data (FITS files, catalogs) which
can be stored and retrieved from a central data server

BaseFrame All objects derived from BaseFrame describe the contents of associated FITS im-
ages and have methods that operate on these images

Catalog All Catalog objects describe LDAC catalogs and define methods that operate on these
catalogs

Config These objects store the contents of the configuration files of external packages (SEx-
tractor, SWarp, LDAC)

All classes that define a make method (marked by asterisk in Fig. 4.1) also derive from the
mixin1 class ProcessTarget

ProcessTarget Classes that also derive from this class have make() methods and quality con-
trol flags (QCFlag() properties)

1A ‘mixin’ class is a class that adds behaviour to another class in a derived class using multiple inheritance

40

4.2 The Astro-WISE class hierarchy Development

DBObject
|

+DataObject--------------+---------------+
| |
+--AssociateList * +--Astrom
+--BaseCatalog +--AstrometricCorrection *
| | +--AstrometricParameters *
| +--AstrometricCatalog * +--BaseAtmostphericExtinction
| +--Catalog * | |
| | | | +--AtmostphericExtinction *
| | +--PhotSrcCatalog * | | |
| | | | +--AtmosphericExtinctionFrames *
| +--PhotRefCatalog | | +--AtmostphericExtinctionZerpoint *
| | | |
+--BaseFrame | +--AtmostphericExtinctionCurve *
| | | +--AtmosphericExtinctionCoefficient *
| +--BaseFlatFrame |
| | | +--Chip
| | +--DomeFlatFrame * +--Config
| | +--MasterFlatFrame * | |
| | +--TwilightFlatFrame * | +--AddImageCalibsConfig
| | | +--AplastromConfig
| +--BiasFrame * | +--AssociateConfig
| +--FringeFrame * | +--AstromConfig
| +--IlluminationCorrectionFrame * | +--PreastromConfig
| +--NightSkyFlatFrame * | +--PrephotomConfig
| +--QuickCheckFrame * | +--MakeSscConfig
| +--RawFrame * | +--SextractorConfig
| | | | +--SwarpConfig
| | +--RawBiasFrame * |
| | +--RawDarkFrame * +--DarkCurrent *
| | +--RawDomeFlatFrame * +--Filter
| | +--RawScienceFrame * +--GAstrometric *
| | +--RawTwilightFlatFrame * +--DarkCurrent *
| | +--Imstat
| +--ReducedScienceFrame * +--Instrument
| +--RegriddedBaseFrame +--Lamp
| | | +--PhotTransformation
| | +--CoaddedRegriddedFrame * +--ReadNoise *
| | +--RegriddedFrame * +--SubWinStat *
| |
| +--ShutterCheckFrame *
| +--WeightFrame *
|
+--GainLinearity *
+--IlluminationCorrection *
+--PhotometricReport
| |
| +--PhotometricSkyReport
|
+--PhotExtinctionCurve
+--PhotometricExtinctionReport *
+--PhotometricParameters *
+--PhotSkyBrightness
+--PixelMap
| |
| +--ColdPixelMap *
| +--CosmicMap *
| +--HotPixelMap *
| +--LinearityMap *
| +--SatelliteMap *
| +--SaturatedPixelMap *
|
+--RawFitsData
+--SourceList *

Figure 4.1: The class hierarchy of Astro-WISE. Asterisks (*) mark object that have a make()

method

41

Chapter 5

Database Tasks

5.1 Setting up the database for general use

Below the steps are described that need to be taken to set up the database. It is assumed that
the pipeline is already installed according to the README (see also CVS HOW-TO §7.3) and
that the environment can be started with the awe command.

• In your ~/.awe/Environment.cfg set
database name : <tnsname of your database here>

database user : <name of the database account you created previously>

To test this you should start AWE and do
import common.database.DBMain

You should get a prompt asking for your database password. If you are able to connect
you can continue with the next step.

You may also enter your password in the ~/.awe/Environment.cfg in the following way

database password: <your Oracle password>

but for obvious reasons this is discouraged.

• Create the AWOPER database account, the AWUSER and AWREADONLYUSER roles, as well as
the AWNORMAL and AWLIMITED profiles. In addition the AWCONTEXT context is enforced
and the required AWEUSER, AWEPROJECTS, AWEPROJECTUSERS tables are created.

awe awe/common/toolbox/dbawoper.py

• Create the shared AWOPER schema for all database users using

awe awe/common/toolbox/dbimportall.py

• Create the Package Header and Body for the Oracle interface to the htm library using

42

5.2 Keeping database synchronized with STABLE sources Database Tasks

awe awe/common/toolbox/dbawutil.py

Note that you MUST have compiled and installed the ohtm library in the Oracle tree.

• Grant SELECT/INSERT/UPDATE permission on the AWOPER schema to the AWUSER role

awe awe/common/toolbox/dbgrants.py

If new persistent classes are defined you should run this script as well to make sure that
users have access to the new tables.

• Add a new user to the database. The username should consist of the first initial followed
by the complete surname of the user.

awe awe/common/toolbox/dbnewuser.py mjackson

Note that this will create a database account with AW as a prefix. In the above example
the database account would be called AWMJACKSON.

5.2 Keeping database synchronized with STABLE sources

It can occur that someone wants to change the definition of a persistent class. Unlike introducing
new persistent classes, changing a persistent class requires intervention by the central database
administrator. The reason is that users may still be using the persistent class as it was before
the change. The problem is that the class definition in Python and in the database have to
match each other. This means that whenever the Python class is changed the database has to
be changed accordingly. Because the database is used by multiple users, all of these users have
to adopt the new Python class definition in unison with the database definition. The process to
handle this problem requires human intervention at certain stages and is completely described
in this section.

• An improved persistent class has been tested in a separate schema and has been committed.
After a while these changes are considered to be the STABLE version.

• When a change to a persistent class is considered STABLE, the main database adminis-
trator has to be contacted. The information that needs to be given is the revision number
of the source file that are involved.

• The main database administrator contacts the administrators of all other databases in the
federation that a database type evolution is bound to happen.

• The main database administrator waits until all administrators of the databases in the
federation have responded and agreed a time when they can update the database schema.
Alternatively, they can respond that they disable automatic updates of the CVS sources.

• The main database administrator checks out all (STABLE) sources except for those that
are meant to change. In the case of the sources that are to be changed, the revisions
that have been given earlier are checked out. This will provide the database administrator
with an environment that will be exactly like the next STABLE environment that is being
created. The PYTHONPATH has to be set to this checked out version.

43

5.3 Database Type Evolution Database Tasks

• With a Python environment that represents the upcoming STABLE environment the main
database administrator evolves the database schema. The goal is to make sure that the
Python and database environment match. All type evolution statements and all other
issues that come up are gathered by the main database administrator during the process.
The collection of SQL statements and things to watch out for is then sent to the local
database administrators.

• The local database administrators now have to set up an environment in the same way as
explained for the main database administrators. In this environment the local database
administrators can evolve their local schema. They can use the SQL statements and
remarks as sent to them by the main database administrator.

• Once a local database administrator has succesfully evolved the schema, a confirmation
needs to be sent to the main database administrator. Only when all confirmations have
arrived the STABLE version can be updated.

• The main database administrator attaches the STABLE tag in CVS to the revisions as they
were supplied. This should only be done if all local database administrators have reported
successful schema evolution. The command to be used is:

cvs tag -r revision number source file

5.3 Database Type Evolution

5.3.1 Database Type Evolution

Persistent classes and attributes are defined in Python. The SQL definition in Oracle is derived
from the Python definition. This means that whenever a change is made to a persistent class the
corresponding SQL definition has to be changed accordingly. This requires manual intervention
and details are given in this section on what do.
Always make a backup first. If you do not have set up RMAN you can shutdown the database
and make an off-line backup. Otherwise log in to the Recovery Manager as follows

$ORACLE HOME/bin/rman target sys@aw98

From the RMAN prompt type

RMAN> backup database plus archivelog;

5.3.2 Overview

There are different categories of database type evolution. Some of these require a simple SQL
statement, but most require close attention. In general type evolution requires extreme care,
especially when changes are made in a database that is populated. Only when a backup is
available it is possible to retrieve types or attributes that have been removed.

All database type evolution operations fall in one of three categories: Adding, Removing,
Changing. Each operation can be applied to a persistent class or to a persistent attribute. The
simplest operation is Adding, the most dangerous one is Removing and the most complicated
one is Changing.

44

5.3 Database Type Evolution Database Tasks

5.3.3 The SQL representation of persistent Python class

For the following detailed type evolution descriptions it is useful to keep in mind that for each
persistent class "Demo" in Python an Oracle TYPE called "Demo$", an object TABLE called "Demo"

and a VIEW called "Demo+" exist.
When adding or changing attributes it is necessary to know who their Python type translates

into an SQL type. The module astro.database.oraclesupport contains a dictionary called
typemap for this purpose.

For list attributes an additional type in SQL is created which is a nested table of the type of
the list attribute. If "Demo" has a list attribute which is defined as p = persistent(’’, int, []),
then "Demo$p" is a TYPE defined as TABLE OF SMALLINT.

Link attributes in Python are represented in SQL by a REF to the type the attributes links
to and link list attributes are represented by a type that is defined as a TABLE OF REF ¡type-
being-referenced¿.

5.3.4 Finding information about the SQL types, tables and views

There are several system views in the database that can be use to inspect existing definitions
of structures such as types, tables and views. To find the definition of a structure in SQL*Plus

the describe command can be used.1

The USER OBJECT TABLES view contains all the object tables in the users schema. Likewise,
USER VIEWS contains all views and USER TYPES contains all types. The USER TYPE ATTRS view
contains all attributes and their definition for all types.
To get the names of all types that contain Demo

SELECT TYPE NAME FROM USER TYPES WHERE TYPE NAME LIKE ’%Demo’;

The USER TYPES views also has a column SUPERTYPE NAME with the name of the type from which
the TYPE NAME is derived.

5.3.5 Adding a persistent class

To add a persistent class import the class in Python as the AWOPER database user that owns the
schema. To make the new class visible to other database users the Toolbox/dbgrants.py script
needs to be run. The script will run as AWOPER and ask for its password. Note that no manual
SQL is required.

5.3.6 Removing a persistent class

Check that no classes are derived from the class you are trying to remove. If classes are derived
from the class or if attributes in other classes refer to instances of the class you cannot use the
following commands to remove the database type. Instead you’ll have to follow the procedure
described in §5.3.11.
To remove a persistent class "Demo" use the following commands in the specified order.

DROP VIEW "Demo+";

DROP TABLE "Demo";

DROP TYPE "Demo$";

After these elements have been dropped you have to check whether "Demo$" has list attributes
which have to be removed. The types for such attributes have to be dropped as well using the

1Use help describe from the SQL*Plus prompt

45

5.3 Database Type Evolution Database Tasks

DROP TYPE command. The names of the types of these attributes, e.g. for "Demo$", can be
found with

SELECT TYPE NAME FROM USER TYPES WHERE TYPE NAME LIKE ’Demo$%;’

5.3.7 Adding persistent attributes to a class

To add persistent attributes to a class you need to know their name and their type. If attributes
x and y are added with

x = persistent(’This is x’, int, 3)

y = persistent(’This is y’, float, 4.2)

then the following command will add these attributes to the type in the database.

ALTER TYPE "Demo$" ADD ATTRIBUTE ("x" SMALLINT, "y" DOUBLE PRECISION) CASCADE;

Then the attributes of existing objects have to be given their default values.

UPDATE "Demo" SET "x"=3, "y"=4.2;

5.3.8 Removing presistent attributes from a class

Removing one or more attributes is perhaps the simplest, but not less hazardous, operation of
all. To remove x and y it is sufficient to execute

ALTER TYPE "Demo$" DROP ATTRIBUTE ("x", "y") CASCADE;

Be careful to also drop any list types that have been defined in the given type! See also §5.3.3.

5.3.9 Renaming a persistent attribute

To rename a persistent attribute the procedures described in §5.3.7 and §5.3.8 are combined. In
the next example the name of an attribute is changed from x to z

ALTER TYPE "Demo$" ADD ATTRIBUTE "z" SMALLINT CASCADE;

UPDATE "Demo"SET "z"="x";

COMMIT;

ALTER TYPE "Demo$" DROP ATTRIBUTE "x" CASCADE;

5.3.10 Changing the type of a persistent attribute

Changing the type of a persistent attribute is done in different ways for different types. The
basic procedure is however always the same.

• First add a dummy attribute with the eventual type for the attribute. This is done, like
for any other attribute, following the steps in §5.3.7.

• The next thing to do is to copy the value old attribute to the new attribute while converting
it to the new type. Depending on the types that are involved, the conversion can be simple
or complicated. The guideline is the purpose of the typechange and the person requesting
the type change will know best what this purpose is.

• After a succesful copy the old attribute can be removed according to the outline given in
§5.3.8.

46

5.3 Database Type Evolution Database Tasks

• Before the dummy attribute can be removed, the attribute whose type is changed needs
to be added with its final type, as explained in §5.3.7.

• Now the dummy attribute has to be copied to the attribute for which the type has changed.
This can be done with a simple UPDATE statement.

• Finally the dummy attribute can be removed using the procedure shown in §5.3.8.

5.3.11 Moving a persistent subclass to a different parent class

When a persistent subclass needs to be moved to a different place in the class hierarchy a
combination of many of the previously called techniques is needed.

5.3.12 Error messages

ORA-22337: the type of accessed object has been evolved Stop the current SQL ses-
sion and start a new one.

47

Chapter 6

Persistency Interfaces

This is a direct copy of Appendix A of the Astro-WISE Architectural Design document and is
use to give a more detailed explanation of how the Astro-WISE system works at its lower levels.

6.1 Introduction

This chapter describes the specification and Python implementation of persistent objects on top
of a relational database back end. The aim of this implementation is twofold:

1. Provide a transparent mapping from a definition of a persistent class to a table in a
relational database, preserving inheritance relationships, and allowing attributes to refer
to other persistent objects.

2. Provide a native Python syntax to express queries, and leverage the advantages of the
relational model (SQL) when using persistent objects.

In this paper we will first introduce a number of concepts from Object Oriented Programming
(OOP) and Relational Database Management Systems (RDBMS), in order to clarify the problem
we wish to solve. We will then provide the specification of the database interface provide by the
Astro-WISE prototype. Finally, we will clarify some of the implementation issues addressed by
the current prototype.

6.2 Background

6.2.1 Object Oriented Programming

It is difficult to give a meaningful definition of “object”. However, the following “definition”
introduces some intimately related terms that will be used throughout this document:

object An object is something that comprises type, identity and state. The type of an
object, specifies what kind of object it is, specifically what kind of behavior the object is
capable of. The identity is what distinguishes one object from another. The state of an
object specifies the values of the properties of the object.

In Object Oriented Programming (OOP) we have an operational definition of objects:

object An object is an instance of a class, and encapsulates both data and behavior

48

http://www.astro-wise.org/Public/cdr.pdf

6.2 Background Persistency Interfaces

The class defines what operations (methods) can be performed on its instances, and what
attributes those instances will have. In general ‘class’ and ‘type’ are synonymous, as are
‘instance’ and ‘object’. That is, when we talk about the type of an object we mean the class of
which it is an instance.

It is important to note that the values of the attributes of an object will themselves be
objects, although most programming languages distinguish between (instances of) primitive
data types (integers, strings, etc) and instances of classes.

Inheritance is the mechanism by which one can use the definition of existing classes to
build new classes. A child (derived) class will inherit behavior from its parent (base) class. In
defining the child class the programmer has the opportunity to extend the child class with new
methods and attributes, and/or modify the implementation of methods defined in the parent
class. However, the child class is expected to conform to the interface (specification) of the
parent class, to the extent that instances of the child class can behave as if they are instances
of the parent class. In particular it is expected that procedures taking an object of a base type
as argument, should also work when given a derived type as argument. This key property of
objects is called polymorphism

6.2.2 Persistency

An object is said to be persistent if it is able to ‘remember’ its state across program boundaries.
This concept should not be confused with the concept of a program saving and restoring its
data (or state). Rather, persistency, implies that object identity is meaningful across program
boundaries, and can be used to recover object state.

Persistency is usually implemented by an explicit mapping from (user-defined) object identi-
ties to object states and by then saving and restoring this mapping. However, this implementa-
tion assume that the object identity of the object one is interested in can be independently and
easily obtained. For many applications this is not the case. On the contrary, one usually has a
(partial) specification of the state, and are interested in the corresponding objects that satisfy
this specification. That is, many interesting applications depend on a mapping of a partially
specified object state to object identity (and then to object). This is the domain of the relational
database.

6.2.3 Relational Databases

A relational database management system (RDBMS) stores, updates and retrieves data, and
manages the relation between different data. A RDBMS has no concept of objects, inheritance
and polymorphism, and it is therefore not a-priory obvious that one would like to use such a
database to implement object persistence. However, using the following mapping

type ←→ table
identity ←→ row index

state ←→ row value

it is (hopefully) obvious that one might, at least in principle, implement object persistency
using a relational database. That is, given a type and object identity, one can store and retrieve
state from the specified row in the corresponding table.

Relational databases provide a powerful tool to view and represent their content using struc-
tured queries. It would be extremely useful if we were able to leverage this power to efficiently
search for object whose state matches certain criteria. Special consideration has to be given to
inheritance in this case.

Assume, for example, that we define a persistent type DomeFlatImage, derived from a more
general type FlatfieldImage. A query for all R-band flatfield images, should result in a set

49

6.3 Problem specification Persistency Interfaces

including all R-band domeflat images. This behavior of queries is what inheritance means in
a relational database context. Hence, a query for objects of a certain type maps to queries
(returning row indices/object identities) on the tables corresponding to that type, and all of its
subtypes. The results of these queries are then combined in to a single set of all objects, of that
type or one of its sub types, that satisfy the selection.

6.3 Problem specification

The implementation of the interface (should) address(es) the following issues:

defining a persistent class Defining a persistent class (type), will give its instances the prop-
erty of being persistent. The class definition should provide sufficient information about
the attributes (possible state) of the objects to build the corresponding database table.
This table should be present in the database when the first object of the class is instanti-
ated. Presently, this is achieved by dynamically creating the table (if it doesn’t yet exist),
when processing the class definition1

retrieving state of persistent object Instantiating a persistent object with an existing ob-
ject identity should result in retrieval of state from the database.

saving state of persistent objects Persistent objects, whose state has been modified, should
save their state to the database before they cease to exist.

references persistent objects will contain references to (read: instances of) other persistent
objects. Care has to be taken that instantiation of a persistent object does not recursively
instantiates all objects it refers to. Only when the attribute corresponding to the reference
are accessed should the corresponding object be instantiated.

expressing selections It should be possible to express selections of the form

{x|x ∈ X ∧ (x.attr1 ∈ A ∧ x.attr2 ∈ B ∨ x.attr3 ∈ C...)} (6.1)

i.e.: the set of all objects of type X whose attributes have certain properties. This set
should be translated in to an SQL query to the database, and result in an iterable sequence
of objects satisfying the selection.

In addition, the following issues need to be addressed, though not necessarily by the interface
to persistent objects.

managing database connections The interface does not specify how or when the database
connection is established.

transactions The interface doesn’t specify if and how transactions are implemented

efficiency No effort has yet been made to maximize performance and/or scalability. Initial
efforts has focussed on a demonstration of technology and simplicity of implementation.

6.4 Interface Specification

In this section we describe how to implement and use persistent objects, using the interface
defined in the Astro-WISE prototype. This section includes Python source code fragments.
For those not familiar with Python we advise that they have a look at the main web site at
http://www.python.org/ and at the Python tutorial at http://docs.python.org/tut/tut.html

1This implementation neatly avoids the problem of having to maintain both the class hierarchy and the
corresponding database schema

50

http://www.python.org/
http://docs.python.org/tut/tut.html

6.4 Interface Specification Persistency Interfaces

6.4.1 Persistent classes

Persistent objects are instances of persistent classes, which specify explicitly which attributes
(properties) are saved in the database. We call these attributes persistent properties. Executing
a program defining

Defining persistent classes

A new persistent class is defined by deriving from an existing persistent class, or by deriving
from the root persistent class DBObject. E.g.:

#example1.py

from common.database.DBMain import DBObject

class A(DBObject):

pass

class B(A):

pass

specifies two persistent classes (A and B). Neither of them extends their parent classes, so
instances of A and B will behave exactly like instances of DBObject.

Defining persistent properties

A persistent property is defined by using the following expression in the class definition:

prop_name = persistent(prop_docs, prop_type, prop_default),

where, prop name is the name of the persistent property, and persistent is constructed
using three arguments: the property documentation, the type of the property, and the default
value for the property respectively. For example:

#example2.py

from common.database.DBMain import DBObject, persistent

class Address(DBObject):

street = persistent(’The street’, str, ’’)

number = persistent(’The house number’, int, 0)

This program defines a persistent class ‘Address’, with two persistent properties, ‘street’ and
‘number’, of type str(ing) and int(eger) respectively.

We distinguish between 5 different types of persistent properties, based on the signature of
the arguments to persistent()

descriptors If the type of the persistent property is a basic (built-in) type, then we call the
persistent property a descriptor. Valid types are: integers (int), floating point numbers
(float), date-time objects (datetime), and strings (str).

descriptor lists Persistent properties can also be homogeneous variable length arrays of basic
built in types, called descriptor lists. Valid types are the same as those for descriptors.
descriptor lists are distinguished from descriptors by the property default. If the default
is a Python list, the the property is descriptor list, else it is a simple descriptor.

links Persistent objects can refer to other persistent objects. The corresponding properties are
called links. If the type of the persistent property is a subclass of DBObject, then the
property is a link.

51

6.4 Interface Specification Persistency Interfaces

link lists Persistent properties can also refer to arrays of persistent objects, in which case they
are called link lists. Link lists are distinguished from links by the property default. If the
default is a Python list, the the property is link list.

self-links A special case of links are links to other objects of the same type. These are called
self-links. if no type and default are specified for the call to persistent, then the property
is a self-link.

Keys

It is possible to use persistent properties as alternative object identifiers for the default object
identifier (object id). Only descriptors can be used as keys. Keys are alway unique and
indexed.

The special attribute keys contains a list of attributes and tuples of attributes tuples, each
specifying one key. For example:

#example3.py

class Employee(DBObject):

ssi = pesistent(’Social Security Number’, str, ’’)

name = persistent(’Name’, str, ’’)

birth = persistent(’Birth data’, datetime, None)

keys = [(’ssi’,), (’name’, ’birth’)]

In this example ssi is a key. The pair of attributes (’name’, ’birth’) is also a key.

Indices

Databases use indices to optimize queries. It is possible to specify which persistent properties
should be used as indices.Only descriptors can be used as indices.

The special attribute indices contains a list of attributes which should be indexed. E.g.:

example4.py

class Example(DBObject):

attr = persistent(’A measurement’, float, 0.0)

indices = [’attr’]

6.4.2 Persistent Objects

Having specified persistent classes, we can now use these classes to instantiate and manipulate
persistent objects. In most respects these objects behave just like instances of ordinary classes.
There are two exceptions: special rules for instantiation, and special rules for assigning values
to persistent properties.

Object instantiation

We can distinguish between three different modes of instantiating a persistent object.

New We are creating a new persistent object, for which the object id needs to be generated.
This can be accomplished by instantiating an object without specifying object id.

Existing We are using an existing object. If the object has already been instantiated in this
application we want a copy to its reference, otherwise we want an instance, whose state has
been retrieved from the database. This can be accomplished by instantiating the object
with an existing object id.

52

6.4 Interface Specification Persistency Interfaces

Transient it may be useful to build an object of a persistent type that is not itself persistent
(whose state, will not be save to the database). This can be accomplished by instantiating
the object with an object id equal to 0 (zero)

or, in code:

a = MyObject() # A new instance of MyObject

b = MyObject(object_id=1000) # An existing instance of MyObject

c = MyObject(object_id=0) # A transient instance of MyObject

In practice, objects are rarely instantiated with an explicit object id, because, we will
generally not know the object id of the objects we are interested in. Rather, objects are
instantiated using keys or as the result of a query (see below)

Instantiating an object using a key, will result a restored object (if an object of that key did
exist before) or a new object. In code:

class Filter(DBObject):

band = persistent(’the band name’, str, ’’)

keys = [’band’]

f = Filter(band=’V’) # The V-band filter

Assigning values to properties

Python is a dynamically typed language. This means that there is no such thing as the type
of a variable. However, since database values (e.g. columns) are statically typed, the interface
performs type checks when binding values to object attributes. The type is specified in the
property definition, as outlined earlier.

6.4.3 Queries

In order to represent selections in native Python code, we have defined a notation that is based
on the idea that a class is in some sense equivalent to the set of all its instances. To illustrate
the concept, let us give a few examples.

Given a persistent class X with persistent property y, then the expression

X.y == 5

represents the set of all instances x of X, or subclasses of X, for which x.y==5 is true. To obtain
these objects the expression needs to be evaluated, which can be done by passing it to the
select function, which returns a list of objects satisfying the selection.

Given a class X with a descriptor desc, a descriptor list dsc lst, and a link lnk, then

select(X.desc > 2.0 && X.dsc_lst[2]==’abc’ and X.lnk.attr == 5)

will return a list of instances x of X, or subclasses of X, for which

x.desc > 2.0 and x.dsc_lst[2]==’abc’ and x.lnk.attr == 5

is true.

6.4.4 Functionality not addressed by the interface

New persistent objects may have an owner. The owner can defined as the user running the
process in which the persistent object is created or it can be defined as an attribute of the
persistent object. In either case, it is the responsibility of the implementation of the interface
for a certain database to handle ownership of persistent objects.

53

Part II

HOW-TOs

54

Chapter 7

Getting Started

7.1 HOW-TO Get Started

To start using the Astro-WISE Environment, AWE, a few initial steps need to be taken. Access is
required to the AWE database, to the AWE software and to the AWE dataservers.

7.1.1 Access to the AWE database

A database account is needed in order to use the AWE system. To get a database account, ask
your local AWE representative1 to create one for you. Your database username will consist of AW,
followed by your first initial, followed by your surname.

7.1.2 Preparing the Astro-WISE Environment

In order to automatically log in to the database when you start up AWE you need to create a
directory .awe in your home directory as follows:

cd

mkdir .awe

cd .awe

Now create a file here called Environment.cfg with the following content:

[global]

database_user : <your database username>

database_password : <your database password>

Make sure only you can read the contents of the file:

chmod a-rwx,u+rw Environment.cfg

At OmegaCEN/Kapteyn Astronomical Institute, the AWE software is set up by executing the
appropriate one of the following commands from the shell prompt:

At the Kapteyn Institute in Groningen

...]$ module add awe

Tip: you can add this source command to your .cshrc or .bashrc file to have the command
executed automatically for future awe sessions.

1At OmegaCEN/Kapteyn Astronomical Institute, contact danny@astro.rug.nl or kgb@astro.rug.nl

55

mailto:danny@astro.rug.nl
mailto:kgb@astro.rug.nl

7.1 HOW-TO: Start Getting Started

7.1.3 Starting the Astro-WISE Environment

To start AWE type

awe

and you will be welcomed by an awe-prompt similar to this

Python 2.7.6 (default, Jan 8 2014, 14:02:13)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

Welcome to the Astro-WISE Environment

| You are running the AWBASE version

Importing Astro-WISE packages. Please wait...

Distributed Processing Unit: dpu.hpc.rug.astro-wise.org

Dataserver: ds.astro.rug.astro-wise.org

Current profile:

- username : <your database username>

- database : db.astro.rug.astro-wise.org

- project : <your active project>

- current privileges : 1 (MyDB)

awe>

From this moment on the Astro-WISE Environment is at your disposal.

7.1.4 Access to the AWE software

After gaining experience with AWE you have the option to change the source code and make the
changes available to AWE, so they are shared with other users. This is done via CVS, and the
following sections explain how to get read access and write access to the AWE software.

AWBASE and test version

It is important to note at this point that we maintain a CVS version of the code which is tagged
as “AWBASE”. This version is tested and qualified and we therefore strongly recommend that
you use this version if you do checkout your own code. The lastest CVS version is referred to as
“current” or “test”.

Read-only access to the AWE software

If you’d like to change the AWE software, you first need to get it via CVS.

cvs -d :pserver:anoncvs@cvs.astro-wise.org:/cvsroot login

cvs -d :pserver:anoncvs@cvs.astro-wise.org:/cvsroot checkout -r AWBASE awe

56

7.1 HOW-TO: Start Getting Started

Usage of CVS is explained in §7.3 (HOW-TO Use CVS).

Note that in order to use your checkout of awe instead of the central checkout, you have to set
an environment variable AWEPIPE to point to the awe directory. C-shell example:

setenv AWEPIPE /path/to/your/awe

It may be convenient to add this line to your ∼/.cshrc configuration file.

Write access to the AWE software

If you are granted write access, you can share your improvements of and additions to the source
code with the Astro-WISE community.

Setting up write access to the CVS repository is further explained in §7.3 (HOW-TO Use
CVS).

7.1.5 Access to the AWE dataservers

Access to the dataservers is automatically taken care of and does not require any action on the
part of the user.

57

7.2 HOW-TO Documentation Getting Started

7.2 HOW-TO Documentation

Documentation for the Astro-WISE Environment is copius. Wading through it can be a daunting
challenge. To make learning the system as simple as possible, several levels of documentation
have been compiled. This HOW-TO explains all about AWE documentation.

7.2.1 HOW-TOs

The first place any user, especially new users, should go is the AWE HOW-TOs. These are task-
specific documents designed to give the user good knowledge of a relatively small part of the
system.

7.2.2 The Manual

The AWE Manual contains all the HOW-TOs in the same hierarchical form as the web page, but
also includes more general and advanced documentation about the system. If the HOW-TO

approach is not working for you, please try the Manual.

7.2.3 Documentation from the Code

Throughout the code docstrings are placed that indicate the purpose and functionality of
packages, modules, classes, methods, functions etc. These can best be viewed in one of two
ways: using a PyDoc server or by using the help functionality of Python while using the Python

(AWE) command-line interface.

Online documentation

A pydoc server of a standard code checkout is always accessible online at

http://doc.astro-wise.org

A local pydoc server can be started with the following command:

pydoc -p <port>

or

awedoc -p <port>

This server will search any installed Python code and create HTML pages so that the code can
be browsed with a webbrowser. The majority of the first page displayed will show installed
Python libraries. The Astro-WISE code is marked by the location of your awe checkout. The
server is accessible as

http://localhost:<port>

Inline documentation

It is possible to access docstrings from the Python/AWE prompt. This is often more convenient
and faster than using a pydoc server.

awe> import astro.main.BiasFrame

awe> help(astro.main.BiasFrame)

58

http://www.astro-wise.org/portal/aw_howtos.shtml
http://www.astro-wise.org/docs/Manual.pdf
http://doc.astro-wise.org

7.2 HOW-TO Documentation Getting Started

Usually however you will call a similar page by calling help on a class rather than the mod-
ule which contains this class (e.g. in this case, module BiasFrame.py also includes the class
BiasFrameParameters):

awe> from astro.main.BiasFrame import BiasFrame

awe> help(BiasFrame)

Similarly one can get the docstring of individual methods:

awe> help(BiasFrame.make_image)

Help on method make_image in module astro.main.BiasFrame:

make_image(self) unbound astro.main.BiasFrame.BiasFrame method

Make a master bias image.

Requires:

raw_bias_frames -- A list of raw bias frames

read_noise -- A ReadNoise object

Do a trim and overscan correction on the input frames, compute

a first estimate of the mean using a median of all trimmed and

overscan-corrected raw biases. For each input bias reject

pixels which deviate more than SIGMA_CLIP * read_noise from

the median, and use the remaining pixels to compute a mean.

Note that a list of all methods, properties etc. of a class can be obtained with the “dir”
command:

awe> dir(BiasFrame)

There is also a special Python help environment that can be started with this command:

awe> help()

The next command then gives an overview of the most important modules for our system:

help> modules astro.main

This (takes a little while) displays the following:

awe> help()

Welcome to Python 2.7! This is the online help utility.

If this is your first time using Python, you should definitely check out

the tutorial on the Internet at http://docs.python.org/2.7/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing

Python programs and using Python modules. To quit this help utility and

return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",

"keywords", or "topics". Each module also comes with a one-line summary

of what it does; to list the modules whose summaries contain a given word

such as "spam", type "modules spam".

help> modules astro.main

59

7.2 HOW-TO Documentation Getting Started

Here is a list of matching modules. Enter any module name to get more help.

astro.main.AssociateList

astro.main.Astrom - the world coordinate system of a FITS file

astro.main.AstrometricCatalog

astro.main.AstrometricCorrection - Astrometric Correction

astro.main.AstrometricParameters

astro.main.AstrometricParametersFactory

astro.main.AtmosphericExtinction

astro.main.AtmosphericExtinctionCurve

astro.main.AtmosphericExtinctionFrames

astro.main.AtmosphericExtinctionZeropoint

astro.main.BaseCatalog - defines the base class for all catalogs

astro.main.BaseFlatFrame - defines the base class for all flat-fields

astro.main.BaseFrame - defines the base class for all frames (images)

astro.main.BaseWeightFrame - defines the base class for all weights

astro.main.BiasFrame - bias (req541)

astro.main.Catalog - defines a class for (SExtractor) catalogs

astro.main.Chip - class used to identify a single chip

astro.main.ColdPixelMap - cold pixel maps (req535)

astro.main.Config - provides a persistency mechanism for configuration parameters

astro.main.CosmicMap - defines classes used in detecting cosmic ray impacts

astro.main.DarkCurrent - dark current (req531) and particle event rate (req532)

astro.main.DataObject - objects with an associated data file

astro.main.DomeFlatFrame - dome flat (req542), master dome flats

astro.main.Filter - class used to identify the filter

astro.main.FringeFrame - fringe images (req545)

astro.main.GAstrometric

astro.main.GainLinearity - gain (req523) and linearity (req533)

astro.main.GainLinearity2 - gain (req523) and linearity (req533)

astro.main.HotPixelMap - hot pixel maps (req522)

astro.main.IlluminationCorrection

astro.main.IlluminationCorrectionFrame

astro.main.Imstat - image statistics

astro.main.Instrument - class used to identify the instrument

astro.main.Lamp

astro.main.LinearityMap - non-linear pixels (req533)

astro.main.LongAstrom - astrometry including PV matrix

astro.main.MasterFlatFrame - defines the final flat-field to be used (req546)

astro.main.NightSkyFlatFrame - night-sky flat frames (req544)

astro.main.ObservingBlock

astro.main.OnTheFly

astro.main.PhotExtinctionCurve

astro.main.PhotRefCatalog

astro.main.PhotSkyBrightness

astro.main.PhotSrcCatalog

astro.main.PhotTransformation

astro.main.PhotometricExtinctionReport

astro.main.PhotometricParameters

astro.main.PhotometricReport

astro.main.PhotometricSkyReport

astro.main.PixelMap - defines a class for pixel maps

astro.main.ProcessTarget - processable objects with quality control flags

astro.main.QuickCheckFrame - quick check (req547)

astro.main.RadioCube

astro.main.RawFinder

astro.main.RawFitsData - completely raw data

astro.main.RawFrame - classes for the different kinds of raw frames

astro.main.ReadNoise - read noise (req521) in ADU

astro.main.ReducedScienceFrame - de-bias & flat-field (seq632), apply astrometry (seq634/req555)

astro.main.RegriddedFrame

astro.main.RegriddedFrame_new - the support classes for regridding and coaddition

astro.main.SatelliteMap - maps of satellite tracks (if any)

astro.main.SaturatedPixelMap - maps of saturated pixels

60

7.2 HOW-TO Documentation Getting Started

astro.main.ScienceFrame - apply photometry (seq635)

astro.main.ShutterCheckFrame - shutter timing (req561)

astro.main.SourceList

astro.main.SubWinStat - SubWinStat

astro.main.SubWinStatFactory

astro.main.TwilightFlatFrame - twilight flat (req543), master twilight flats

astro.main.VariabilityFrame - Variability tool

astro.main.WeightFrame - individual weights (seq633)

astro.main (package) - The Persistent Object Hierarchy

astro.main.aweimports - automatic imports for the interpreter

help>

The following command can be given to get help on a specific module:

help> astro.main.BiasFrame

This will display the following page (don’t bother reading it in any detail at this point):

Help on module astro.main.BiasFrame in astro.main:

NAME
astro.main.BiasFrame - bias (req541)

FILE
/data/users/helmich/awe/astro/main/BiasFrame.py

DESCRIPTION
This module contains class definitions for BiasFrameParameters
and BiasFrame.

BiasFrame is the class that defines a master bias object.

BiasFrameParameters is a class with parameters that are used, e.g., in
trend analysis.

CLASSES
astro.main.BaseFrame.BaseFrame(astro.main.DataObject.DataObject, astro.main.

ProcessTarget.ProcessTarget)
BiasFrame

common.database.DBMain.DBObject(__builtin__.object)
BiasFrameParameters

class BiasFrame(astro.main.BaseFrame.BaseFrame)
| Class for the master bias.
|
| This class defines the master bias frame and provides the ability
| to reduce a list of raw bias input frames. The reduction consists
| of averaging the trimmed and overscan-corrected raw bias frames
| and calculating the statistics of the derived frame. Instances
| of this class have links to:
|
| raw_bias_frames - List of raw bias objects.
| process_params - Bias frame parameters object.
| prev - Previous master bias object.
| imstat - The Imstat object containing image statistics for the
| reduced bias frame object.
| instrument - The Instrument object describing which instrument the

raw
| bias frame was observed with.
| chip - The Chip object for the CCD with which the raw bias fr

ame
| was observed.
| observing_block - The ObservingBlock object to which this bias
| observation belongs.
|
| Method resolution order:
| BiasFrame
| astro.main.BaseFrame.BaseFrame
| astro.main.DataObject.DataObject
| common.database.DBMain.DBObject
| astro.main.ProcessTarget.ProcessTarget

61

7.2 HOW-TO Documentation Getting Started

| common.database.DBMeta.DBMixin
| __builtin__.object
| astro.main.OnTheFly.OnTheFly
|
| Methods defined here:
|
| __init__(self, pathname=’’)
|
| build_header(self)
| Extends BaseFrame build_header method
|
| check_preconditions(self)
|
| clean_up(self)
| This methods deletes intermediate products (like trimmed versions of
| raw frames that may cause problems when the BiasFrame is made a seco

nd
| time) from memory.
|
| compare(self)
| Compare the results with a previous version.
|
| Requires:
| prev -- A BiasFrame object for the previous Bias measurement
|
| The folowing flags may be set in the status attribute:
| MEAN_DIFFER -- (mean of bias-mean of previous) > MAXIMUM_BIAS_DIF

FERENCE
|
| copy_attributes(self)
|
| derive_timestamp(self)
| Assign the period for which this calibration frame is valid.
|
| get_canonical_name(self)
| Generate the unique filename for this BiasFrame.
|
| make(self)
| Make a master bias frame.
|
| Requires:
| raw_bias_frames -- A list of raw bias exposures.
|
| Trims and applies overscan correction to the raw input bias
| frames. Averages these frames to derive the master bias
| frame. Calculates the image statistics on the resulting
| frame. Creates the FITS header and saves it together with the
| FITS image.
|
| make_image(self)
| Make a master bias image.
|
| Requires:
| raw_bias_frames -- A list of raw bias frames
| read_noise -- A ReadNoise object
|
| Do a trim and overscan correction on the input frames, compute
| a first estimate of the mean using a median of all trimmed and
| overscan-corrected raw biases. For each input bias reject
| pixels which deviate more than SIGMA_CLIP * read_noise from
| the median, and use the remaining pixels to compute a mean.
|
| read_header(self)
| Extends the read_header method of BaseFrame
|
| set_overscan_parameter(self)
| Sets the OVERSCAN_CORRECTION attribute of the BiasFrameParameters
| object associated with the BiasFrame based on OVSC_COR header keywor

d
|
| Necessary for checking of inconsistencies between overscan correctio

n
| methods of (input) BiasFrame and (target) frame (e.g. a RawScienceFr

ame)
| that uses the BiasFrame.
|

62

7.2 HOW-TO Documentation Getting Started

| verify(self)
| Verify the results.
|
| The following flags may be set in the status attribute:
| BIAS_ABS_MEAN_TOO_LARGE : if the mean is significantly different f

rom zero
| BIAS_STDEV_TOO_LARGE : if the stdev is too large
|
| --
| Data descriptors defined here:

etc.
etc.
etc.

Evidently these pages can be quite lengthy. The structure of the pages is always the same
however: aside from the docstring for the current module, the docstrings of the classes, methods,
functions and properties as well as those of any superclass(es) of the class in question are
displayed.
Exit help as follows:

help> quit

You are now leaving help and returning to the Python interpreter.

If you want to ask for help on a particular object directly from the

interpreter, you can type "help(object)". Executing "help(’string’)"

has the same effect as typing a particular string at the help> prompt.

awe>

These pages contain exactly the same information as the HTML documentation created by a
pydoc server.

7.2.4 The Code Itself

If your troubles (or just your curiosity) require more information than all the above documen-
tion can provide, the last place to look is at the code itself. If you haven’t already done so,
get a CVS checkout and load the relevant files into your favorite text editor/viewer and have fun.
Most software of interest will be located in $AWEPIPE/astro/main, $AWEPIPE/astro/recipes,
or $AWEPIPE/astro/toolbox.

63

http://www.astro-wise.org/portal/howtos/man_howto_start/man_howto_start.shtml

7.3 HOW-TO: CVS Getting Started

7.3 HOW-TO Use CVS

Projects for which different people work on the same set of files benefit from organizing these
files and keeping track of any changes to them. To this end, a program called CVS (Concurrent
Versions System) is used. In this chapter, a short introduction is given with regards to CVS

functionality that we most often use. For the Astro-WISE project, source code, webpages, and
documentation files are stored using CVS.

7.3.1 AWBASE and test version

It is important to note at this point that we maintain a CVS version of the code which is tagged
as “AWBASE”. This version is tested and qualified and we therefore strongly recommend that
you use this version if you do checkout your own code. The lastest CVS version is referred to as
“current” or “test”.

7.3.2 Getting access

Read-only access is available using the following commands. The password to login can be
requested from your Astro-WISE representative. Logging in can take a little time.

cvs -d :pserver:anoncvs@cvs.astro-wise.org:/cvsroot login

base version

cvs -d :pserver:anoncvs@cvs.astro-wise.org:/cvsroot checkout -r AWBASE <module>

test version

cvs -d :pserver:anoncvs@cvs.astro-wise.org:/cvsroot checkout <module>

where module can be:

• awhtml - for the webpages

• awe - for the pipeline (documentation is found in awe/astro/docs and various README
files)

In order to get write permission you first need ssh (secure shell) access to the repository. First
you will have to generate a private/public DSA key pair. Make sure you are using secure shell
protocol 2! Recent versions of ssh should default to protocol 2, e.g. OpenSSH 2.9 and newer.
The public/private keypair is generated with:

ssh-keygen -t dsa

You will be asked for a passphrase. This passphrase can be empty or, for additional security, a
phrase. Make sure you remember the passphrase if you use one, because you will need it when
authenticating yourself later. If you are behind a firewall check that it does not block outgoing
ssh connections.

The next step is to send the file called:

~/.ssh/id_dsa.pub

to danny@astro.rug.nl and wait for further instructions.
While waiting for instructions add the ssh-rsa public key for the cvs.astro-wise.org host to the
file called:

~/.ssh/known_hosts

64

7.3 HOW-TO: CVS Getting Started

Depending on the version of your secure shell you might have to add the key to a different file
instead, e.g. ~/.ssh/known hosts. In addition, ensure that your version of ssh uses the same
protocol as cvs.astro-wise.org server. Under some circumstances you’ll have to create or edit a
file called ~/.ssh/config and add a line stating:

Protocol 2

The ssh-rsa public key for cvs.astro-wise.org can be found here.
Once you have write access, the code can be obtained with these commands:

setenv CVS_RSH ssh (csh syntax)

or

CVS_RSH=ssh; export CVS_RSH (sh syntax)

cvs -d cvs.astro-wise.org:/cvsroot checkout -r AWBASE <module> # base version

cvs -d cvs.astro-wise.org:/cvsroot checkout <module> # test version

where module can be:

• awhtml - for the webpages

• awe - for the pipeline (documentation is found in awe/common/docs, awe/astro/docs, and
various README files)

7.3.3 Using your CVS checkout

Set the $AWEPIPE environment variable to the directory of the awe module to use your CVS

checkout with the awe-prompt. That is, set $AWEPIPE to the directory with the common and
astro directories. E.g. in csh

setenv AWEPIPE /Users/users/myname/myawe/awe

or in bash

export AWEPIPE=/Users/users/myname/myawe/awe

7.3.4 Using CVS

After checking out a module the next two CVS commands are most often used (there is a module
called Demo on cvs.astro-wise.org that you can use to practice your CVS skills):

• cvs update

This command will update the locally checked out version of the module. The local version is
merged with the latest version in the CVS repository. Usually it is a good idea to use CVS update
-d which will ensure that directories that have been added to the module in the repository are
created. Without the -d option only the directories that currently exist in the locally checked
out module will be updated.

• cvs commit

This command will commit local changes to the CVS repository. You will be asked to supply
an informational text, where you can enter e.g. what the reason for the change was. If used
without options everything that was changed will be committed. If one or more files and/or
directories are specified as arguments to CVS commit only those are committed.

In short, if you want to be in sync with changes that others have made you use CVS update,
and if you want to propagate your own changes to others, use CVS commit.

65

http://www.astro-wise.org/howto/cvs_id.pub

7.3 HOW-TO: CVS Getting Started

NB. It is very important to regularly do an update and not to wait too long with a
commit, especially when there is a high probability that you are not the only person
working on a file. In particular, before you commit major changes it is important to
update. If you do not, there is a risk that CVS will inform you of a conflict which
has to be solved by hand.

A few examples:

cvs -nq update -dPA

Does not actually update (-n option), just does the regular checks. Runs in quiet mode (q).
Creates new directories if any are found in the repository (-d option). Removes directories that
are empty in the local checkout (-P option). Resets any tags, updates to the newest versions
(-A option).

cvs commit -m "Fixed <error> in <place>" astro/toolbox/<something>.py

Switching between the AWBASE and test versions

To obtain the AWBASE version in your own CVS checkout, do

cvs -q update -r AWBASE -dP

This will replace all files with the AWBASE version. Note that files, that you have changed, will
NOT be replaced. Subsequent updates with cvs update will continue to retrieve the files tagged
as AWBASE. To get the most recent version again, do

cvs -q update -dPA

If you want the latest versions you will first have to use the ”-A” option!

Selecting the version for a given time

It is possible to get a particular version of file from CVS for a given time. This makes it easy to
resort to the version of a week ago, in case the most recent version appears to have problems.
To obtain the version of a given time, do

cvs -q update -dP -D <date>

The <date> can be specified in a large variety of formats, including ISO-formatted (1972-09-24
20:05), MM/DD/YY (or DD/MM/YY, depending on your desktop settings). Some examples
are

’1 month ago’

’2 hours ago’

’400000 seconds ago’

’last year’

’last Monday’

’yesterday’

’a fortnight ago’

’3/31/92 10:00:07 PST’

’January 23, 1987 10:05pm’

’22:00 GMT’

66

7.3 HOW-TO: CVS Getting Started

7.3.5 Moving the AWBASE tag

The AWBASE tag can be moved to a different revision of a file in CVS. When doing that, it is no
longer possible to know to which revision of a file AWBASE was previously pointing. To be able
to revert to the previous AWBASE the following steps have to be taken when moving the AWBASE

tag in CVS.

1. Add a tag named AWBASE<yymmdd>, where <yymmdd> is the current date. For example, the
tag for July 14th, 2006 becomes AWBASE060714. A convenient way to do that from the
unix prompt is

cvs tag AWBASE‘date +%y%m%d‘ filename

Be sure to supply a filename or all files will be tagged recursively!

The above example will tag the latest version. If you intend to move the AWBASE tag to
a specific revision, other than the latest version, you have to include the -r option. To
move to revision 1.20 of interesting.tex, for example, do

cvs tag -r1.20 AWBASE060714 interesting.tex

The cvs log command can be used to get an overview of all revisions of a file.

2. Move the AWBASE tag to the tag that was created in the previous step. The following
command can be executed from the unix prompt to do this conveniently

cvs tag -r AWBASE‘date +%y%m%d‘ -F AWBASE filename

Be sure to supply a filename or all files will be tagged recursively!

3. Remove the sticky tag that was created by the cvs tag command.

cvs -q update -A filename

This step is higly recommended for beginning CVS users and optional for expert CVS users
that know about “stickyness”. If you have no idea about your level of CVS expertise, always
perform the last step.

Of course, the above commands can be combined in an alias for convenience. An example
for Unix in C Shell is:

alias cvstag ’cvs tag AWBASE‘date +%y%m%d‘ \!* ; cvs tag -r AWBASE‘date

+%y%m%d‘ -F AWBASE \!* ; cvs -q update -A \!*’

67

7.4 HOW-TO: Schedule observations Getting Started

7.4 HOW-TO Schedule Astro-WISE compliant observations

The Astro-WISE system is a database driven environment for the reduction of astronomical
image data. The system is capable of processing data from many different Wide-Field cameras.
Currently, the system is using data from

• OmegaCAM imager at the VLT survey telescope

• WFI, the Wide-Field Imager at the 2.2m ESO telescope, La Silla

• WFC the Wide Field Camera at the INT, La Palma

• MDM8K at the MDM observatory

The Astro-WISE system was primarily created for the reduction of OmegaCAM data. This is
reflected in the design of the system, and has consequences for any observations to be scheduled
for instruments other than OmegaCAM itself.

This chapter provides guidelines for scheduling observations that are in agreement with the
data model and data requirements of the Astro-WISE system. These guidelines not only facilitate
easy processing by the Astro-WISE system, but also allow a smooth insertion of this data into
the database (i.e. ingestion). It is, therefore, strongly advised to adhere as much as possible to
the guidelines provided in this chapter. A short summary of the guidelines is given in Table 7.1.
If you plan to use the Astro-WISE system for the reduction of data from instruments other than
the ones mentioned above it is advised to contact the Astro-WISE group in Groningen.

7.4.1 Data requirements

In the following subsections, short descriptions are given of the minimum requirements one has
to meet to smoothly work with the Astro-WISE system.

Read noise and bias

In the OmegaCAM calibration plan, the read noise is determined as part of the daily health
check procedures. For the Astro-WISE system, this means that there is a processing step devoted
to deriving this read noise. This step in the data reduction can not be skipped, because the
read noise is a necessary ingredient in creating the master bias.

For deriving the read noise and the master bias, bias exposures are required. For the read
noise, exactly two bias exposures are required, for the master bias at least five (the OmegaCAM
calibration plan even specifies as many as ten). Please, make sure that at least once during the
observing run read noise observations are taken (otherwise the Astro-WISE system would have to
fall back on pre-fab values of the read noise which might not always be the most appropriate). To
easily distinguish between these sets of bias images in preparation for the ingest, it is advisable
to use the different entries for the OBJECT header key word as given in Table 7.1.

Dome flats and twilight flats

In the Astro-WISE system, the science data is flat-fielded with a master flat that has been derived
from dome flats and/or twilight flats. Optionally, one can, in addition, use flats derived from
the nightsky to construct the master flat.

For deriving a master dome flat, the system requires at least five exposures for every filter in
which science observations are taken. The same requirements are in place for deriving a master
twilight flat. To easily distinguish between the two sets of flat-field images in preparation for
the ingest, it is advisable to use the different entries for the OBJECT header key word as given
in Table 7.1.

68

7.4 HOW-TO: Schedule observations Getting Started

Table 7.1: Data requirements for Astro-WISE compliant processing. All entries in the table are
mandatory, except for the last one; the extinction measurement is optional. The first and second
columns give the purpose and type of the data. The minimum observing frequency and number
of exposures per observation are given in the third and fourth columns. The last column gives
the recommended header value of the OBJECT key word.

Purpose Data type Frequency # Exps. OBJECT

readnoise bias ≥1/run =2 BIAS, READNOISE
bias bias ≥1/night ≥5 BIAS
dome flatfield ≥1/run ≥5/filter FLAT, DOME
twilight flatfield ≥1/night ≥5/filter FLAT, SKY
photom science =1/night =1/filter STD, ZEROPOINT

science optional =2/filter STD, EXTINCTION

Photometric standard fields

This section concerns itself with observations for establishing a zeropoint for the night.
A description of the contents of the most recent standard star catalog in the Astro-WISE

system can be found in the relevant chapter on the photometric pipeline (see 19.1.1). There it
is also described how to do photometric calibration based on other standard stars which requires
ingestion of their standard magnitudes in the Astro-WISE system.

In order to be able to derive the zeropoint for the night with the Astro-WISE system, it
is necessary to observe one of the prescribed photometric standard fields once in the middle
of every night, for every filter in which science observations are taken during that night (no
dithering is required, one exposure will suffice).

Photometric monitoring

The OmegaCAM calibration plan contains observations of a field near the South Equatorial
Pole for the purpose of monitoring the stability of the atmosphere. The selection of the field
is currently in progress, but the field will most likely be near ra=51.4286deg, dec=89.0426deg.
Currently, such photometric monitoring observations are not mandatory for successful data
reduction with the Astro-WISE system. Furthermore, the Astro-WISE system facilitates the
derivation of the extinction using two standard star fields observed at different airmasses.

Gain

Gains have already been determined for all instruments currently supported by the Astro-WISE

system. Optionally, one can measure the gain using a very specific serie of dome flat measure-
ments.

69

7.4 HOW-TO: Schedule observations Getting Started

7.4.2 Notes on specific instruments

WFI@ESO2.2m

No instrument specifics at present.

WFC@INT

No instrument specifics at present.

MDM8K@MDM2.4m

Make sure that all the output from the instrument is in Multi-Extension FITS format, and that
both the calibration and science data are binned to 1024x2048 pixels.

7.4.3 Standard tiling and pixelation of the sky

A preliminary tiling and pixel grid scheme has been defined for OmegaCAM (1 square degree
FOV). It involves 22717 Square degree fields for the Southern hemisphere. A main aim is to
facilitate the stacking/co-adding/differencing of images taken at different epochs/bands/projects
even when combining data from different Wide-field-imager data in the Astro-WISE system
Therefore it might be prudent to use the pointings of the tiling grid in observations with any
instrument. Please refer to this white paper on Tiling the sky for more details:
http://www.astro.rug.nl/∼omegacam/dataReduction/Tilingpaper.html

7.4.4 Viewing observations already in the Astro-WISE system

To get an overview of the pointings of observations already present in the Astro-WISE database
one can use the ObsView module. Usage of ObsViewer is explained in §23.6 (HOW-TO

ObsViewer) To get more details on the observations one can use the DBViewer. Usage of the
DBViewer is explained in §23.4 (HOW-TO DBViewer)

70

http://www.astro.rug.nl/~omegacam/dataReduction/Tilingpaper.html

7.5 HOW-TO: Ingest Getting Started

7.5 HOW-TO Ingest raw data into the database

Before any data can be processed by the Astro-WISE system, it must be ingested. Ingestion in
this case means : splitting the images, storing these on the fileserver, and making an entry in
the database. This chapter describes the necessary preparations for ingestion, and the ingestion
process itself.

7.5.1 Preparations for the ingest

The images to ingest should first be sorted based on their intended use (i.e. their purpose, type
at the unix prompt

awe $AWEPIPE/astro/toolbox/ingest/Ingest.py

to get information on the possible purposes. For locally stored, uncompressed copies of each
image proceed as follows (if the images are compressed, decompress them first) :

1) Identify the files by collecting relevant header items. This can be done by using something
like gethead <header items> *.fits. However, if there are too many files, the shell
will refuse to expand the command. In this case, use foreach instead, and append the
output to a file :

> foreach i (*.fits)

foreach? gethead "HIERARCH ESO TPL ID" "HIERARCH ESO DPR TYPE" IMAGETYP

OBJECT "HIERARCH ESO INS FILT1 ID" "HIERARCH ESO INS FILT ID" EXPTIME $i

>> headers.txt

foreach? end

Explanation : foreach is a c-shell looping construct. gethead is a wcstools program

to get header items from FITS files. Hence for each FITS file a few relevant header

items are read and appended to the file ”headers.txt”. Wcstools is most likely installed

on your system. Website : http://tdc-www.harvard.edu/software/wcstools/.

2) Group the images by the purpose for which these have been observed. This grouping is
based on the header information retrieved in the previous step. For example :

> grep "BIAS, READNOISE" headers.txt > readnoise.txt

> grep "FLAT, DOME" headers.txt > domes.txt

> grep "FLAT, SKY" headers.txt > twilight.txt

> grep "STD, ZEROPOINT" headers.txt > photom.txt

> grep "NGC" headers.txt > science.txt

This will be easy if the guidelines for scheduling observations given in chapter 7.4 have
been followed.

3) Use, for example, the editor vim to remove anything but the file names from the text files
produced in the previous step :

> vim bias.txt

Then type ”:” to enter command mode (Esc cancels) :

": %s/fits.*/fits"

71

http://tdc-www.harvard.edu/software/wcstools/

7.5 HOW-TO: Ingest Getting Started

This is a regular expression that will search and replace each occurrance of ”fits<something>”
with ”fits”. ”%” means for all lines, ”s” is for subsitute, and the ”/”’s are to separate the
search and replace expressions, ”.*” matches one or more characters of any kind.

4) You now have files containing a list of FITS filenames (one per line) named after the pur-
pose for which the data was obtained. Now move the FITS files (or links) to subdirectories
named after this purpose, for example :

> mkdir READNOISE

> foreach i (‘cat readnoise.txt‘)

foreach? mv $i READNOISE

foreach? end

That is it for the preparation. There are, of course, many ways to do this preparation, but this
way is quite fast for any number of files.

Tips and possible complications

It may be helpful, especially when trying to ingest many files, to place links to the location of
the raw MEF files in your current working directory:

> foreach i (/ome03/users/data/WFI/2004/10/*.fits)

foreach? ln -s $i

foreach? end

In case the files are compressed with the common Unix compression programs gzip, zcat or bzip2
just make the links to the compressed files in the same way:

> foreach i (/ome03/users/data/WFI/2004/10/*.fits.Z)

foreach? ln -s $i

foreach? end

Now we have links to all the files you want to ingest in your current working directory.

In case the images are compressed with common compression algorithms, you could work as
follows:

> foreach i (*.fits.bz2)

foreach? dd bs=500k count=1 if=$i | bzip2 -qdc > hdr.txt

foreach? echo -n "$i " >> headers.txt

foreach? gethead "HIERARCH ESO TPL ID" "HIERARCH ESO DPR TYPE" IMAGETYP OBJECT

"HIERARCH ESO INS FILT1 ID" "HIERARCH ESO INS FILT ID" EXPTIME hdr.txt

>> headers.txt

foreach? end

(Explanation: dd (disk-dump(?)) reads one block of size 500k from the input file $i. The ouput
is decompressed by bzip2 and redirected to an ascii file. You can use gethead on this file again
to get the header items. Output is appended to the same file ”headers.txt”.)

Other commands that may be of use :

> fgrep [-v] -f <file1> <file2> -- Print difference between files (diff works

much slower on large files).

> wc <file> -- Word count

72

7.5 HOW-TO: Ingest Getting Started

7.5.2 Ingesting data

The actual ingestion of the data is handled by a Recipe called Ingest.py, which can be found
in $AWEPIPE/astro/toolbox/ingest. If your username is AWJSMITH the Recipe is invoked
from the Unix command line with the following command :

env project=’AWJSMITH’ awe $AWEPIPE/astro/toolbox/ingest/Ingest.py -i <raw data> -t <type> [-commit]

where <raw data> is one or more file names (for example WFI*.fits), and <type> of the data
to be ingested. Setting the environment variable project ensures that the data is ingested into
your personal context. See the Context HOW-TO for a description of the notion of context. To
get a list of all possible values for the -t parameter, just type :

awe $AWEPIPE/astro/toolbox/ingest/Ingest.py,

and an on-screen ‘manual’ will show up.

Running the Ingest.py recipe, making good use of the preparations described in the previous
section, is done thus (the read noise is taken as an example) :

> cd READNOISE

> env project=’AWJSMITH’ awe $AWEPIPE/astro/toolbox/ingest/Ingest.py -i *.fits -t readnoise -commit

An alternative command, using science data as an example, is :

> cd SCIENCE

> foreach i (*.fits)

foreach? env project=’AWJSMITH’ awe $AWEPIPE/astro/toolbox/ingest/Ingest.py -i $i -t science -commit

foreach? end

Important note : due to the nature of the ingestion script, this last command can only be used
for lists of individual science images.

The input data of the ingest script should be in the form of Multi-Extension FITS files (MEFs);
most wide-field cameras write the data from their multi-CCD detector block in this form. The
ingestion step splits an MEF file into its extensions, creates objects (a software construct) for
each extension, stores each extension separately on a dataserver, and then commits the object,
with relevant header items connected to it, to the database. Note that each extension is still
saved locally, so make sure there is enough free space in the location you are running the ingest
script. After ingesting, the local copies of the FITS files can be removed. The commit switch is
necessary to actually store/commit data; if it is not specified, nothing is written to the dataserver
or committed in the database. Note that a log is generated of the ingest process. The log file is
called something like <datetime>.log.

Each file that is ingested needs to be named according to our filenaming convention. This means
that the MEF file is named as follows :

<instrument>.<date_obs>.fits

Example: WFI.2001-02-13T01:02:03.123.fits

If the file to be ingested is not named according to this convention, a symbolic link with the
correct name is created, and the image is ingested with that filename. Hence the ingested
image may not retain its filename.

73

http://www.astro-wise.org/portal/howtos/man_howto_context/man_howto_context.shtml

7.6 HOW-TO: Work with Dates and Times in AWE Getting Started

7.6 HOW-TO: Work with Dates and Times in AWE

Observing nights and timestamps (valid ranges) are important concepts in AWE. These concepts
are inherently confusing and some understanding of our conventions is necessary. This HOW-TO

describes how to work with dates and times.

7.6.1 Observing nights

When an astronomer does observations with a telescope this happens during the night at that
telescope. We define a night for a particular telescope as the period between noon and
noon the next day at that telescope. This concept is only valid in terms of local time.
Since all relevant times that are stored in the database are stored in UTC, depending on the
telescope, a conversion from local time to UTC and vice versa is necessary.

The following raw science images observed by WFC@INT are observed in the same night.
This is the night of 30 March 2005 in our terminology.

WFC.2005-03-30T19:18:55.8.fits

WFC.2005-03-30T20:00:29.6.fits

WFC.2005-03-30T21:11:19.7.fits

WFC.2005-03-30T22:32:10.8.fits

WFC.2005-03-30T23:12:01.1.fits

WFC.2005-03-31T00:00:41.9.fits

WFC.2005-03-31T01:06:57.2.fits

In fact all data with observing dates (filenames) between WFC.2005-03-30T12:00:00.fits

and WFC.2005-03-31T12:00:00.fits are considered part of the night of 30 March 2005 for
WFC (see table 7.3).

7.6.2 Input from the user

Based on input from the user, namely the night for which to process data, both science images
and calibration images are selected in the database and used/created. This input is always
called ”date” and is an argument for command line driven interfaces as well as the web services.

Examples:

awe> task = ReadNoiseTask(date=’2000-04-28’, instrument=’WFI’, chip=’ccd50’)

awe> dpu.run(’ReadNoise’, d=’2000-04-28, i=’WFI’)

awe> query = RawScienceFrame.select(date=’2000-04-28’, instrument=’WFI’,

... object=’CDF4_B_1’)

awe> for f in query: print f.DATE_OBS

...

2000-04-29 00:04:29.00

2000-04-29 00:04:29.00

2000-04-29 01:05:58.00

2000-04-29 00:04:29.00

2000-04-29 00:04:29.00

2000-04-29 00:04:29.00

2000-04-29 01:05:58.00

2000-04-29 01:05:58.00

2000-04-29 01:05:58.00

74

7.6 HOW-TO: Work with Dates and Times in AWE Getting Started

raw images and science images
description name (header item) type of value
observing date DATE-OBS datetime type (UTC)
observing date UTC float
observing date (modified julian date) MJD-OBS float
observing date (local siderial time) LST float
FITS file write time DATE datetime type (UTC)
(if available) start of observing block (...)OBS START datetime type (UTC)
(if available) start of template (...)TPL START datetime type (UTC)

calibration images
description name type of value
start of valid range timestamp start datetime type (UTC)
end of valid range timestamp end datetime type (UTC)
creation date creation date datetime type (UTC)
start of observing block (observing block.)date obs datetime type (UTC)
start of template (template.)date obs datetime type (UTC)

Table 7.2: Dates as stored in the database

2000-04-29 01:05:58.00

2000-04-29 00:04:29.00

2000-04-29 01:05:58.00

2000-04-29 00:04:29.00

2000-04-29 00:04:29.00

2000-04-29 01:05:58.00

2000-04-29 01:05:58.00

In fact all data with observing dates (filenames) between WFI.2000-04-29T16:00:00.fits

and WFI.2000-04-30T16:00:00.fits are considered part of the night of 29 April 2000 for WFI
(see table 7.3).

7.6.3 Time stamps

To be able to automatically select appropriate calibration files (bias, flat etc.) from the database
for a given science image or as a result of the ”date” input by the user, timestamps are assigned
to each calibration file that define a period for which this calibration file is valid. All dates that
are stored in the database and used for this purpose are in UTC. See also table 7.2. Calibration
files are valid for a certain multiple of observing nights, depending on the type of file.

7.6.4 Dates in the database

The dates in table 7.2 are stored in the database.

7.6.5 Conversions between local time and UTC

A night in terms of UTC is determined by converting ”noon” to UTC. No correction is made
for any daylight saving time. The shift in the timestamps is exactly equal to the timezone of
the instrument.

75

7.6 HOW-TO: Work with Dates and Times in AWE Getting Started

instrument timezone typical timestamp start (UTC) typical timestamp end (UTC)
WFC @ INT 0 2005-01-05T12:00:00 2005-01-06T12:00:00
WFI @ 2.2m 4 2005-01-05T16:00:00 2005-01-06T16:00:00
OCAM @ VST 4 2005-01-05T16:00:00 2005-01-06T16:00:00
MDM8K @ 2.4m 7 2005-01-05T19:00:00 2005-01-06T19:00:00

Table 7.3: Instrument time zones

76

7.7 HOW-TO: Parallel Process Getting Started

7.7 HOW-TO Process Data in a Distributed (Parallel) Way

7.7.1 Summary

Here are some of the actions that one may want to do when Processing using the Distributed
Processing Unit (DPU). These actions are described in this HOW-TO.

• Submit you own jobs to the queue (either from AWE or by using a webservice)

• Inspect the status of your jobs or a DPUin general

• Request which tasks (sequence of tasks) the dpu recognizes

• Request which options a task (sequence of tasks) recognizes.

• Using your local (changed) code when processing remotely

• Cancel jobs

• Obtain the logs of your jobs

At the AWE prompt an object is available which is used to run jobs on the DPU. Public
methods for this object are:

• dpu.get jobids(): Return the list of identifiers of your jobs known to the DPU

• dpu.run(<arguments>): Submit jobs

• dpu.get dpu identifiers(): Returns a list of all known DPU’s.

• dpu.show dpu identifiers(): Print the above, more verbose

• dpu.select dpu(): Select a different DPU

• dpu.get sequence identifiers(): Returns a list of known task sequences

• dpu.show sequence identifiers(): Print the above, more verbose

• dpu.get sequence options(<sequence identifier>): Returns a list of all arguments that are
recognized for the given sequence identifier

• dpu.show sequence identifiers(<sequence identifier>): Print the above, more verbose

• dpu.get job result(<jobid>): If results have been committed, returns a list of the main
created objects

• dpu.get logs([<job identifier(s)>]): Return all (no argument) logs or the logs of the spec-
ified job(s)

• dpu.cancel job(<jobid>): Cancels a job (as long as it is not yet running)

In the Environment with key dpu name it is defined which DPUto use. This can be changed
to select a different DPUas default. To change the DPUin an AWEsession use the method
dpu.select dpu().

77

7.7 HOW-TO: Parallel Process Getting Started

7.7.2 Viewing the queue

For each Distributed Processing Unit (DPU) there is a webpage available which displays its
queue. These pages can be found from the homepage, under Astro-WISE Information System
-> Processing Grid -> Cluster Queues.

On the page you can inspect the status of your jobs. Shown are among others, user infor-
mation, job status and running time. Here is the webpage for the DPU in Groningen:

(click on the links in the lower left part of the screen to view the queue)

http://dpu.hpc.rug.astro-wise.org/

7.7.3 Processing in AWE

From the awe-prompt it is possible to process your data remotely and in a distributed fashion.
When you start up the interpreter an instance of the class used for this (the Processor class),
is automatically generated and assigned to the variable “dpu”. So, when you start AWE you will
see something like this:

Python 2.5.1 (r251:54863, Jul 25 2007, 11:52:36)

[GCC 3.4.6 20060404 (Red Hat 3.4.6-3)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

Welcome to the Astro-WISE Environment

Importing Astro-WISE packages. Please wait...

Initializing Distributed Processing Unit...

Current profile:

- username : <username>

- database : db.astro.rug.astro-wise.org

- project : <project>

awe>

The message about the Distributed Processing Unit indicates that a Processor instance (called
“dpu”) has been created.

The dpu can be asked which sequence identifiers it recognises:

awe> dpu.get_sequence_identifiers()

[’HotPixels’, ’ReadNoise’, ’Bias’, ’MasterFlat’, ’NightSkyFlat’, ’DomeFlat’,

’TwilightFlat’, ’Gain’, ’ColdPixels’, ’QuickCheck’, ’FringeFlat’, ’Photcat’,

’Photom’, ’Reduce>GAstrometry>Coadd’, ’Regrid>Coadd’, ’GAstrom’, ’SourceList’,

’Reduce’, ’Astrometry’, ’Regrid’, ’GAstrometry’, ’Reduce>GAstrometry>Regrid’,

’GAstromSL’, ’Coadd’, ’Reduce>Astrometry’, ’Reduce>Regrid’, ’Reduce>Coadd’,

’AssociateList’, ’GalFit’, ’GalPhot’]

The dpu can also be asked which options a particular task takes:

awe> dpu.get_sequence_options(’HotPixels’)

[’i’, ’d’, ’c’, ’p’, ’C’, ’instrument’, ’date’, ’chip’, ’pars’, ’commit’]

78

http://dpu.hpc.rug.astro-wise.org/

7.7 HOW-TO: Parallel Process Getting Started

More verbose:

awe> dpu.show_sequence_options(’HotPixels’)

Recognized options for the astro.recipes.HotPixels OptionsParser are:

"i" or "instrument" (default:)

"d" or "date" (default:)

"c" or "chip" (default:)

"p" or "pars" (default: {})

"C" or "commit" (default: 0)

You can start tasks as follows:

awe> dpu.run(’DomeFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’) # all CCDs

awe> dpu.run(’DomeFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1) # commit results

awe> dpu.run(’DomeFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, c=’ccd50’) # one CCD

awe> dpu.run(’Reduce’, i=’WFI’, o=’CDF4_B_?’, d=’2000-04-29’, f=’#845’)

Further options can be specified for dpu.run:

• dpu time: override any dpu time (expected processing time) derived by the tasks them-
selves

• dpu mem: specifying the memory required may influence which nodes are used

• dpu aweversion: version (AWBASE or current) of binaries to use on the compute cluster

• send code: send your own version of the Python code (located in directory AWEPIPE)
to use on the DPU

• return jobid: return jobid for accounting purposes

The “run” method will print a job identifier for every job submitted to the queue of the Dis-
tributed Processing Unit (DPU):

[schmidt] 09:55:55 - Calling: Processor.run(ReadNoise, instrument= , i=WFI ,

c=ccd50 , d=2000-04-28)

[schmidt] 09:55:55 - Estimated process time : 10 seconds

[schmidt] 09:55:55 - Sending job with identifier 82382 to DPU

These jobids can be used to retrieve logs of finished jobs (see the next section). Jobids of jobs
you submitted can be requested with this command:

awe> dpu.get_jobids()

[84820L]

A concise status overview for your jobs can be requested as well:

awe> dpu.get_status()

[schmidt] 13:37:11 - Jobid 84820 has status FINISHED N/E/A/S/U 75/0/0/0/0

7.7.4 Using your local (changed) code when processing remotely

When you run a job using the DPU and you have a local checkout of the code, this code is
shipped to the computing cluster and used there, except when the option send code=False is
given to the dpu.run method.

79

7.7 HOW-TO: Parallel Process Getting Started

7.7.5 Options

Several options can be given to the dpu.run method:

• dpu time: override any dpu time (expected processing time) derived by the tasks them-
selves

• dpu mem: specifying the memory required may influence which nodes are used

• dpu aweversion: version (AWBASE or current) of binaries to use on the compute cluster.

• return jobid: return jobid for accounting purposes

• send code: send your own version of the Python code (located in directory AWEPIPE) to
use on the DPU)

7.7.6 Logs and job identifiers

In an active AWE session it is possible to ask the Processor to return logs:

awe> dpu.get_logs()

12:22:16 - ++

12:22:16 - job_status = 0

12:22:16 - ++

12:22:16 - 12:10:00 - Querying database for instances of class RawBiasFrame

12:10:22 - Running : imcopy ’OCAM.2005-09-07T07:43:44.905_3.fits[1]’ ’tmpdTqMx

N.fits’

12:10:22 - Running : imcopy ’OCAM.2005-09-07T07:44:36.165_3.fits[1]’ ’tmpz6bkO

r.fits’

12:10:23 - Making ReadNoise object

12:10:23 - Using RawBiasFrame OCAM.2005-09-07T07:43:44.905_3.fits

12:10:23 - Using RawBiasFrame OCAM.2005-09-07T07:44:36.165_3.fits

12:10:23 - Computing difference...

12:10:23 - Estimating rms iteratively...

12:10:23 - Maximum number of iterations : 5

12:10:23 - Rejection threshold : 5.0 (sigma)

12:10:24 - The read noise (ADU) for ccd ESO_CCD_#67 is : 2.34

12:10:24 - Difference between biases is : -0.077 (mean), 0.00 (median)

The returned lines are also written to a single (”date+time”.log) file in your local directory per
awe-prompt session.

7.7.7 Cancelling jobs

Jobs can be cancelled from the awe-prompt using the following command:

awe> dpu.cancel_job(313L)

or

awe> for jobid in dpu.get_jobids():

dpu.cancel_job(jobid)

I.e. the argument is the job identifier of the job you want to cancel.

80

7.8 HOW-TO: Use DARMA Getting Started

7.8 HOW-TO USE DARMA

DARMA is a Data Acquisition, Representation, and MAnipulation interface for use with FITS2

images and headers, and eventually FITS tables. The current interface with the Astro-WISE

Environment uses only the FITS header functionality of DARMA, and that is all that will be
discussed in this HOW-TO.

7.8.1 DARMA Header Interface

DARMA headers are effectively PyFITS3 headers with alot of fancy extra functionality and
optimizations to make working with FITS headers in Astro-WISE very simple and powerful. As
with PyFITS headers, DARMA headers include header verification, but on-demand instead of
upon output to a file, so you always know your header meets the current FITS standard as
implemented in the version of PyFITS being used. DARMA’s header interface has at minimum,
the same functionality Eclipse headers have. This means, that if you are already familiar with
Eclipse headers, you need not read further to use it. If you are not or want to know more,
both the basic and the more advanced functionality will be described below and in the following
sections.

The basic access to DARMA headers is a Python dictionary-like interface:

awe> header = darma.header.header(’filename.fits’)

awe> header[’BITPIX’]

-32

awe> header[’OBJECT’]

’Standard’

awe> header[’OBJECT’] = ’Standard (SA101)’

awe> header[’OBJECT’]

’Standard (SA101)’

awe> del header[’OBJECT’]

awe> header[’OBJECT’]

None

awe> header[’OBJECT’] = ’Standard (SA101)’

awe> header[’OBJECT’]

’Standard (SA101)’

awe> header[’OBJECT’] = (’Standard (SA101)’, ’Object name from telescope’)

awe> header.OBJECT

OBJECT = ’Standard (SA101)’ / Object name from telescope

awe>

The example above shows the basic interface to a FITS header and basic manipulations of
the header values. A header is loaded upon instantiation with a valid filename and an optional
index indicating the extension number (0=primary, 1=first extension, 2=second extension, etc.).
Access to a keyword or numeric index of the header returns the value of the keyword, and allows
modification of the value or deletion of the keyword entry, or addition of a new one (the old one
is recreated in the example above.). Lastly, keyword comments can be added using a (value,
comment) tuple. The card displayed by the header attribute shows the added comment. Header
attribute access is described next.

2FITS is currently the only data packaging format supported. Different formats can and will be included in
the future.

3http://www.stsci.edu/resources/software_hardware/pyfits/

81

http://www.stsci.edu/resources/software_hardware/pyfits/

7.8 HOW-TO: Use DARMA Getting Started

NOTE: Keywords dealing with the data (e.g., BITPIX, NAXIS, etc.) can be modi-
fied, but any changes will be lost when the header is paired with data, as their values
will be take directly from the data.

In addition to the primary dictionary interface, there is an informational, attribute-based
interface that can show the value of the entire header card for a given keyword. There is also a
special attribute that shows a listing of all header cards:

awe> header.BITPIX

BITPIX = -32 / number of bits per data pixel

awe> header.BITPIX.key

’BITPIX’

awe> header.BITPIX.value

-32

awe> header.BITPIX.comment

’number of bits per data pixel’

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = -32 / number of bits per data pixel

NAXIS = 0 / number of data axes

EXTEND = T / FITS dataset may contain extensions

.

.

.

awe>

The special attribute ‘card list’ returns the representation of a PyFITS CardList (pyfits.Header.ascardlist())
and shows exactly what the actual header looks like in the FITS file. The dump() method sim-
ply prints the string representation of this same card list. Use the dump() method to show the
header contents with newline characters included.

NOTE: The attribute-based interface goes only one-way. It shows the keyword val-
ues, but cannot set them. You must use the dictionary interface to modify keyword
values or comments!

7.8.2 On-demand Header Verification

DARMA headers are verified using PyFITS output verification on demand at every change or
access to the header (e.g., modify, add, or delete a keyword, value, and/or comment). The
verification is robust with a default verification option of ‘silentfix’. Use the ‘option’ keyword
in the constructor to override this default value.

ADVANCED: If you need to modify or add several keywords at once that would
normally raise a verification error at each one, you can set the IS VERIFIED flag of
the header object to True between changes to suppress automatic verification. After
all the changes are complete, the next access to the header will run the verification
to ensure that all is well.

7.8.3 Special Keywords

FITS standard allows for several keywords with special meaning or behavior. These keywords
generally cannot be accessed or modified in the normal ways. Their unique properties are
discussed below.

82

7.8 HOW-TO: Use DARMA Getting Started

COMMENT, HISTORY, and ‘BLANK’ keywords

The COMMENT keyword allows arbitrary lines of text to be entered into the header to give
general commentary capability at any location in the header. The string will be folded at a
length of 72 characters and put into as many comment cards as needed (i.e., a string of length
160 will be folded into 3 COMMENT cards of string length 72, 72, and 16 characters).

The HISTORY keyword has a similar purpose and is processed in the same way as the
comment card. Its primary purpose, as its name implies, is to give a record of the history the
associated FITS image has seen.

The ‘BLANK’ keyword provides the facility to add spacers, or line-holders in the header. It
is unlike the previous two because no keyword for it appears in the header, and because it can
take an optional string value where the others have a mandatory string value.

All three of these keywords have special methods to write and to read them because they
are not unique in occurrence like all other FITS keywords. The usage of the COMMENT,
HISTORY, and ‘BLANK’ keyword cards is illustrated below:

awe> header = darma.header.header().default()

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

awe> header.add_comment(’This is a comment.’)

awe> header.add_comment(’This is a very \

... long comment indeed.’)

awe> header.add_history(’This is a history statement.’)

awe> header.add_blank(after=’EXTEND’)

awe> header.add_blank(’ Begin comments and histories.’, after=’EXTEND’)

awe> header.add_blank(after=’EXTEND’)

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

Begin comments and histories.

COMMENT This is a comment.

COMMENT This is a very long comment

COMMENT indeed.

HISTORY This is a history statement.

awe>

HIERARCH

PyFITS includes native support for ESO’s HIERARCH keywords usage. With HIERARCH
keywords, you can extend the 8-character limit of the standard FITS convention and use ESO’s
strict hierarchical keyword structure or a free-form structure. The keyword/value/comment
length cannot exceed the length of the card (i.e., 80 characters). See the current Registry of
FITS Conventions for more details.

DARMA handles HIERARCH keywords in effectively the same way PyFITS does. HIER-
ARCH keyword cards can be accessed or set with or without the ‘HIERARCH ’ string preceding

83

7.8 HOW-TO: Use DARMA Getting Started

the keyword. Keywords that are automatically interpreted as HIERARCH keywords are those
that contain spaces, exceed 8 characters, or contain non-alphanumeric characters other than ‘-’
or ‘ ’. Keywords beginning with ‘HIERARCH ’ are always interpreted as HIERARCH keywords.

awe> header = darma.header.header().default()

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

awe> header[’HIERARCH ESO TEL TEMP’] = 300

awe> header[’this keyword is non-standard’] = ’non-standard’

awe> header[’ThisKeywordIsAlsoNonStandard’] = ’also non-standard’

awe> header[’strange$keyword’] = ’strange’

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

HIERARCH ESO TEL TEMP = 300

HIERARCH this keyword is non-standard = ’non-standard’

HIERARCH ThisKeywordIsAlsoNonStandard = ’also non-standard’

HIERARCH strange$keyword = ’strange ’

awe> header[’ESO TEL TEMP’]

300

awe>

7.8.4 Saving and Advanced Creation

Unlike Eclipse headers, DARMA headers can be saved and loaded from text files or lists of
header cards. In this section, that functionality will be illustrated.

Saving Headers

Saving a header is as simple as calling its save method:

awe> header = darma.header.header().default()

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

awe> header.save(’header.fits’)

awe> header.save(’header.txt’, raw=False)

awe> os.system(’cat header.txt’)

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

END

0

awe>

84

7.8 HOW-TO: Use DARMA Getting Started

There are two ways to save a header as shown above: as raw FITS header as one line in
2880 byte blocks (the default), or as standard text with newlines at the end of each line in
only enough file space to contain it. As you may have already noticed, the card list does not
contain an ‘END’ header card. This is because PyFITS headers only receive the ‘END’ card
when written to a FITS file with data. This is also done upon saving a the header as you can
see in the above example. The ‘0’ after the ‘END’ card is just the return value from the shell.

Creating Headers

DARMA headers can be loaded from FITS files as expected, but they can also be created in
three other ways:

awe> header = darma.header.header(card_list=’header.txt’)

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

awe> card_header = darma.header.header(card_list=header.card_list)

awe> card_header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

awe> fd = file(’header.txt’)

awe> lines = fd.readlines()

awe> fd.close()

awe> str_header = darma.header.header(card_list=lines)

awe> str_header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

awe>

In the above example, three headers were made in three different ways from the same source.
The first header was loaded from a text file that had one header card of the form ‘key = value /
comment’ per line. This was the text file saved in the previous example with option raw=False.
The second header used the PyFITS.CardList instance as its source. The last header used a list
of strings loaded from the same file that was the source for the first header.

NOTE: When using a text file directly for the header source, you MUST use the
card list option of the constructor. The filename option only works for real FITS
file or headers that were saved with the default option raw=True. When you load a
header from this last type of file, you may get a warning about data size inconsistency.
In this case only, it can be safely ignored.

7.8.5 Information

Lastly, you can display information about a header object:

awe> header = darma.header.header().default()

85

7.8 HOW-TO: Use DARMA Getting Started

awe> header.card_list

SIMPLE = T / conforms to FITS standard

BITPIX = 8 / array data type

NAXIS = 0 / number of array dimensions

EXTEND = T

awe> header.info()

class: <class ’astro.util.darma.header.header’>

total length: 4 cards

(comment): 0 cards

(history): 0 cards

itemsize: 80 bytes

data size: 320 bytes

size on disk: 2880 bytes

awe>

Here you see the class, the total number of cards, the number of comment cards, the number
of history cards, and the data sizes of each card, of all the cards, and of the header as stored in
a FITS file.

NOTE: The astute reader should note that slack space of raw FITS-like header files
can be considerable. If saving a large number of header files, the most optimal
storage size will be achieved using the raw=False option (i.e., plain text output with
newline characters).

86

Chapter 8

Astro-WISE Environment

8.1 HOW-TO Use the awe-prompt (Python Interpreter)

8.1.1 Introduction

Working with the Astro-WISE software involves working with a command line interface. The
interface is in fact the standard interactive Python interpreter, customized to facilitate our needs.
It is assumed that you have followed the steps in §7.1 (Getting started). You may need to set
a number of environment variables again with the following command though:
now start the interpreter:

> awe

This will print a message such as the following:

Python 2.7.6 (default, Jan 8 2014, 14:02:13)

[GCC 4.4.7 20120313 (Red Hat 4.4.7-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

Welcome to the Astro-WISE Environment

| You are running the AWBASE version

Importing Astro-WISE packages. Please wait...

Distributed Processing Unit: dpu.hpc.rug.astro-wise.org

Dataserver: ds.astro.rug.astro-wise.org

Current profile:

- username : <your database username>

- database : db.astro.rug.astro-wise.org

- project : <your active project>

- current privileges : 1 (MyDB)

awe>

At this point most (all?) of the classes/modules that you need are automatically imported. As
this happens, the consistency of those parts of the code that are relevant to the database and

87

http://www.python.org/doc/Intros.html

8.1 HOW-TO: awe-prompt Astro-WISE Environment

that you may have in your personal version is checked. This takes several seconds. You can see
all defined variables (including the classes and modules) in the current so-called namespace by
typing:

awe> dir()

In fact, to get insight in classes, arguments etc., always rely on the combination of:

awe> dir(<module, class, attribute or method>)

and

awe> help(<module, class, attribute or method>)

and

awe> <module,class,attribute>.__doc__>

For example:

awe> PhotometricParameters.zeropnt.__doc__

’The response of the instrumental setup [mag]’

or if you have an instantation pp of the class PhotometricParameters already:

awe> pp.__class__.zeropnt.__doc__

’The response of the instrumental setup [mag]’

The type(<object>) command returns the type of the object. For example

awe> a=1

awe> type(a)

<type ’int’>

awe> photcat=PhotSrcCatalog()

awe> type(photcat)

<class ’astro.main.PhotSrcCatalog.PhotSrcCatalog’>

8.1.2 Key combinations

The awe-prompt includes functionality from the “readline” library. This library is used in Linux
shells and Emacs. Here is a non-exhaustive list of its functionality:

• Tab: Command completion

• Ctrl-a: Go to beginning of line

• Ctrl-e: Go to end of line

• Ctrl-k: Delete in front of cursor to end of line

• Ctrl-u: Delete behind cursor to beginning of line

• Ctrl-p or Up: History search backward (and History up)

• Ctrl-n or Down: History search forward (and History down)

88

8.1 HOW-TO: awe-prompt Astro-WISE Environment

8.1.3 Imported package: pylab (plotting)

Along with Astro-WISE packages, pylab (matplotlib) is automatically imported. Matplotlib is
a powerful Python plotting tool, with close ties to MatLab. Plots can be made for example as
follows:

awe> x = range(10)

awe> y = [3*i**2 + 10 for i in x]

awe> pylab.scatter(x,y)

or

awe> pylab.plot(x,y)

again, use

awe> help(pylab.scatter)

and

awe> help(pylab.plot)

to get help with the syntax.
For more information on matplotlib, see the manual at http://matplotlib.sourceforge.net/.

8.1.4 Imported package: numpy (numerical Python)

Operations on large arrays and matrices is the speciality of the numpy package. For example:

awe> a = numpy.arange(1000000, dtype=’float’).reshape((1000,1000))

awe> b = numpy.arange(1000000, dtype=’float’).reshape((1000,1000))

awe> b = b.transpose()

awe> c = a/b

8.1.5 Imported package: eclipse

See §2.5.2 for more information on this package.

8.1.6 Imported packages: os, sys, glob (standard Python)

Along with the above application oriented packages, several standard Python modules are also
imported. Two major functionalities of these modules are:

System commands

With the os module, system commands can be executed for example as follows:

awe> os.system(’pwd’)

awe> os.system(’ls’)

Filename lists

With the glob module, lists of (existing) files can be easily created using the standard Linux
shell wildcards:

awe> filenames = glob.glob(’OMEGACAM.2014*.fits’)

awe> filenames = glob.glob(’OMEGACAM.2014-0[3-9]*_?.fits’)

89

http://matplotlib.sourceforge.net/

8.1 HOW-TO: awe-prompt Astro-WISE Environment

8.1.7 Started: Distributed Processing Unit interface

When the awe-prompt starts, an instance of the class “Processor” is created. Using this class,
you can start jobs (tasks) on a remote cluster. See §7.7 and §2.3.3 for information on how to
use this class.

90

8.2 Images and catalogs in Astro-WISE Astro-WISE Environment

8.2 Images and catalogs in Astro-WISE

This section gives an overview of all database table names (and Python class names) representing
images and catalogs. Where possible a reference/link is provided to the appropriate HOW-TO.

8.2.1 Images

Raw images Calibration images Science images
RawBiasFrame BiasFrame 12.1 (RawScienceFrame)
RawDarkFrame DomeFlatFrame 16.1 ReducedScienceFrame 21.2
RawDomeFlatFrame TwilightFlatFrame 16.1 RegriddedFrame 21.4
RawScienceFrame NightSkyFlatFrame 16.1 CoaddedRegriddedFrame 21.5
RawTwilightFlatFrame FringeFrame 17.1

IlluminationCorrectionFrame 19.5
HotPixelMap 13.1
ColdPixelMap 14.1
SaturatedPixelMap 20.4
SatelliteMap 20.4
CosmicMap 20.4
WeightFrame 20.4

Table 8.1: Overview of naming scheme for images

8.2.2 Catalogs

Below are several tables describing the handling of catalogs in Astro-WISE.

Catalogs Description
SourceList 21.6 E.g. SExtractor catalog
AssociateList 21.6 Contains lists of SourceList ID and Source ID pairs

Table 8.2: Overview of naming scheme for catalogs

Classes pointing to SourceLists Description
GalFitModel 22.1 Galfit model of a single source in a SourceList
GalPhotModel 22.3 Galphot model of a single source in a SourceList

Table 8.3: Overview of naming scheme for classes pointing to SourceLists

91

8.2 Images and catalogs in Astro-WISE Astro-WISE Environment

Classes creating new SourceList(s) Description
CombinedList 21.6 A SourceList which is the combination of two other SourceLists
PhotRedCatalog 22.4 Links a new SourceList with photometric redshifts to

all associated input SourceLists and an AssociateList
LightCurve 22.5 (MDIA) Creates several SourceLists to store result

of variability determination

Table 8.4: Overview of naming scheme for classes creating new SourceLists

Other catalogs Description
VariabilityFrame 22.7 (VODIA) Stores a catalog in file format with light curves

Table 8.5: Overview of naming scheme for other classes related to catalogs

92

8.3 HOW-TO: Database Querying Astro-WISE Environment

8.3 HOW-TO Query the Database from Python

In order to query data in the database or commit data to it, an interface to SQL (Structured
Query Language, the standard command driven query interface for databases) was written.
Using the interface it is possible to query the database from Python scripts or the Python

interpreter and obtain complete Python objects, with their entire history in the form of their
normal hierarchy intact. Conversely Python objects with their entire history intact can be
committed to the database for later retrieval. The interface supports a number of often used
SQL constructs that are described in the following subsections.

8.3.1 General syntax, comparison operators, AND and OR

A database query from Python generally has this structure:

awe> query = <class>.<attribute> <comparison operator> <value>

Where class can be any DBObject (objects that are stored in the database) and attribute can
be any attribute of any DBObject and the hierarchy of a DBObject can be followed as deep as
it goes. Comparison operators can be all the usual: ==, ! =, >, >=, <, <= (equal to, not
equal to, greater than, greater than or equal, smaller than, smaller than or equal respectively).
Note that a list of persistent properties (those properties that can be queried on in the database)
can be obtained for all ProcessTargets (use the class NOT an instance of the class) as follows:

awe> BiasFrame.get_persistent_properties()

[’chip’, ’creation_date’, ’filename’, ’globalname’, ’imstat’, ’instrument’,

’is_valid’, ’object_id’, ’observing_block’, ’prev’, ’process_params’,

’process_status’, ’quality_flags’, ’raw_bias_frames’, ’read_noise’,

’timestamp_end’, ’timestamp_start’]

and

awe> RawScienceFrame.get_persistent_properties()

[’AIRMEND’, ’AIRMSTRT’, ’DATE’, ’DATE_OBS’, ’EXPTIME’, ’LST’, ’MJD_OBS’,

’OBJECT’, ’OBSERVER’, ’UTC’, ’astrom’, ’chip’, ’extension’, ’filename’,

’filter’, ’globalname’, ’imstat’, ’instrument’, ’is_valid’, ’object_id’,

’observing_block’, ’overscan_x_stat’, ’overscan_y_stat’, ’prescan_x_stat’,

’prescan_y_stat’, ’process_status’, ’quality_flags’, ’raw_fits_data’,

’template’]

So, an example of a query is:

awe> query = RawScienceFrame.EXPTIME >= 300.0

or

awe> query = RawTwilightFlatFrame.imstat.median < 30000.0

Queries can be comprised of multiple parts separated by AND (&) or OR (|) operators, where
the different parts are between parentheses:

awe> q = (RawScienceFrame.OBJECT == ’ngc6822’)

awe> q = (RawScienceFrame.OBJECT == ’ngc6822’) | \

(RawScienceFrame.OBJECT == ’ngc 6752 - Field’)

awe> q = (RawScienceFrame.OBJECT == ’ngc6822’) & \

(RawScienceFrame.chip.name == ’ESO_CCD_#65’)

93

8.3 HOW-TO: Database Querying Astro-WISE Environment

Note that the backslashes at the end of the lines only indicate that the command continues
on the next line. Lengths of queries (number of results) can be obtained using the Python len
function:

awe> len(q)

110

Attributes of the obtained objects can be printed as follows:

awe> for f in q: print f.filename, f.OBJECT, f.filter.name, f.chip.name, f.EXPTIME

...

OMEGACAM.2012-06-16T05:51:25.429_1.fits ngc6822 OCAM_u_SDSS ESO_CCD_#65 580.0

OMEGACAM.2012-06-16T06:46:22.166_1.fits ngc6822 OCAM_u_SDSS ESO_CCD_#65 580.0

OMEGACAM.2012-07-26T02:30:04.947_1.fits ngc6822 OCAM_H_ALPHA ESO_CCD_#65 580.0

OMEGACAM.2012-07-19T03:17:24.651_1.fits ngc6822 OCAM_g_SDSS ESO_CCD_#65 580.0

OMEGACAM.2012-06-16T06:25:32.663_1.fits ngc6822 OCAM_u_SDSS ESO_CCD_#65 580.0

OMEGACAM.2012-06-16T05:30:37.246_1.fits ngc6822 OCAM_u_SDSS ESO_CCD_#65 580.0

OMEGACAM.2012-06-16T07:07:10.329_1.fits ngc6822 OCAM_u_SDSS ESO_CCD_#65 580.0

OMEGACAM.2012-06-15T07:23:26.839_1.fits ngc6822 OCAM_H_ALPHA ESO_CCD_#65 580.0

OMEGACAM.2012-06-15T07:33:51.550_1.fits ngc6822 OCAM_H_ALPHA ESO_CCD_#65 580.0

OMEGACAM.2012-07-26T02:19:39.575_1.fits ngc6822 OCAM_H_ALPHA ESO_CCD_#65 580.0

etc.

It is also possible to construct a query object without a query clause. This query can be used
to iterate through all objects of the specific class.

awe> query = <class>.select_all()

8.3.2 Using wildcards (like)

It is possible to use wildcards in particular when selecting using strings. Wildcards are imple-
mented as they are in the common UNIX shells, (? for any character, * for any number of
characters).

awe> q = (RawScienceFrame.instrument.name == ’OMEGACAM’) & \

(RawScienceFrame.OBJECT.like(’ngc*’))

awe> q = RawScienceFrame.filename.like(’OMEGACAM.2013-06-02T06:51:04.629_?.fits’)

awe> for f in q: print f.filename, f.OBSERVER, f.DATE_OBS, f.filter.name, f.EXPTIME

...

OMEGACAM.2013-06-02T06:51:04.629_1.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_2.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_3.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_4.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_5.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_6.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_7.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_8.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

OMEGACAM.2013-06-02T06:51:04.629_9.fits UNKNOWN 2013-06-02 06:51:04 OCAM_r_SDSS 600.0

94

8.3 HOW-TO: Database Querying Astro-WISE Environment

8.3.3 Querying list attributes (contains)

If an attribute points to a list the method contains can be used to query for elements in this
list. The elements in this list can be simple types like int, float and string, or persistent classes.
The method contains accepts a singe element or a list of elements. In case of a list all elements
in this list must be present in the queried attribute. The order of the elements in the list is not
taken into account.

awe> q1 = CoaddedRegriddedFrame.instrument.name == ’OMEGACAM’

awe> regrid1 = q1[0].regridded_frames[0]

awe> regrid2 = q1[0].regridded_frames[1]

awe> q2 = CoaddedRegriddedFrame.regridded_frames.contains(regrid1)

awe> len(q2)

2

awe> q2 = CoaddedRegriddedFrame.regridded_frames.contains([regrid1, regrid2])

awe> len(q2)

2

First the CoaddedRegriddedFrames are found which have regrid1 in their regridded frames
attribute. Then all CoaddedRegriddedFrames which have both regrid1 and regrid2.

awe> q = AstrometricParameters.FITPARMS.contains(0.0023721800000000002)

awe> len(q)

2

awe> q = AstrometricParameters.FITPARMS.contains([-0.0023634099999999998, -5.41757e-06])

awe> len(q)

1

In the above examples the FITPARMS attribute of AstrometricParameter are queried. First
for a single value, then a list.

8.3.4 Ordering by attribute values (order by)

It is possible to order a query by one of the attributes of the objects. Note that this alters the
returned list.

awe> q = (RawScienceFrame.OBJECT == ’ngc6822’) & \

(RawScienceFrame.chip.name == ’ESO_CCD_#88’)

awe> for f in q: print f.filename, f.DATE_OBS, f.filter.name, f.EXPTIME

OMEGACAM.2012-06-16T06:46:22.166_28.fits 2012-06-16 06:46:22 OCAM_u_SDSS 580.0

OMEGACAM.2012-06-16T05:51:25.429_28.fits 2012-06-16 05:51:25 OCAM_u_SDSS 580.0

OMEGACAM.2012-07-19T03:17:24.651_28.fits 2012-07-19 03:17:24 OCAM_g_SDSS 580.0

OMEGACAM.2012-06-16T06:25:32.663_28.fits 2012-06-16 06:25:32 OCAM_u_SDSS 580.0

OMEGACAM.2012-07-26T02:30:04.947_28.fits 2012-07-26 02:30:04 OCAM_H_ALPHA 580.0

OMEGACAM.2012-06-16T07:07:10.329_28.fits 2012-06-16 07:07:10 OCAM_u_SDSS 580.0

etc.

etc.

awe> for f in q.order_by(’DATE_OBS’): print f.filename, f.DATE_OBS, f.filter.name, f.EXPTIME

OMEGACAM.2012-06-02T06:26:52.601_28.fits 2012-06-02 06:26:52 OCAM_u_SDSS 580.0

OMEGACAM.2012-06-02T06:37:18.057_28.fits 2012-06-02 06:37:18 OCAM_u_SDSS 580.0

OMEGACAM.2012-06-02T06:47:41.774_28.fits 2012-06-02 06:47:41 OCAM_u_SDSS 580.0

OMEGACAM.2012-06-15T07:23:26.839_28.fits 2012-06-15 07:23:26 OCAM_H_ALPHA 580.0

95

8.3 HOW-TO: Database Querying Astro-WISE Environment

OMEGACAM.2012-06-15T07:33:51.550_28.fits 2012-06-15 07:33:51 OCAM_H_ALPHA 580.0

OMEGACAM.2012-06-15T07:44:16.252_28.fits 2012-06-15 07:44:16 OCAM_H_ALPHA 580.0

etc.

etc.

8.3.5 Ordering returning maximum, minimum (max, min)

It is possible to select from a selection of objects the one with the maximum or minimum of a
particular attribute:

awe> q = (RawScienceFrame.OBJECT == ’ngc6822’) & \

(RawScienceFrame.chip.name == ’ESO_CCD_#88’)

awe> ma = q.max(’EXPTIME’)

awe> print ma.DATE_OBS, ma.filter.name, ma.EXPTIME

2013-05-07 08:59:37 OCAM_g_SDSS 600.0

awe> mi = q.min(’EXPTIME’)

awe> print mi.DATE_OBS, mi.filter.name, mi.EXPTIME

2012-06-16 06:46:22 OCAM_u_SDSS 580.0

awe> latest = q.max(’DATE_OBS’)

awe> print latest.filename, latest.DATE_OBS, latest.EXPTIME

OMEGACAM.2013-07-02T04:43:48.792_28.fits 2013-07-02 04:43:48 600.0

8.3.6 Querying project specific data (project only)

It is possible to restrict the results of a query to objects of the currently set project or a specific
project. The following example first shows the length of a query for all the public data, then
for the currently set project and last for a specific project. Note that the project only method
is sticky, it will affect future usage of the query object.

awe> context.set_project(’ALL’)

awe> q = CoaddedRegriddedFrame.instrument.name == ’OMEGACAM’

awe> len(q)

213

awe> len(q.project_only())

0

awe> len(q.project_only(’KIDS’))

204

First the project ALL is set, then all CoaddedRegriddedFrames are queried which have as
instrument name OMEGACAM. Then only those specific to project ALL, and finally those
visible from project ALL, but in project KIDS. Instead of the project name the (numerical)
project id can also be used to indentify the project.

If you set the environment variable PROJECT ONLY to a project name or id then all queries
will use the project only method automatically with this project. If set to True then the current
project will be used, and if set to False the environment variable will be ignored.

8.3.7 Querying user specific data (user only)

It is possible to restrict the results of a query to objects created by the current or a specific
user. The following example first shows the length of a query for all the public data, then for
the current user and last for a specific user. Note that the user only method is sticky, it will
affect future usage of the query object.

96

8.3 HOW-TO: Database Querying Astro-WISE Environment

awe> from common.database.Database import database

awe> context.set_project(’ALL’)

awe> print database.username().upper()

’AWEHELMICH’

awe> q = CoaddedRegriddedFrame.instrument.name == ’OMEGACAM’

awe> len(q)

213

awe> len(q.user_only())

9

awe> len(q.user_only(user=’AWJMCFARLAND’))

204

First the project ALL is set and the current user is printed. Then all CoaddedRegridded-
Frames are queried which have as instrument name OMEGACAM Then only the Regridded-
Frames created by the current user are printed. And finally the RegriddedFrames created by
AWJMCFARLAND are shown. Instead of the user name the (numerical) user id can also be
used to indentify the user.

If you set the environment variable USER ONLY to an user name or id then all queries will
use the user only method automatically. If set to True then the current user will be used, and
if set to False the environment variable will be ignored.

8.3.8 Querying privileges specific data (privileges only)

It is possible to restrict the results of a query to objects having specific privileges. When an
argument is omitted the current privileges are used, otherwise the specified. The following
example first shows the length of a query for all the visible data, then for the current privileges
(1) and last for privileges of 5. Note that the privileges only method is sticky, it will affect
future usage of the query object.

awe> context.set_project(’ALL’)

awe> context.set_privileges(1)

awe> q = CoaddedRegriddedFrame.instrument.name == ’OMEGACAM’

awe> len(q)

213

awe> len(q.privileges_only())

9

awe> len(q.privileges_only(5))

0

First the project ALL is set and the current privileges are set to 1. Then all CoaddedRegrid-
dedFrames are queried which have as instrument name OMEGACAM. Then only those with
privileges of 1 are printed. Finally those with privileges 5 are shown.

If you set the environment variable PRIVILEGES ONLY to a privileges number then all
queries will use the privileges only method automatically. If set to True then the current privi-
leges will be used, and if set to False the environment variable will be ignored.

8.3.9 Project favourite (project favourite)

The project favourite flag is intended to favor the (calibration) data owned by the project above
data from other projects. This is implemented by adjusting the order in which results from a
query are returned. The creation date will still be used to get the newest version, but if data

97

8.3 HOW-TO: Database Querying Astro-WISE Environment

is present in the current project that will be used instead of (possible) newer data from other
projects.

The project favourite flag can be enabled in two ways; on query level and environment level.
To make a query project favourite call the project favourite method on the query. To make all
queries project favourite set the Environment setting PROJECT FAVOURITE to True. The
default setting is not to use project favourite.

The following example shows the usage of the project favourite on the command line. It
shows the maximum creation date of all BiasFrames in the KIDS project, and then the maximum
creation date of all BiasFrames in the current project (ALL) :

awe> context.set_project(’KIDS’)

awe> q = BiasFrame.instrument.name == ’OMEGACAM’

awe> q.max(’creation_date’).creation_date

datetime.datetime(2014, 8, 21, 7, 37, 58)

awe> context.set_project(’ALL’)

awe> q.project_favourite().max(’creation_date’).creation_date

datetime.datetime(2014, 1, 16, 15, 50, 33)

8.3.10 Related: retrieving images from the fileserver (retrieve)

The final step of a database query could very well be to retrieve images selected in the database
from the fileserver in order to look at them.

awe> q = (RawScienceFrame.OBJECT == ’ngc6822’) & \

(RawScienceFrame.chip.name == ’ESO_CCD_#65’)

awe> len(q)

110

awe> for f in q: f.retrieve()

...

[smyth] 2014-08-21T11:34:40 - Retrieving OMEGACAM.2012-06-16T05:51:25.429_1.fits

[smyth] 2014-08-21T11:34:40 - Retrieved OMEGACAM.2012-06-16T05:51:25.429_1.fits[5695kB] in 0.28 seconds

[smyth] 2014-08-21T11:34:40 - Running: imcopy ’OMEGACAM.2012-06-16T05:51:25.429_1.fits[1]’ ’tmpFJLyMm.fits’

[smyth] 2014-08-21T11:34:41 - Retrieving OMEGACAM.2012-06-16T06:46:22.166_1.fits

[smyth] 2014-08-21T11:34:41 - Retrieved OMEGACAM.2012-06-16T06:46:22.166_1.fits[5658kB] in 0.14 seconds

[smyth] 2014-08-21T11:34:41 - Running: imcopy ’OMEGACAM.2012-06-16T06:46:22.166_1.fits[1]’ ’tmpeQXPf5.fits’

[smyth] 2014-08-21T11:34:41 - Retrieving OMEGACAM.2012-07-26T02:30:04.947_1.fits

[smyth] 2014-08-21T11:34:41 - Retrieved OMEGACAM.2012-07-26T02:30:04.947_1.fits[6015kB] in 0.22 seconds

[smyth] 2014-08-21T11:34:41 - Running: imcopy ’OMEGACAM.2012-07-26T02:30:04.947_1.fits[1]’ ’tmpdufY0b.fits’

[smyth] 2014-08-21T11:34:42 - Retrieving OMEGACAM.2012-07-19T03:17:24.651_1.fits

etc.

etc.

Note that imcopy is run to decompress these images, which are stored in compressed format on
the fileserver.

8.3.11 The select method, quicker queries

Note that this method automatically ignores invalid data

Constructing queries as above can be a somewhat verbose affair. To facilitate easier querying
for which less input is necessary, the select method has been implemented for all ProcessTargets.
The above queries can be written for example as follows:

98

8.3 HOW-TO: Database Querying Astro-WISE Environment

awe> q = RawScienceFrame.select(instrument=’OMEGACAM’, chip=’ESO_CCD_#65’, object=’ngc6822’)

For a complete list of possible arguments of the select method see its docstring:

awe> help(DomeFlatFrame.select)

Help on method select in module astro.main.ProcessTarget:

select(cls, **searchterms) method of astro.database.DBMeta.DBObjectMeta instan

ce

Class method to select RawFrames, Calfiles and ReducedScienceFrames

from the database.

Syntax example:

s = RawScienceFrame.select(instrument=’WFI’, filter=’#842’,

chip=’ccd50’, time_from=’2000-01-02 04:45:46’,

time_to=’2000-01-02 05:03:00’)

Possible search terms:

chip - select of the same CCD (’ccd50’, ’ccd51’, etc.)

date - select of the same date (i.e. date at the start of

observing night, in yyyy-mm-dd format)

exptime - select frames with similar exposure time

(EXPTIME-0.8sec to EXPTIME+0.8 sec)

extension - select (raw) frames for a certain extension of its

RawFitsData object

filename - select a frame(!) by its filename

filter - select of the same filter (’#842’, ’#843’, etc.)

instrument - select of the same instrument (’WFI’, ’WFC’, ’OCAM’)

object - select for OBJECT header keyword, uses "like"

functionality, which allows wildcards "*" and "?"

time_from - precise form of date, in yyyy-mm-dd hh:mm:ss format

time_to - required when using time_from

8.3.12 More examples

Question: How do I query using dates? Answer: In general you need to make a datetime object
specifying an exact time in UTC for your date to be recognized. All times and dates in the
database are in UTC.

awe> date = datetime.datetime(2014,7,1)

awe> query = RawDomeFlatFrame.DATE_OBS > date

awe> query = (ReducedScienceFrame.creation_date > date) &\

... (ReducedScienceFrame.creation_date < date+datetime.timedelta(1))

In other cases dates are not datetime objects, in particular when given as arguments to methods
or objects. In these cases the dates are meant as the starting date of a night. A night is defined
as the period between noon on one day and noon the next day. This concept is used to define
whether or not calibration files are applicable to a given set of science images.

awe> task = ReduceTask(date=’2014-06-10’, instrument=’OMEGACAM’, \

99

8.3 HOW-TO: Database Querying Astro-WISE Environment

filter=’OCAM_r_SDSS’, chip=’ESO_CCD_#77)

awe> bias = BiasFrame.select(date=’2014-07-05’, instrument=’OMEGACAM’, \

chip=’ESO_CCD_#96’)

The final query, when not using the select method looks like this:

awe> midnight = datetime.datetime(2014,7,5) + datetime.timedelta(1)

awe> instrument = (Instrument.name == ’OMEGACAM’)[0]

awe> midnight = instrument.convert_local_to_ut(midnight)

awe> query = (BiasFrame.timestamp_start < midnight) & \

(BiasFrame.timestamp_end > midnight)

awe> query &= (BiasFrame.instrument.name == ’OMEGACAM’)

awe> query &= (BiasFrame.chip.name == ’ESO_CCD_#96’)

awe> bias = query.max(’creation_date’)

Question: When can I use wildcards in queries? Answer: When using the ”like” method and
only for strings, or in Tasks and the select method in the object argument:

awe> query = RawDomeFlatFrame.filename.like(’OMEGACAM.2014-08-11*’)

awe> task = ReduceTask(date=’2014-08-10’, instrument=’OMEGACAM’, object=’KIDS*’)

awe> query = ReducedScienceFrame.select(object=’KIDS*’, chip=’ESO_CCD_#65’)

Suppose you’ve just processed a significant amount of data, and are then interested in finding
out some properties that you know are stored in the database. How do you get this information?

Question: Give me all image statistics (for example median values) of all OMEGACAM raw
bias frames of a particular CCD, observed between two dates:

awe> q = (RawBiasFrame.instrument.name == ’OMEGACAM’) & \

(RawBiasFrame.chip.name == ’ESO_CCD_#77’) & \

(RawBiasFrame.DATE_OBS > datetime.datetime(2014,7,1)) & \

(RawBiasFrame.DATE_OBS < datetime.datetime(2014,7,10))

awe> for f in q.order_by(’DATE_OBS’): print f.filename, f.imstat.median

etc.

etc.

OMEGACAM.2014-07-02T11:20:14.159_21.fits 256.0

OMEGACAM.2014-07-02T11:20:56.539_21.fits 256.0

OMEGACAM.2014-07-02T11:37:41.991_21.fits 256.0

OMEGACAM.2014-07-02T11:38:24.101_21.fits 256.0

OMEGACAM.2014-07-03T10:54:22.714_21.fits 263.0

OMEGACAM.2014-07-03T10:55:04.814_21.fits 263.0

OMEGACAM.2014-07-03T10:55:48.834_21.fits 263.0

etc.

etc.

A very long list of filename, median pixel value pairs will be printed on screen. (You can abort
with Ctrl-C.)

Question: Give me all the RawScienceFrames for the OMEGACAM instrument, ccd #88, filter
r and for object starting with “NGC”.

awe> query = (RawScienceFrame.instrument.name == ’OMEGACAM’) &\

(RawScienceFrame.chip.name == ’ESO_CCD_#88’) &\

100

8.3 HOW-TO: Database Querying Astro-WISE Environment

(RawScienceFrame.filter.name == ’OCAM_r_SDSS’) &\

(RawScienceFrame.OBJECT.like(’NGC*’))

awe> for f in query: print f.filename, f.instrument.name, f.chip.name, \

... f.filter.name, f.OBJECT, f.EXPTIME

OMEGACAM.2011-10-30T07:35:44.043_28.fits OMEGACAM ESO_CCD_#88 OCAM_r_SDSS NGC 1399 280.0

OMEGACAM.2011-10-30T06:50:51.776_28.fits OMEGACAM ESO_CCD_#88 OCAM_r_SDSS NGC 1399 280.0

OMEGACAM.2011-10-30T06:45:26.873_28.fits OMEGACAM ESO_CCD_#88 OCAM_r_SDSS NGC 1399 280.0

OMEGACAM.2011-10-30T06:56:15.459_28.fits OMEGACAM ESO_CCD_#88 OCAM_r_SDSS NGC 1399 280.0

etc.

etc.

Question: Give me all RawTwilightFlatFrames observed between two points in time.

awe> query = RawTwilightFlatFrame.select(time_from=’2014-08-18T16:00:00’, \

... time_to=’2014-08-19T16:00:00’)

Question: Select the most recent OMEGACAM MasterFlatFrame from the database, that is
valid for the specified night.

awe> flat = MasterFlatFrame.select(instrument=’OMEGACAM’, date=’2014-07-13’, \

filter=’OCAM_g_SDSS’, chip=’ESO_CCD_#90’)

101

8.4 HOW-TO: Configure Parameters Astro-WISE Environment

8.4 HOW-TO Configure Process Parameters

8.4.1 Overview

In the figure below an overview is presented of how one can configure process parameters. The
preferred way to configure process parameters is through the overall user interfaces found in the
Target Processor webservice, and/or in the Pars class, which can be used in scripts and from
the awe-prompt.

Figure 8.1: There are many ways to configure process parameters

8.4.2 Via awe-prompt: overall user interface to configure parameters

via awe-prompt: pars, pars.show(), pars.get()

Process parameters can be configured from the awe-prompt, both on the task, and on the DPU

level. The first question that you may have is: Which process parameters can I control, and
what are their names and default values? From the awe-prompt:

awe> pars = Pars(BiasFrame, instrument=’OMEGACAM’, chip=’ESO_CCD_#77’)

awe> # or pars=Pars(BiasTask) or pars=Pars(’Bias’) !!

awe> pars.show()

BiasFrame

|

+--process_params

| |

| +--MAXIMUM_ABS_MEAN: 10.0

| +--MAXIMUM_STDEV: 10.0

| +--MAXIMUM_STDEV_DIFFERENCE: 10.0

| +--MAXIMUM_SUBWIN_FLATNESS: 100000.0

| +--MAXIMUM_SUBWIN_STDEV: 100000.0

| +--OVERSCAN_CORRECTION: 6

| +--SIGMA_CLIP: 3.0

In other words, the Pars class can be instantiated with as argument a ProcessTarget class (Bi-
asFrame, SourceList etc.) or a Task (ReduceTask, ReadNoiseTask etc.) or a sequence identifier

102

8.4 HOW-TO: Configure Parameters Astro-WISE Environment

as specified in the dpu.run method (“Bias”, “Reduce>Astrometry”). Note that in the last case
a string is specified, while in the others a class is specified. Additionally an instrument, filter,
or chip identifier can be specified in order to generate instrument specific defaults. The show()
method of Pars displays the configurable parameters.

The parameters can now be changed (tip to reduce typing: press the Tab key get automatic
command completion):

awe> pars.BiasFrame.process_params.SIGMA_CLIP=5.0

In order to use the parameters, you must place them in a dictionary, which is produced by the
get() method of the Pars class:

awe> pars.get()

{’BiasFrame.process_params.SIGMA_CLIP’: 5.0}

The output can be used as follows:

awe> dpu.run(’Bias’, instrument=’OMEGACAM’, template=’2014-07-04T10:39:28’,

chip=’ESO_CCD_#77’, p=pars.get())

or

awe> task = BiasTask(instrument=’OMEGACAM’, template=’2014-07-04T10:39:28’,

chip=’ESO_CCD_#77’, pars=pars.get())

In other words, a dictionary called “pars”, is sent to the Task (or the DPU). You can enter the
dictionary directly like this:

awe> task = BiasTask(instrument=’OMEGACAM’, template=’2014-07-04T10:39:28’,

chip=’ESO_CCD_#77’,

pars={’BiasFrame.process_params.SIGMA_CLIP’: 5.0})

awe> task.execute()

Equivalently using the DPU interface:

awe> dpu.run(’Bias’, i=’OMEGACAM’, tpl=’2014-07-04T10:39:28’,

c=’ESO_CCD_#77’, p={’BiasFrame.process_params.SIGMA_CLIP’ : 5.0})

Using the interface inside a script

It is possible to use the Pars class and the DPU interface inside scripts as follows:

Example script

from astro.recipes.mods.dpu import Processor

from common.config.Environment import Env

from astro.util.Pars import Pars

dpu = Processor(Env[’dpu_name’])

pars = Pars(BiasFrame, instrument=’OMEGACAM’, chip=’ESO_CCD_#77’)

pars.BiasFrame.process_params.OVERSCAN_CORRECTION=8

dpu.run(’Bias’, i=’OMEGACAM’ tpl=’2014-07-04T10:39:28’, c=’ESO_CCD_#77’, p=pars.get())

8.4.3 Via Target Processor: overall user interface to configure param-
eters

See the Target Processor web page http://process.astro-wise.org/. In particular note the
“Process Parameters” link under “Options” at the bottom left.

103

http://process.astro-wise.org/

8.5 HOW-TO: Context Astro-WISE Environment

8.5 HOW-TO use your Astro-WISE Context to set data scopes

The Astro-WISE concept Context allows you to filter from the ocean of data objects in Astro-
WISE the subset of data objects that you want to be currently visible to you and your processes.
This is the ’data access scope’ of your Context. At the same time your chosen Context also
defines the logical subset to which the results of your processes will belong. This is the ’data
creation scope’ of your current Context. In other words, by configuring your Astro-WISE

Context you define the logical subspaces in the ensemble of data objects in Astro-WISE in
which you access data and in which you create data.

8.5.1 Astro-WISE Context

Your Astro-WISE Context is fully defined by choosing the settings of three Astro-WISE entities:

1. Astro-WISE user identity

2. project

3. minimum privileges level

User

An Astro-WISE user is a person with an Astro-WISE database account. An Astro-WISE user

has an id number and name (e.g., AWJJOPLIN). Each person has only one account. Thus,
each person has a single identity within the Astro-WISE system. Each data object is associated
with a single Astro-WISE user, the data object creator. This is the Astro-WISE user that
created/ingested the data. Once established the creator of a data object cannot be changed.

At the awe-prompt the creator of data object myobject can be printed to the screen with

awe> myobject._creator # Returns user id

990

awe> from common.database.Database import Database

awe> Database.users[myobject._creator] # Returns user name

’AWJJOPLIN’

Project

A project in Astro-WISE is a set of Astro-WISE users who collaborate on a common data
set. A project has a project id, a name, a description, project members and optionally an
instrument. One or more Astro-WISE users can be member of a project, and an Astro-WISE

user can be member of more than one project as illustrated in Figure 8.2. Unlike an user
each data object belongs to one and only one project. The project to which a data object be-
longs is chosen upon the creation/ingestion of the data entity and can not be changed after that.

At the awe-prompt the project to which data object myobject belongs can be printed to
the screen with

awe> myobject._project #Returns project id

14

awe> from common.database.Database import Database

awe> Database.projects[myobject._project] # Returns project name

’WFI@2.2m’

104

8.5 HOW-TO: Context Astro-WISE Environment

PROJECT A PROJECT B

PROJECTS

USERS

USER X

USER Y

USER Z

USER Q

USER W

(PM)

(PM)

Figure 8.2: This diagram shows which Astro-WISE users are project members of Astro-WISE
project A and B. A project in Astro-WISE is a set of Astro-WISE users who collaborate on
a common data set. Project members are indicated in the diagram by a green tick mark. An
Astro-WISE user can be member of more than one project. Each project has one or more
Astro-WISE users as project members. One or more of the project members can be project
manager (indicated with (pm)). A project manager has additional abilities and responsibilities
to manage project data.

105

8.5 HOW-TO: Context Astro-WISE Environment

privileges level data is shared with
1: MYDB only the creator
2: PROJECT every member of the project to which the data object belongs
3: ASTRO-WISE all Astro-WISE users

4: WORLD the world: Astro-WISE users and persons without an Astro-WISE account
(latter via webservice DBViewer)

5: VO again the whole world and data also available through the Virtual Observatory
via Virtual Observatory webservices

Table 8.6: Privilege levels of Astro-WISE

Some projects have all Astro-WISE users as members: these are called public projects.
Some projects have a subset of Astro-WISE users as members: these are called private
projects. One or more of the Astro-WISE users in a project can also act as project man-
ager. A project manager has additional abilities and responsibilities to manage data objects
that belong to a project. The extra abilities/responsibilities are for data objects at privileges
levels of 3 and larger. At these privileges levels the data objects are visible to persons which
are not project members. The concept of privileges is explained next.

An overview of all projects in the database, their members, the project’s manager etc. can
be found on our webpages at the following address:
http://process.astro-wise.org/Projects.

Privileges

Privileges of data objects determine which Astro-WISE users have access to the data object.
Each data object in Astro-WISE has one of five privileges as listed in Table 8.6.
The initial privileges of a data object are set upon the creation/ingestion of the data entity.
They can be changed after that.

At the awe-prompt the privileges of data object myobject can be printed to the screen
with

awe> myobject._privileges

1

8.5.2 Using Context

Your Astro-WISE Context is defined by your Astro-WISE user identity, the current project

you choose and the current minimum privileges level that you choose. The Astro-WISE user

that you are is defined upon login as you login with a certain user name (e.g. AWJJOPLIN).
Upon login, also a current project and a current minimum privileges level are set. These
two initial selections depend on your login configuration. At the Astro-WISE command-line
prompt, the python class context is the interface to view and change the selection of project
and privileges level. You can import context at the Astro-WISE prompt via:

awe> from common.database.Context import context

To see which minimum privileges level is currently active use context.get_current_privileges()

awe> context.get_current_privileges()

1

To change the minimum privileges level call the context.set_privileges(<privileges>)

method :

106

http://dbview.astro-wise.org
http://www.astro-wise.org/portal/aw_vo.shtml
http://process.astro-wise.org/Projects

8.5 HOW-TO: Context Astro-WISE Environment

awe> context.set_privileges(2)

To see which project is currently selected, use context.get_current_project(). If the
project object is printed, a formatted overview will be given:

awe> print context.get_current_project()

Project: SONATE (id = 14)

Description: 1700 Square degree 5 band survey of the equatorial strip and 2dF

South region

Instrument: OCAM

Maximum Privileges: 4 (WORLD)

Current Privileges: 1 (MyDB)

Instrument lists the instrument associated with the project. If it is None it means data from
any instrument can be associated with the project. Maximum Privileges is the maximum
privileges level which a project member can assign to a data object. To change to a project

called ’BLUES’ at the awe-prompt use:

awe> context.set_project(’BLUES’)

An user can only set projects of which the user is a member. When a project is selected
without specifying the minimum privileges level they will be set to their default: 1.
To select at the same time the project and the minimum privileges level at the awe-prompt
use:

awe> context.set_project(’BLUES’, privileges=2)

Data access scope

The philosophy in Astro-WISE is to increase efficiency in survey processing by sharing useful
public data (such as calibration data). The philosophy of Context is therefore to allow users
to select which data they want to see in their data access scope in addition to public data from
Astro-WISE projects.

Whether a data object falls within the data access scope of the Context as currently config-
ured depends on the values of 3 attributes which each data object has:

• _privileges

• _project

• _creator

These attributes are compared to the corresponding 3 entities which configure your Context:
the chosen values for project, minimum privileges level and your Astro-WISE user identity.

The minimum privileges level chosen for your Context defines from which privileges

level on you want to have access to data objects. Thus, by lowering the minimum privileges

level you add data objects to your data access scope. A minimum privileges level of i indicates
data objects with privileges levels x ≥ i will fall in your data access scope. For privileges
levels ≥ 3 all data objects with that privileges level fall into your data scope. For privileges
levels ≤ 2 a subset of the data objects with that privileges level belong to your data scope.
Table 8.7 lists the rules which decide which data objects fall within your data access scope.
Figure 8.3 shows a graphical representation of the resulting data access scope for each of the
five minimum privilegels levels that can be selected for your Context.

As an example, assume that you select your Context to have project=’BLUES’ and mini-
mum privileges level=1. Then your data access scope will include

107

8.5 HOW-TO: Context Astro-WISE Environment

Table 8.7: This diagram illustrates the data access scope for User X who has selected PROJECT
A in his Context. Together with the selected level from the 5 possible minimum privileges

levels in Context it defines the data access scope. The diagram on top shows how sets of
data objects are added to your data access scope as the minimum privileges level set in the
Context is lowered. The table below it describes each of these sets which are defined as the data
objects which have the values of the attributes privileges, project and creator listed in
the columns.

minimum
privileges level

of Context data access scope

5 5

4 5 + 4

3 5 + 4 + 3

2 5 + 4 + 3 + 2

1 5 + 4 + 3 + 2 + 1

where the data represented by 5 , 4 ,... meet the following criteria for their attributes
_privileges, _project and _creator:

dataset _privileges== _project== _creator==

5 = 5 ANY project ANY creator

4 = 4 ANY project ANY creator

3 = 3 ANY project ANY creator

2 = 2 PROJECT A ANY creator

1 = 1 ANY project of which USER X is a member USER X

108

8.5 HOW-TO: Context Astro-WISE Environment

Table 8.8: This table lists to the privileges levels to which the creator and project manager
of a project can publish data. The notation format is (possible start levels) ⇒ (possible end
levels). The permitted levels are different for public and private projects.
project type creator project manager
private (1) ⇒ (2) (2, 3, 4) ⇒ (3, 4, 5)
public (1, 2, 3) ⇒ (2, 3, 4) (2, 3, 4) ⇒ (3, 4, 5)

• data with privileges==1 which are created by you in any project

• data with privileges==2 which are in project=’BLUES’

• data with privileges≥ 3 in all projects, also those of which you are not a member

Data creation scope

Upon creation/ingestion of an object the values of its attributes _project, _privileges and
_creator are :

• _project set to the id of the project of your Context

• _privileges set to the minimum privileges level of your Context

• _creator set to the id of your Astro-WISE user identity

Only project members can ingest/create data in a project. Data objects can not be
created and ingested at all privileges levels. In private projects, the project members can
create and ingest data objects only at privileges levels 1 and 2. Only project managers can
then promote data objects to higher privileges levels up to privileges levels equal 5. This
is called publishing and is described in the next section. In public projects the Astro-WISE

users can ingest and create data object up to all privileges levels up to a maximum of 4.

8.5.3 Publishing of data objects

The philosophy of Astro-WISE is to share results across projects whenever beneficial. An exam-
ple are shared calibration data. With time calibration scientists of projects will improve their
knowledge and methods how to make the best calibration data for that instrument. For exam-
ple, the improvements could be based on long term trend analysis. In this sense not individual
nights but complete instruments become calibrated in Astro-WISE . The calibration scientists
can share their improved calibration data with the Astro-WISE community by publishing his
results to a privileges level of 3 or higher. Astro-WISE users, also in other projects, can then
re-process their data using these improved calibration data. Furthermore, to improve their own
calibrations of other periods they can inspect how the calibration was derived by the calibration
scientist because they can access the data lineage of a data object. In conclusion, the idea is
that with time data objects are promoted to higher privileges levels. This promotion to a higher
privileges level is called publishing in Astro-WISE .
Only the creators and project managers can publish data objects of a project. Table 8.8
shows who can publish data objects to which privileges levels in public and private projects.
So in private projects the project manager is solely responsible for the project data which is
accessible to people outside the project team.

Publishing up to and including privileges level 3 is recursive: all dependencies are pro-
moted to the published level as well.

Here is an example how to publish an object to privileges level 3:

109

8.5 HOW-TO: Context Astro-WISE Environment

110

8.5 HOW-TO: Context Astro-WISE Environment

awe> context.publish(object, privileges=3, commit=True, verbose=True)

The result of publishing is a larger number of people (Astro-WISE users and possibly persons
without an Astro-WISE account) who can view and access the data as listed in Table 8.6

Publishing of an object with dependencies in different projects

It is possible that an object has dependencies in different projects. If the object has privileges
level ≥ 2 it implies that the dependencies which belong to other projects have privileges

level ≥ 3. If the object has privileges level = 1 it can be the case that a dependency which
belongs to another project has privileges level= 1. Publishing will fail in the latter case.
The only way to publish MyDB data which has dependencies in other projects is to publish
the dependencies first to privileges level 3 (or higher). This way the dependencies will always
be visible to the parent object, independent of the project of the current Context. Now the
parent object can be published to privileges level 2 (or higher).

Unpublishing and invalidation

It is possible to demote the privileges level of a data object down to privileges level 2. This
is called unpublishing. For example, unpublishing an object to privileges level 2 is done via:

awe> context.publish(object, privileges=2, commit=True, verbose=True)

Objects can be depublished to privileges level 2 if they are not referenced by data objects
at privileges level 3 or higher. If they are, it might be desirable to invalidate the object. One
can inspect whether a data object thisobject is valid as follows:

awe> thisobject.is_valid

1

1 means valid, 0 means invalid. To invalidate thisobject use:

awe> context.update_is_valid(thisobject,0)

8.5.4 Deletion

Objects can be deleted from the database under the following restrictions. Every user can delete
the data he created at the MYDB privileges level 1. For higher privileges levels only the project

manager is allowed to delete. To delete a data object myobject from the database use:

awe> context.delete(myobject)

Objects can be deleted if they are not referenced by other data objects. If they are, it might be
desirable to invalidate the object. One can inspect whether a data object thisobject is valid
as follows:

awe> thisobject.is_valid

1

1 means valid, 0 means invalid. To invalidate thisobject use:

awe> context.update_is_valid(thisobject,0)

111

Chapter 9

AWE Tutorials

9.1 Tutorial Introduction

This tutorial will give you a guided introduction to the Astro-WISE environment in about 3
hours. The tutorial starts from the level of a completely new user who has never logged into the
Astro-WISE environment but has an Astro-WISE account. This tutorial consists of exercises
to be done primarily from the awe-prompt. They include the following topics:

• the awe-prompt basics,

• basic calibration tasks,

• astrometry,

• photometry,

• working with sourcelists,

• data mining,

• galaxy surface brightness analysis,

• Astro-WISE and Virtual Observatory interoperability,

• links to further documentation.

Topics sometimes depend on the results derived in earlier topics.
The tutorial is by no means comprehensive or exhaustive. The exercises are very basic and

many topics are not discussed at all. To get a more in-depth and comprehensive presentation
of the Astro-WISE environment we refer to the HOWTOs and the Manual. To get acquainted
with the Astro-WISE services: please take the Guided Tour under ”Try Astro-WISE” on the
home page.

112

http://www.astro-wise.org/portal/aw_howtos.shtml
http://www.astro-wise.org/docs/Manual.pdf
http://www.astro-wise.org

9.2 Astro-WISE basics AWE Tutorials

9.2 Astro-WISE basics

9.2.1 Setting up your environment

In order to start up the command-line interface, it is necessary to modify your shell environment
so the AWE software can be found and the system can log you in to the database. The former is
done using the module framework, the latter by creating a configuration file for AWE:

1. Edit your shell configuration file

On the network of the Kapteyn Astronomical Institute:

If you’re using “csh” or “bash” add the following line to the file ∼/.cshrc or ∼/.bashrc,
respectively:

module load awe

2. Obtain a database account and setup your ∼/.awe/Environment.cfg file

It is necessary to obtain a database username and password in order to login to and write
(“commit”) to the database. Please ask your local Astro-WISE DBA for an account.

In your home directory make a directory .awe (starting with a dot) and in this subdirectory
make a file called “Environment.cfg”, readable only to yourself:

...]$ cd

...]$ mkdir .awe

...]$ cd .awe

...]$ touch Environment.cfg

...]$ chmod a-rwx,u+rw Environment.cfg

Then add the following lines to that file replacing your username (e.g., awjkennedy) and
password (e.g., IwonIn1960) in the appropriate places. The line project ensures the
awe-prompt always starts in context ALL (what context is will be explained later in the
tutorial). The line privileges : 1 ensures that it starts within the private space of that
context (’MyDB’).

[global]

database_user : awjkennedy

database_password : IwonIn1960

project : ALL

privileges : 1

Start the awe-prompt from your shell:

...]$ awe

Check that your username and default project are used. In the above case that means the
welcome message ends with a message like this:

Current profile:

- username : awjkennedy

- database : db.astro.rug.astro-wise.org

- project : ALL

- current privileges : 1 (MyDB)

awe>

113

http://www.astro-wise.org/dbas.shtml

9.2 Astro-WISE basics AWE Tutorials

you now have access to the database. Quit awe by hitting Ctrl-d.

9.2.2 At the awe-prompt: Looking Around

1. Start the awe-prompt by typing awe at the command line. The awe-prompt is the standard
Python interpreter plus a few additions. The Python interpreter has built-in functions and
classes:

awe> dir(__builtins__)

If you are not familiar with the Python language and/or object oriented programming it
is a worthwile to browse this Python tutorial. It will make the rest of the tutorial much
easier to grasp. Many object oriented programming concepts (especially the chapter on
classes) are crucial concepts at the awe-prompt. The built-in functions of Python contain
basic functions such as “range”, “len”, “int”, “float”, “dir” and “help” that can be useful
at the awe-prompt. To illustrate this, the following example calculates element 19 of the
Fibonacci sequence using Python syntax:

awe> int(round(((1.0+5.0**0.5)**19 - (1.0-5.0**0.5)**19) / (2.0**19*5.0**0.5)))

4181

2. Conventional subjects in astronomy are represented at the awe-prompt by (Python) classes.
These may be images (e.g., masterflats, raw science images, coadded frames) and cata-
logs, or instruments, chips, astrometric solutions, photometric solutions etc. Conventional
metadata such as found in FITS headers are associated with these classes as properties.
Examples are exposure time, observation date, as well as links to other objects that were
used to create the object. Methods are functions associated with the class. For example,
there are methods named commit, make, inspect and do statistics. The most com-
monly used classes are automatically loaded when starting the AWE environment and their
names are listed in the main “namespace”. You can print the main namespace by entering:

awe> dir()

3. Start the built-in help system in a similar way:

awe> help()

Welcome to Python 2.7! This is the online help utility.

If this is your first time using Python, you should definitely check out

the tutorial on the Internet at http://docs.python.org/2.7/tutorial/.

.

.

help>

Follow the instructions to find help on pretty much anything by typing the name of it. Use
quit or Ctrl-d to exit. It is usually convenient to get help on a specific module, function,
or even object. To see what dir() does exactly, for instance, type:

114

https://docs.python.org/2/tutorial/index.html
http://en.wikipedia.org/wiki/Fibonacci_number

9.2 Astro-WISE basics AWE Tutorials

awe> help(dir)

the screen clears and shows the following:

Help on built-in function dir in module __builtin__:

dir(...)

dir([object]) -> list of strings

If called without an argument, return the names in the current scope.

.

.

4. One of the classes listed is called Chip. This is a representation of a CCD. It has its own
namespace which can be printed by typing:

awe> dir(Chip)

[’__class__’, ’__del__’, ’__delattr__’, ’__dict__’, ’__doc__’,

’__format__’, ’__getattribute__’, ’__hash__’, ’__init__’, ’__metaclass__’,

’__module__’, ’__new__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’,

’__setattr__’, ’__sizeof__’, ’__str__’, ’__subclasshook__’, ’__weakref__’,

’_delete’, ’_inverses’, ’_publish’, ’as_dict’, ’commit’,

’copy_persistent_properties’, ’database’, ’get_creator’,

’get_inverse_properties’, ’get_persistent’, ’get_project’, ’info’,

’inverse_objects’, ’inverse_query’, ’name’, ’object_id’, ’persists’,

’pickle_id’, ’pixelsize’, ’recommit’, ’select_all’, ’update_header’]

5. Another class is called RawTwilightFlatFrame. It is a representation of a raw sky flat. It
also has its own namespace:

awe> dir(RawTwilightFlatFrame)

[’DATE’, ’DATE_OBS’, ’EXPTIME’, ’LST’, ’MEAN_HIGH’, ’MEAN_LOW’, ’MJD_OBS’,

’NAXIS1’, ’NAXIS2’, ’OBJECT’, ’OBSERVER’, ’OVSCX’, ’OVSCXPRE’, ’OVSCXPST’,

’OVSCY’, ’OVSCYPRE’, ’OVSCYPST’, ’PROCESS_TIME’, ’PRSCX’, ’PRSCXPRE’,

’PRSCXPST’, ’PRSCY’, ’PRSCYPRE’, ’PRSCYPST’, ’STATUS_COMPARE’,

’STATUS_INSPECT’, ’STATUS_MAKE’, ’STATUS_VERIFY’, ’UTC’, ’_IS_ABSTRACT’,

’_IS_CAL’, ’_IS_CONFIG’, ’_IS_RAW’, ’_IS_SCIENCE’, ’_IS_SEQ’,

’_IS_SUPPORT’,

.

.

The namespace lists both properties (e.g., observation date DATE OBS, exposure time
EXPTIME) and methods (e.g., inspect, display) of the class.

6. Telescope calibration files such as sky flat-fields have important properties that are stored
in the Astro-WISE database. These are called persistent properties and they can be listed
as follows:

awe> RawTwilightFlatFrame.get_persistent_properties()

[’DATE’, ’DATE_OBS’, ’EXPTIME’, ’LST’, ’MJD_OBS’, ’NAXIS1’, ’NAXIS2’,

’OBJECT’, ’OBSERVER’, ’OVSCX’, ’OVSCXPRE’, ’OVSCXPST’, ’OVSCY’,

’OVSCYPRE’, ’OVSCYPST’, ’PRSCX’, ’PRSCXPRE’, ’PRSCXPST’, ’PRSCY’,

’PRSCYPRE’, ’PRSCYPST’, ’UTC’, ’chip’, ’creation_date’, ’extension’,

115

9.2 Astro-WISE basics AWE Tutorials

’filename’, ’filter’, ’globalname’, ’imstat’, ’instrument’, ’is_valid’,

’object_id’, ’observing_block’, ’overscan_x_stat’, ’overscan_y_stat’,

’prescan_x_stat’, ’prescan_y_stat’, ’process_params’, ’process_status’,

’quality_flags’, ’raw_fits_data’, ’template’]

In this list “chip” points to another class: the class Chip we just described. To list its
persistent properties type:

awe> RawTwilightFlatFrame.chip.get_persistent_properties()

[’name’, ’object_id’]

or

awe> Chip.get_persistent_properties()

[’name’, ’object_id’]

7. You can find out what each property means by entering:

awe> help(RawTwilightFlatFrame)

Help on class RawTwilightFlatFrame in module astro.main.RawFrame:

class RawTwilightFlatFrame(RawFrame)

| Method resolution order:

| RawTwilightFlatFrame

| RawFrame

| astro.main.BaseFrame.BaseFrame

| common.database.DataObject.DataObject

| common.database.DBMain.DBObject

| astro.main.ProcessTarget.ProcessTarget

| common.database.DBMeta.DBMixin

| common.main.ProcessTarget.ProcessTarget

| astro.main.OnTheFly.OnTheFly

| common.main.OnTheFly.OnTheFly

| __builtin__.object

|

...

...

| --

| Data descriptors defined here:

|

| DATE

| UTC date the original data file was saved [None]

|

| DATE_OBS

| UTC date at the start of the observation [None]

|

| EXPTIME

| Total observation time [sec]

.....

Hit "q" to exit the help page.

116

9.2 Astro-WISE basics AWE Tutorials

Here the difference between DATE and DATE_OBS becomes clear. The help tells you much
more than just the properties. The first line tells you that the code for this class is stored in
module astro.main.RawFrame (how to find the code will be explained later). It is followed
by a definition of RawTwilightFlatFrames. The explanation of the other lines is beyond
the scope of this tutorial.

8. You can use the persistent properties to query the database for a particular RawTwilight-
Frame. Lets find all OmegaCAM RawTwilightFlatFrames which were observed in August
2011 (the start of science observations with OmegaCAM):

NB: enter the following 2 lines on 1 line of the awe prompt:

awe> query = (RawTwilightFlatFrame.instrument.name == ’OMEGACAM’) &

(RawTwilightFlatFrame.DATE_OBS < datetime.datetime(2011,9,1))

NB: you can enter the following command on 2 input lines by continuing

the line with ’\’:

awe> query = (RawTwilightFlatFrame.instrument.name == ’OMEGACAM’) & \

(RawTwilightFlatFrame.DATE_OBS < datetime.datetime(2011,9,1))

or by using an extra set of parentheses:

awe> query = ((RawTwilightFlatFrame.instrument.name == ’OMEGACAM’) &

(RawTwilightFlatFrame.DATE_OBS < datetime.datetime(2011,9,1)))

awe> len(query)

6240

You can select one of these RawTwilightFrames using an index and see when it was
observed exactly:

awe> raw = query[10]

awe> raw.DATE_OBS

datetime.datetime(2011, 8, 10, 22, 49, 22)

or more directly:

awe> query[10].DATE_OBS

datetime.datetime(2011, 8, 10, 22, 49, 22)

and retrieve the image from the dataserver (download to your current working directory):

awe> raw.retrieve()

once retrieved, you can display it:

awe> raw.display()

or inspect it:

awe> raw.inspect()

117

9.2 Astro-WISE basics AWE Tutorials

The last three commands are method calls. Methods typically perform an operation on
a (Python) object. The object “raw” is called an instantation of the class RawTwilight-
FlatFrame. The last command brings up a graphical window: enter ’q’ when you hover
over it to quit the graphical window.

9. One other very useful method on instances of database objects in AWE, is info(). This
method prints out all the persistent attributes and their values:

awe> chip = Chip()

awe> chip.info()

Chip: <astro.main.Chip.Chip object at 0xb03cd0ec>

|

+-name:

+-object_id: ’000000000000000000000000000000000

The Chip class has only one useful persistent attribute: name. object id is a unique
object identifier identifying each object in the database. Try to run the info method on
all the other objects in these tutorials to get their information. Be aware, however, that
not all objects have this method.

Notes:

• For this tutorial it can be helpful to use “Tab” key a lot for automatic completion of
names. Tab completion does not work on queries of objects (queries are explained in
next section).

• A command-line history is saved. Using the “Up”, “Down” or “Ctrl-p”, “Ctrl-n”
keys you can recall previous commands. If you specify a partial command the history
will be searched for matches which start with the same characters.

• Make sure you use the class when using get persistent properties() (i.e.,
RawTwilightFlatFrame.get persistent properties()) and not an instance of the
class (i.e., raw.get persistent properties()).

9.2.3 The power of querying

1. Which instruments are stored in the database?

This can be done in several ways. One way is to query for all instruments of which the
name is not equal to an empty string. Alternatively you could use the “like” functionality
to ask for all Instruments for which the name is equal to any string.

awe> q = Instrument.name != ’’

awe> for i in q: print i.name

awe> q = Instrument.name.like(’*’)

awe> for i in q: print i.name

Reminder: Instrument.get persistent properties() shows you that Instrument has
the property name stored in the Astro-WISE database. Entering:

awe> Instrument.n

118

9.2 Astro-WISE basics AWE Tutorials

and hitting the Tab key also reveals that Instrument has the property name. NB: Tab
completion does not work on queries (i.e., q.n following above example).

2. What are the names of the chips (CCDs) present in the OmegaCAM camera?

You can ask this of the context object, instantiated by default at the AWE prompt:

awe> context.get_chips_for_instrument(’OMEGACAM’)

3. How many RawScienceFrames for OmegaCAM are stored in the Astro-WISE

database?

awe> q = (RawScienceFrame.instrument.name == ’OMEGACAM’)

awe> len(q)

3213677

...and counting. Please note that for each OmegaCAM exposure 32 (one for each CCD)
RawScienceFrames are created in the database.

4. Execute these lines at the prompt to select a particular ReducedScience-
Frame (a flat-fielded and de-biased science image, for a single CCD) from
our database.

awe> sci = ((ReducedScienceFrame.DATE_OBS == datetime.datetime(2011, 8, 6, 8, 5, 20)) & \

(ReducedScienceFrame.chip.name == ’ESO_CCD_#65’)).min(’creation_date’)

For this ReducedScienceFrame, retrieve from the Astro-WISE dataserver the image itself
and the bias image that was used. The FITS images will be saved to the current working
directory.

awe> sci.retrieve()

awe> sci.bias.retrieve()

The images, such as ReducedScienceFrames, which you and others create in Astro-WISE

are stored on the Astro-WISE dataservers. As explained in more detail later, this will only
be done if you explicitly commit these images to Astro-WISE. Even after committing them,
you can invalidate images at any time if you decide they are no good after all.

5. For the ReducedScienceFrame of the previous exercise print the observing
date, the object, instrument, filter and chip (CCD) name.

(NB: enter following 2 lines as one line on the awe prompt.)

awe> print sci.DATE_OBS, sci.OBJECT, sci.instrument.name, sci.filter.name,

sci.chip.name

Or

awe> print sci.DATE_OBS

awe> print sci.OBJECT

etc.

6. For the ReducedScienceFrame selected, print the observation date DATE OBS
of the RawBiasFrames used in the creation of the master bias that was used
in debiasing the ReducedScienceFrame.

119

9.2 Astro-WISE basics AWE Tutorials

awe> for frame in sci.bias.raw_bias_frames: print frame.DATE_OBS

And to print the equivalent modified Julian date:

awe> for frame in sci.bias.raw_bias_frames: print frame.MJD_OBS

or by calculating from the DATE_OBS:

awe> from common.util.utilities import datetime_to_mjd

awe> for frame in sci.bias.raw_bias_frames: print datetime_to_mjd(frame.DATE_OBS)

The “from ... import ...” statement loads a method to do the conversion. To find out
what can be imported from a module, simply import the module and use the built-in dir()
function:

awe> from common.util import utilities

awe> dir(utilities)

To get help on the entire module, use the built-in help() function:

awe> help(utilities)

7. What were the exposure levels of the raw dome flats that were used?

Note that the flat-field used in the reduction is a MasterFlatFrame which is this case was
created from a master dome (DomeFlatFrame).

(NB: make sure to indent the 2nd line below:)

awe> for frame in sci.flat.domeflat.raw_domeflat_frames: print frame.imstat.median

9.2.4 More Advanced Queries

1. Find out how many RawBiasFrames there are for the OmegaCAM instrument
where the bias level is greater than 1000 ADU.

The property of the RawBiasFrame that contains its image statistics is called “imstat”.
This is an instance of the “Imstat” class, which itself has properties such as “mean”,
“median” and “stdev”. We need to combine this query with a query on the name of the
instrument of the RawBiasFrame.

NB: print following lines on a single awe prompt line.

awe> q = (RawBiasFrame.instrument.name == ’OMEGACAM’) & \

(RawBiasFrame.imstat.median > 1000.0)

awe> len(q)

2. Find out how many RawScienceFrames observed the first week of November
2011 are present in the database for the OmegaCAM instrument. For these
RawScienceFrames, print the observation date, the filter, the R.A. and Dec,
and the OBJECT header keyword.

Here a lot of things come together. Usually, frame attributes that are all upper-case letters
correspond to a FITS header keyword of the same name. This will apply to only some
of our attributes. We will need to know the names of the other attributes that we are
interested in, and if they can be queried on at all. This is done as follows:

120

9.2 Astro-WISE basics AWE Tutorials

awe> RawScienceFrame.get_persistent_properties()

In particular note the DATE OBS, “astrom” and OBJECT properties. The R.A. and Dec
can be found in “astrom” (as CRVAL1 and CRVAL2, respectively). In addition, we are
directly querying on a datetime object (DATE OBS) in order to get the data for 2011.
This requires that you create a datetime object for your dates, so you can compare the
two.

It may be helpful to limit the query to a single CCD, in order to avoid getting 32 times
the same information (once for each CCD of the OmegaCAM camera).

awe> dat1 = datetime.datetime(2011,11,1)

awe> dat2 = datetime.datetime(2011,12,1)

awe> q = (RawScienceFrame.DATE_OBS>dat1) & \

(RawScienceFrame.DATE_OBS<dat2) & \

(RawScienceFrame.chip.name==’ESO_CCD_#65’) & \

(RawScienceFrame.instrument.name==’OMEGACAM’)

awe> for s in q: print s.DATE_OBS, s.filter.name, s.OBJECT, s.astrom.CRVAL1,

s.astrom.CRVAL2

9.2.5 System Calls from the awe-prompt

1. It is possible to do Unix/Linux system calls from the awe-prompt. The “os” module is
imported by default and can be used to run commands as follows:

awe> os.system(’ls’)

awe> os.system(’pwd’)

awe> command = ’skycat file.fits&’

awe> os.system(command)

To move one directory up use:

awe> os.chdir(’..’)

9.2.6 Understanding Python errors/exceptions/backtrace

1. If you type something erroneous at the awe-prompt an error message will be returned.
The last sentence of the message is almost always the most useful line to determine the
cause of the error.

awe> RawScienceFrame.instrument.ThisAttributeDoesNotExist==’bla’

Traceback (most recent call last): File "<stdin>", line 1, in <module>

File

"/net/smyth/data/users/helmich/aweTEST/common/database/DBProperties.py",

line 200, in __getattr__ persistent_property.__getattr__(self, attr) File

"/net/smyth/data/users/helmich/aweTEST/common/database/DBProperties.py",

line 126, in __getattr__ raise AttributeError, ’Persistent attribute "%s"

of class "%s" does not have a persistent attribute "%s"’ %

(self.attribute, self.cls.__name__, attr) AttributeError: Persistent

attribute "instrument" of class "RawScienceFrame" does not have a

persistent attribute "ThisAttributeDoesNotExist"

121

9.3 Calibrating data AWE Tutorials

9.3 Calibrating data

In this tutorial chapter you will process data for the first time. We take the example of reducing
raw science frames. This involves trimming, de-biasing, flat-fielding, illumination-correction, as
well as the detection of saturated pixels, cosmic-rays and satellite tracks. Together with cold-
and hot pixels these affected pixels are assigned a weight of zero in the weight map, which is also
created. The results will be stored on the Astro-WISE dataservers and database. We assume
that for now you want to store those such that only you can see these results. You can decide
later to make the results accessible to other people.

9.3.1 Database projects and privileges

1. Data in the database is organized in projects. To see in which project you are currently
working:

awe> print context.get_current_project()

For example the output could be:

Project: OMEGACAM@VST (id = 36)

Description: All public data for OmegaCAM. OmegaCAM is a 1 square

degree wide field, optical, 16k X 16k pixel camera for the VLT Survey

Telescope (VST) on Paranal Observatory.

Instrument: OMEGACAM

Maximum Privileges: 4 (World)

Current Privileges: 1 (MyDB)

If you are doing this tutorial as part of a course you have been asked to produce the data
in a certain project: TUTORIAL2014. You can change to this project by typing:

awe> context.set_project(’TUTORIAL2014’)

If you have not been asked to enter a certain project you can use the project you are in
now. From now on, everything you create will be stored inside the chosen project. There
will be other members of this project. You can set privileges to restrict who can view and
access data within a project. A privilege of 1 means only you can view and access the
data:

awe> context.set_privileges(1)

From here on, everything you create will be stored at privilege level 1 in the chosen project:
only you can view/access the data. To allow other people in the project to see products,
set privileges to 2 before you create them.

9.3.2 Processing science frames

1. Selecting and exploring RawScienceFrames Enter the following query that selects
the raw science data objects, i.e., instantiations of the class RawScienceFrame, from the
database.

122

9.3 Calibrating data AWE Tutorials

awe> query = \

(RawScienceFrame.instrument.name == ’OMEGACAM’) & \

(RawScienceFrame.template.start == datetime.datetime(2012, 6, 1, 8, 51, 44)) & \

(RawScienceFrame.is_valid > 0)

To see how many raw science frames are found type:

awe> len(query)

160

These are 5 OmegaCAM exposures, each consisting of 32 CCDs (32 RawScienceFrames
are created for a single exposure).

We select only the data of ccd#65 for now:

awe> query = query & (RawScienceFrame.chip.name == ’ESO_CCD_#65’)

awe> len(query)

5

To obtain general meta-data of the last RawScienceFrame type:

awe> raw = query.max(’DATE_OBS’)

awe> raw.info()

or only the observation dates, filter names, and maximum pixel value in the frame for all
of them:

awe> for raw in query: print raw.DATE_OBS, raw.filter.name, raw.imstat.max

Download the FITS file:

awe> raw.retrieve()

Now that you have the file locally you can display it using your favorite image viewer.

To visually inspect a frame with the help of a few analysis tools type:

awe> raw.inspect()

This brings up a graphical window. Hover your mouse over an object in the window and
hit ’w’: this shows a 3D wire-frame plot of the pixel values around the mouse pointer. Hit
’q’ when you hover over it to close the graphical window. For a listing of all hot-keys type:

awe> help(raw.inspect)

2. Reduce the RawScienceFrames that you found above.

See the calibration HOW-TO(section 10) for an overview of how to process data in Astro-
WISE.

You will use standard recipes to reduce the RawScienceFrames. It is straightforward to
adapt these or to write your own recipes, but this is beyond the scope of this tutorial.

In the Astro-WISE environment you may choose the compute cluster (the Distributed
Processing Unit or DPU) where the data reduction processes run. In that case no results
are stored on your local machine. Created data (FITS files) are stored on the dataserver
while meta-data is committed to the database.

To de-bias and flatfield the above raw science data using the DPU you can use the “Reduce”
recipe:

123

9.3 Calibrating data AWE Tutorials

awe> filenames = [raw.filename for raw in query]

awe> dpu.run(’Reduce’, instrument=’OMEGACAM’, raw_filenames=filenames,

commit=True)

The commit=True switch ensures that your data is committed. Choosing commit=False
will perform a “dry run”: everything will be done except committing your results at the
end. Alternatively, you can do the query and reduction at once via:

awe> dpu.run(’Reduce’, instrument=’OMEGACAM’, template=’2012-06-01T08:51:44’,

chip=’ESO_CCD_#65’)

You can view the status of your DPU job via

awe> dpu.get_status()

or by browsing the DPU server’s webpage. See the links found on the: Processing Grid page
page (http://www.astro-wise.org/portal/aw prompt.shtml).

You can see how the processing went by retrieving the processing logs from the DPU.

awe> dpu.get_logs()

This command will not return anything until the process has been completed. The re-
turned lines are also written to a single (”date+time”.log) file in your local directory per
awe-prompt session.

To cancel DPU processing jobs:

awe> for jobid in dpu.get_jobids(): dpu.cancel_job(jobid)

Although it has advantages to do the processing of RawScienceFrames in parallel on a
DPU it can sometimes be convenient to use your local machine. In this case the results
are left in your current working directory. To de-bias and flatfield your raw science data
found above using using local CPU you can use the same Reduce recipe as follows:

awe> task = ReduceTask(instrument=’OMEGACAM’, raw_filenames=filenames,

commit=True)

awe> task.execute()

or...

awe> task = ReduceTask(instrument=’OMEGACAM’, template=’2012-06-01T08:51:44’,

chip=’ESO_CCD_#65’, commit=True)

awe> task.execute()

9.3.3 Inspect the results: ReducedScienceFrame

1. Locating the results. The results of above the process are de-biased, flatfielded science
frames, which is a class of objects called ReducedScienceFrame in Astro-WISE. To select
one of the ones you just created type:

awe> qred = (ReducedScienceFrame.raw==query[0])

awe> qred.project_only()

awe> qred.user_only()

awe> red = qred.max(’creation_date’)

124

http://www.astro-wise.org/portal/aw_prompt.shtml

9.3 Calibrating data AWE Tutorials

The first command queries for all ReducedScienceFrames which were created from the
RawScienceFrame object query[0] in all projects you have access to. The second command
narrows the selected ReducedScienceFrames to only those created within the project you
are currently in. The third command zooms in on the subset of those that were created by
you. The last command selects the ReducedScienceFrame that you created most recently.
To do all this in a single command for all RawScienceFrames in query:

awe> qred=[(ReducedScienceFrame.raw==raw).project_only().user_only().max(’creation_date’) for raw

2. Inspecting the results. This can be done in similar fashion as you did for the Raw-
ScienceFrames above. For example:

awe> qred[0].inspect()

3. Determine which calibration frames were used. As you did not create the bias
frames and flatfields, the Astro-WISE environment selected those for you. To get general
information on which ones were used:

awe> qred[0].bias.info()

awe> qred[0].flat.info()

and to inspect one of the RawBiasFrames that were used to create the bias frame:

awe> red=qred[0] #To allow Tab completion in next command....

awe> red.bias.raw_bias_frames[0].inspect()

4. We have not configured anything beyond specifying the input frames in the
previous examples. Find out which other parameters can be configured.

See the configuration HOW-TO(section 8.4) for more details

Calling the help() function on the Task that you are going to run gives a description of
the arguments to the Task. The arguments are mostly query parameters which determine
which input frames (RawScienceFrames in this case) are going to be reduced. In addition
an argument “pars” can be specified which contains the processing parameters.

awe> help(ReduceTask)

Instantiate the Pars class with as argument the task, the pipeline identifier used in the
dpu call or the class:

awe> p = Pars(ReduceTask, instrument=’OMEGACAM’)

awe> p = Pars(’Reduce’, instrument=’OMEGACAM’)

awe> p = Pars(ReducedScienceFrame, instrument=’OMEGACAM’)

By setting the instrument argument, instrument specific default processing parameters are
used. Now call the show() method:

awe> p.show()

A parameter can be set as follows (use Tab completion):

125

9.3 Calibrating data AWE Tutorials

awe> p.ReducedScienceFrame.process_params.FRINGE_THRESHOLD_HIGH = 6.0

Call the get() method to obtain the dictionary that you can supply to the task:

awe> p.get()

{’ReducedScienceFrame.process_params.FRINGE_THRESHOLD_HIGH’: 6.0}

126

9.4 Astrometric calibration AWE Tutorials

9.4 Astrometric calibration

In this tutorial you will astrometrically calibrate the ReducedScienceFrames (i.e., de-biased
and flatfielded science frames) from the previous tutorial.

9.4.1 Find ReducedScienceFrames to run astrometry on

1. In a previous exercise, you reduced some RawScienceFrames, resulting in the creation of
ReducedScienceFrames. Construct a list of these frames.

Instruction: Use information in the Python database querying HOW-TO at the Astro-WISE

portal to construct a query that contains your and only your ReducedScienceFrames.

Answer (1):

awe> t = ’2012-06-01T08:51:44’

awe> q = ReducedScienceFrame.template.start == dateutil.parser.parse(t)

awe> frames = q.project_only().user_only()

awe> len(frames)

<some number of frames>

Answer (2):

Alternatively, you can look for ReducedScienceFrames that you made less

than 20 minutes ago:

Use current UTC minus datetime.timedelta(days, seconds, microseconds).

awe> date = datetime.datetime.utcnow() - datetime.timedelta(0, 20*60, 0)

awe> q = (ReducedScienceFrame.creation_date > date).user_only()

9.4.2 Derive astrometric calibration

1. Derive astrometry by creating AstrometricParameters objects for the ReducedScienceFrames.

Instruction: Use information in the Astrometry check HOW-TO at the Astro-WISE portal
to re-derive the AstrometricParameters for your ReducedScienceFrames.

Answer:

awe> filenames = [f.filename for f in frames]

awe> dpu.run(’Astrometry’, instrument=’OMEGACAM’, red_filenames=filenames, C=1)

or (note that this command selects the most recent, valid ReducedScienceFrames for the
specified template and chip, which may be frames made by someone other than yourself)

awe> dpu.run(’Astrometry’, instrument=’OMEGACAM’, template=’2012-06-01T08:51:44’,

chip=’ESO_CCD_#65’, C=1)

2. Examine the attributes of an AstrometricParameters object.

Instruction: Use the dir() method to see the attributes of interest (usually in all capital
letters).

Answer:

awe> ap = (AstrometricParameters.reduced == frames[0])[0]

awe> dir(ap)

127

http://www.astro-wise.org/portal/howtos/man_howto_queries/man_howto_queries.shtml
http://www.astro-wise.org/portal/howtos/man_howto_astrometry/man_howto_astrometry.shtml

9.4 Astrometric calibration AWE Tutorials

[’CD1_1’, ’CD1_2’, ’CD2_1’, ’CD2_2’, ’CRPIX1’, ’CRPIX2’, ’CRVAL1’, ’CRVAL2’,

’CTYPE1’, ’CTYPE2’, ’FITERRS’, ’FITPARMS’, ’Flagged’, ’MEAN_DDEC’, ’MEAN_DRA’,

’NFITPARM’, ’NREF’, . . .

awe> ap.NREF

...

awe> ap.RMS

...

awe> ap.SEEING

...

9.4.3 Visually inspect astrometry

1. Display the quality control plot for the AstrometricParameters object.

Instruction: Follow the instructions in the Astrometry Quality Control HOW-TO at
the Astro-WISE portal to inspect the astrometric solution for one of your ReducedScience-
Frames.

Answer:

awe> ap.inspect()

128

http://www.astro-wise.org/portal/howtos/man_howto_qcastrom/man_howto_qcastrom.shtml

9.5 Photometric Pipeline AWE Tutorials

9.5 Photometric Pipeline

This section gives a quick summary of how photometric calibration can be done in Astro-WISE.

9.5.1 Deriving zeropoint and extinction

Photometric calibration in Astro-WISE is done by comparing the counts in standard stars on
images to their magnitudes as listed in a reference catalog of standard stars. The final result
is a PhotometricParameters object which stores the zeropoint and extinction. This object can
then be used to photometrically calibrate your ReducedScienceFrames.

Lets again consider the OmegaCAM data used in previous exercises. It was observed the
night of 31 May 2012, using the r filter. A Landolt standard star field, SA113, was observed that
night. ReducedScienceFrames already exist in the database for that standard field exposure:

1. awe> q = ReducedScienceFrame.template.start == dateutil.parser.parse(’2012-06-01T09:38:56’)

awe> len(q)

32

Lets again only look at CCD#65:

awe> q = q & (ReducedScienceFrame.chip.name == ’ESO_CCD_#65’)

2. Create a Photometric Source Catalog, a PhotSrcCatalog object, which crossmatches stan-
dard stars listed in a standard star catalog, known as a Photometric Reference Catalog, (a
PhotRefCatalog object) with stars on the ReducedScienceFrame observation. An example
command from the awe-prompt using a standard recipe is:

awe> filenames = [red.filename for red in q]

awe> task = PhotcatTask(instrument=’OMEGACAM’, red_filenames=filenames,

... transform=1, inspect=1, commit=1)

awe> task.execute()

red filenames is a list of the filenames of the ReducedScienceFrames of the standard
star observations. transform=1 ensures that differences between the passbands of the
instrument and the standard photometric system are accounted for. inspect=1 means a
plot will be created to inspect the resulting crossmatch (default inspect=0). commit=1

ensures the result is saved in the database (default commit=0). The above command
uses default settings for process parameters such as the standard stars to use and the
configuration of the source extraction algorithm.

3. Create a Photometric Parameters Catalog, a PhotometricParameters object, which con-
tains photometric parameters, such as zeropoint and exintction. An example command
from the awe-prompt using a standard recipe is:

awe> task = PhotomTask(instrument=’OMEGACAM’, red_filenames=filenames,

... pars={’PhotometricParameters.process_params.SIGCLIP_LEVEL’: 3.5},

... inspect=1, commit=1)

where red filenames, inspect and commit have the same meaning as for the Photometric
Source Catalog. The process parameter for sigma clipping was increased; it removed
individual standard star measurements which differ by more than 3.5 standard deviations
from the median from the calculation of the zeropoint. The above command uses a default
atmospheric extinction correction.

After following these steps ReducedScienceFrames which contain your scientific targets
can be photometrically calibrated using the PhotometricParameters object.

129

9.5 Photometric Pipeline AWE Tutorials

9.5.2 Standard Star Catalog operations

1. To retrieve the standard star catalog from the database:

awe> refcat = PhotRefCatalog.get()

awe> refcat.retrieve()

To explore its content, see the possibilities by typing:

awe> dir(refcat)

For example:

awe> mag_dict = refcat.get_dict_of_magnitudes(’SloanR’)

2. To overlay the content of the catalog over the frame of a standard field which we found in
above exercises, retrieve the frame:

awe> q[0].retrieve()

Display it in skycat:

awe> q[0].display()

Retrieve the standard star catalog in skycat format to local disk:

awe> refcat.make_skycat()

To find its filename:

awe> os.system(’ls *scat’)

Use the “File” menu in skycat to load and display the image and the “Data-servers>Local
Catalogs” menu to load and overplot the standard catalog and overplot it.

130

9.6 SourceList and AssociateList Exercises AWE Tutorials

9.6 SourceList and AssociateList Exercises

1. For the OmegaCAM data used in earlier execises, make a SourceList each for 2
ReducedScienceFrames (they overlap). Set the SExtractor detection threshold
to 6.0

Lets find the ReducedScienceFrames we made earlier and pick two:

awe> reds = (ReducedScienceFrame.chip.name == ’ESO_CCD_#65’).user_only().project_only()

awe> filename1 = reds[0].filename

awe> filename2 = reds[1].filename

awe> p = Pars(SourceList, instrument=’OMEGACAM’)

awe> p.SourceList.sexconf.DETECT_THRESH = 6.0

awe> pars = p.get()

awe> task = SourceListTask(filenames=[filename1], pars=pars, commit=1)

awe> task.execute()

awe> task = SourceListTask(filenames=[filename2], pars=pars, commit=1)

awe> task.execute()

2. For one of the SourceLists you just made, obtain the number of sources in the
sourcelist, find the brightest source, and obtain its half-light radius.

The final line printed by the task should have display the SourceList identifier (SLID),
which can be used to query directly (use your own SLID instead of the one below):

awe> sl = (SourceList.SLID == 11212841)[0]

Alternatively, select the most recent SourceList created by yourself:

awe> sl = (SourceList.SLID > 100000).user_only().max(’SLID’)

Get the information from the SourceList:

awe> print sl.number_of_sources

awe> magsid = [(src[’MAG_ISO’], src[’SID’]) for src in sl.sources]

awe> magsid.sort()

awe> print magsid[0]

awe> (-16.573373794555664, 230L)

awe> sl.sources[230][’SID’], sl.sources[230][’FLUX_RADIUS’]

(230L, 6.32753324508667)

3. Find out the piece of sky covered by the USNO catalogue in the database.

awe> usno = (SourceList.name == ’USNO-A2.0’)[0]

awe> RA, DEC = usno.sources.RA, usno.sources.DEC

awe> print max(RA), min(DEC), min(RA), max(DEC)

This is the current coverage as of 7/7/2014 of the USNO-A2.0 catalogue in the Astro-WISE

database.

4. Find the B and R mags of the sources in the USNO catalog which are inside
a distance of 0.1 degrees of position 12.0o -29.0o.

131

9.6 SourceList and AssociateList Exercises AWE Tutorials

awe> print usno.info()

awe> attrs = { ’RA’: [], ’DEC’: [], ’USNO_RMAG’: [], ’USNO_BMAG’: [] }

awe> area = (12.0, -29.0, 0.1)

awe> r = usno.sources.area_search(Area=area, attr_dict=attrs)

awe> nos = len(r[usno.SLID])

awe> for k in range(nos):

... print attrs[’USNO_BMAG’][k], attrs[’USNO_RMAG’][k]

...

5. AssociateLists are (among others) used for the Global Astrometric Solution. We are going
to inspect some of these lists in the database. These are easily found since their names all
start with GAS:

awe> task = AssociateListTask(ids=[(11212841, ’s’), (11212851, ’s’)])

awe> task.execute()

As before, the final line printed by the task shows the AssociateList identifier (ALID). Get
it:

awe> al = (AssociateList.ALID == 838511)[0]

and confirm the sourcelists it has been made from and find out the pointing
and corresponding CCD’s.

awe> for sl in al.sourcelists:

... print sl.frame.chip.name, sl.frame.astrom.CRVAL1, sl.frame.astrom.CRVAL2

6. An AssociateList contains only references to sources in the associated SourceLists or to
other AssociateLists. How to make a new SourceList from an AssociateList? This
can be done with CombinedList.

Initialize a CombinedList with the selected AssociateList:

awe> cl = CombinedList(al)

We have to select the method which we will use to combine data. There are three of
them: combined_method=1 will include in the resulting SourceList all sources (associated
by AssociateList and non-associated), combined_method=2 will include only sources which
are presented in AssociateList, and combined_method=3 will include only sources which
are presented in SourceLists (used to create AssociateList) but not in AssociateList itself.
By default combined_method=2.

awe> cl.set_combined_method(1)

We have also to specify which attributes of the associated SourceLists we would like to
see in the output SourceList. There are two modes: to treat attributes as a magnitude
attribute (4 new attribute will be created - MAG_1 to store average value, MAGFLAG_1 to
store flag for the magnitude, MAGERR_1 to store rms of the value, MAGN_1 to store a number
of input values, 2 or 1 in the example) or to specify the attribute as user-defined with the
user-selected aggregate function.

For example, we want to see in the output SourceList MAG_ISO which is a magnitude in
the OmegaCAM filter ’OCAM_r_SDSS’.

132

9.6 SourceList and AssociateList Exercises AWE Tutorials

awe> cl.set_user_defined_magnitudes({’MAG_ISO’:’OCAM_r_SDSS’})

At the same time we want to see in the output SourceList FLUX_RADIUS and YM2, and we
want a maximum value for the first attribute not an average.

awe> cl.set_user_defined_attributes([’FLUX_RADIUS’,’YM2’])

awe> cl.set_aggregate_functions({’FLUX_RADIUS’:’MAX’})

Next we make and commit a new SourceList

awe> cl.make()

awe> cl.commit()

SourceList: Name of SourceList : SL-EHELMICH-0011213541

SourceList ID : 11213541

Sources in list : 541

Parameters in list : 15

|

+-COMBINE_METHOD: 1

+-OBJECT:

+-SLID: 11213541

+-associatelist: 838511

+-astrom_params: None

+-chip: None

+-creation_date: 2014-07-07 11:24:46.104790

+-detection_frame: None

+-filename:

+-filter: None

+-filters: MAG_1:OCAM_r_SDSS

+-frame: None

+-globalname:

+-instrument: None

+-is_valid: 1

+-llDEC: -33.666714532

+-llRA: 338.173542005

+-lrDEC: -33.6667144939

+-lrRA: 338.001660691

+-name: SL-EHELMICH-0011213541

+-number_of_sources: 541

+-object_id: ’FD99B6D971BD7548E043C016A9C3FD7B’

+-process_params: <astro.main.SourceList.SourceListParameters object at 0x71952c10>

+-sexconf: <astro.main.Config.SextractorConfig object at 0x71952c90>

+-sexparam: <class ’common.database.typed_list.typed_list’>(<type ’str’>, [])

+-sources: {’MAGFLAG_1’: <type ’long’>, ’YM2’: <type ’float’>, ’MAG_1’: <class ’common.util.types.single_float’>,

+-ulDEC: -33.3532431068

+-ulRA: 338.173231335

+-urDEC: -33.3532430691

+-urRA: 338.00197156

None

As we can see, new SourceList with SLID=11213541 has attributes MAG_1 (contains
MAG_ISO from input SourceLists), FLUX_RADIUS (maximum FLUX_RADIUS from input SourceLists)
and YM2 (average YM2 from input SourceLists) and contains 541 sources.

133

9.7 Data Mining Exercises AWE Tutorials

9.7 Data Mining Exercises

9.7.1 Investigating Twilight Behavior from RawTwilightFlatFrames

1. Find all OmegaCAM raw twilight flat frames for the chip with name ESO CCD #92 and the
filter with OCAM g SDSS, which have image statistics such that the median is smaller than
5000 ADU. Only select those that have their quality flags set to zero. Assign the query
to a Python variable.

How many raw twilight flat frames satisfy the above criteria?

awe> qinstr = RawTwilightFlatFrame.instrument.name == ’OMEGACAM’

awe> qfilter = RawTwilightFlatFrame.filter.name == ’OCAM_g_SDSS’

awe> qchip = RawTwilightFlatFrame.chip.name == ’ESO_CCD_#92’

awe> qim = RawTwilightFlatFrame.imstat.median > 1000

awe> qqf = RawTwilightFlatFrame.quality_flags == 0

awe> query = qinstr & qfilter & qchip & qim & qqf

awe> print len(query)

1033

2. Using the result from the previous question, assign the MJD OBS (the modified Julian
date) of each RawTwilightFlatFrame to variable t and the median of the image statistics
divided by the EXPTIME of each RawTwilightFlatFrame to variable y. Make a scatter
plot of t versus y.

awe> t = [rtf.MJD_OBS for rtf in query]

awe> y = [rtf.imstat.median/rtf.EXPTIME for rtf in query]

or, quicker,

awe> result = [(rtf.MJD_OBS, rtf.imstat.median/rtf.EXPTIME) for rtf in query]

awe> t, y = zip(*result)

awe> pylab.scatter(t, y)

3. Since there seems to be a recurring pattern in the previous plot, we’ll have a closer look.
Take the fractional part of the t variable, which contains the modified Julian date for each
RawTwilightFlatFrame and assign it to the variable tfrac. Clear the figure and make a
scatter plot of tfrac versus y.

awe> tfrac = [k - math.floor(k) for k in t]

awe> pylab.clf()

awe> pylab.scatter(tfrac, y)

4. Determine the time difference between Greenwich and the place where the RawTwilight-
FlatFrames were observed - La Silla. Does this correspond to the longitude of La Silla?

9.7.2 Bias level for OmegaCAM

1. Display the bias level as a function of time for chip ESO CCD #96 of the OmegaCAM camera
(raw biases are represented in Astro-WISE by the class RawBiasFrame).

awe> query = (RawBiasFrame.instrument.name == ’OMEGACAM’) &\

(RawBiasFrame.DATE_OBS > datetime.datetime(2011,8,1)) &\

(RawBiasFrame.chip.name == ’ESO_CCD_#96’) &\

134

9.7 Data Mining Exercises AWE Tutorials

(RawBiasFrame.quality_flags == 0) &\

(RawBiasFrame.is_valid > 0)

awe> res = [(b.DATE_OBS, b.imstat.median) for b in query]

awe> dat, val = zip(*res)

awe> pylab.clf()

awe> pylab.scatter(dat, val)

135

9.8 Galaxy surface brightness analysis AWE Tutorials

9.8 Galaxy surface brightness analysis

9.8.1 Selecting your source

1. Identify a source in a SourceList which we want to analyse. Actually you will
probably be thinking of an image rather than a SourceList. So lets start with that.
Retrieve the image with the following filename:

Sci-EHELMICH-WFI-------#842---Coadd---Sci-54552.5317447-4d2189f46deed79e536

cdbfb0af72ae24187ffd8.fits

Presumably you don’t want to type in the full name, so use a wildcard:

awe> c = CoaddedRegriddedFrame.filename.like(’*ffd8.fits’)[0]

Lets have a look at this image, and select a galaxy from it.

awe> c.retrieve()

awe> c.display()

A SourceList exists for this image:

awe> sl = (SourceList.SLID == 423431)[0]

Make a skycat catalog for the image and find the SID of an interesting source.

awe> sl.make_skycat_on_sources()

Now overplot the catalog in skycat. Open the file and select Data-Servers -> Local Catalogs
-> Load from file.... As filter fill in *.scat. You may need to increase the number of
sources to get all of them to display. If you click on a symbol the corresponding entry in
the catalog is highlighted. Here you can determine the SID of the source.

Take the source with SID 16246 in the SourceList with SLID 423431.

9.8.2 GalPhot: Isophotal analysis: GalPhot

It is instructive to first read the Galphot HOW-TO, in particular to get an idea of the names
of classes and methods defined for Galphot.

Isophotes can be fit to sources using the Galphot package. The main classes used to store
the information of the fit are GalPhotModel and GalPhotEllipse. Lets follow an example here.

1. Use the GalPhotTask task to do the isophotal fits.

awe> task = GalPhotTask(instrument=’WFI’, slid=423431, sids=[16246], commit=1)

awe> task.execute()

or

awe> dpu.run(’GalPhot’, i=’WFI’, slid=423431, sids=[16246], C=1)

136

http://www.astro-wise.org/portal/howtos/man_howto_galphot/man_howto_galphot.shtml

9.8 Galaxy surface brightness analysis AWE Tutorials

2. Inspect the model. We must start by finding the model we made in the previous step
in the database. This can be done by selecting the most recent GalPhotModel created by
yourself.

awe> m = (GalPhotModel.SLID == 423431).user_only().max(’GPID’)

The methods get model(), get residual(), get science() can be used on a GalPhotModel to
visually inspect its quality.

awe> s = m.get_science()

awe> s.display()

awe> r = m.get_residual()

awe> r.display()

The fitted ellipses are stored in the model, and they can also be obtained:

awe> m.ellipses[0].r

For a description of the ellipse parameters see the help page of one of the ellipses:

awe> help(m.ellipses[0])

You can obtain/visualize the ellipse parameters:

awe> ellipses = m.get_model_parameters()

awe> rad = [e[’r’] for e in ellipses]

awe> pos = [e[’pos’] for e in ellipses]

awe> pylab.scatter(rad, pos)

For more information see the Galphot HOW-TO.

9.8.3 GalFit: 2D Parametric fits to a galaxy surface brightness distri-
bution

The main classes used to store Galfit models are GalFitModel and a number of classes named e.g.
GalFitSeric, each of which is a function that can be fit to the data. See the first section of the
Galfit HOW-TO for an overview of the important classes defined for using Galfit in Astro-WISE.

1. Here too, we first need to identify a source on which we want to run Galfit. We
can take the same source as in the previous example, the source from the SourceList with
SLID 423431 and SID 16246.

2. Create a Sersic model for the galaxy where the index of the Sersic model is
fixed at 3. The model components are specified as a list of dictionaries. Each dictionary
describes one component. (Physical) component parameters come in 3 variants e.g.: ix,
x, dx, respectively the initial, final and error values. Additionally the parameter is set to
be fixed or free with the free x parameter.

137

http://www.astro-wise.org/portal/howtos/man_howto_galphot/man_howto_galphot.shtml
http://www.astro-wise.org/portal/howtos/man_howto_galfit/man_howto_galfit.shtml

9.8 Galaxy surface brightness analysis AWE Tutorials

awe> task = GalFitTask(instrument=’WFI’, slid=423431, sids=[16246],

models=[{’name’: ’sersic’, ’iN’: 3, ’free_N’: 0}],

commit=1)

awe> task.execute()

or

awe> dpu.run(’GalFit’, i=’WFI’, slid=423431, sids=[16246],

m=[{’name’: ’sersic’, ’iN’: 3, ’free_N’: 0}], C=1)

3. Again we need to find the result in the database:

awe> m = (GalFitModel.SLID == 423431).user_only().max(’GFID’)

4. Now we can inspect the model: retrieve the residual image of the science and the model.

awe> sci = m.get_science()

awe> res = m.get_residual()

awe> mod = m.get_model()

awe> sci.display()

etc.

5. Have a look at the parameters of the model:

awe> m.show_model_parameters()

or

awe> m.info()

awe> m.components[0].info()

For more information see the Galfit HOW-TO.

138

http://www.astro-wise.org/portal/howtos/man_howto_galfit/man_howto_galfit.shtml

9.9 Interoperability between Astro-WISE and Virtual Observatory software AWE Tutorials

9.9 Interoperability between Astro-WISE and Virtual Ob-
servatory software

In this tutorial we will use SAMP connectivity to find bright blue galaxies in a specific WFI
field in a graphical, interactive way. You will need to have javaws (java webstart) installed on
your system.

9.9.1 SAMP

SAMP (Simple Application Messaging Protocol) is a communication protocol for astronomical
tools. Several pieces of software have SAMP support, we will use TOPCAT (a table viewer)
and Aladin (an image viewer).

1. Select one of your own SourceLists, or use SourceList with SLID 135591 (from a WFI
V band image.) We will assume the SourceList is called sl.

awe> sl = (SourceList.SLID == 135591)[0]

2. Starting other SAMP applications.
Start the following programs:

• Aladin (this will start a SAMP HUB)

• TOPCAT

Figure 9.1: The TOPCAT main window. The buttons used is this tutorial are circled. From
top to bottom, from left to right: the ‘Interop’ menu, the ‘Row Subset’ button, the ‘Scatter
Plot’ button and the ‘Activation Action’ button.

Solution:
Starting these programs requires java, people in Leiden can try the computer para1 if
there is no (or an incorrect) java version installed on their machine. TOPCAT can be
started from the terminal by typing

awe> os.system(’topcat &’)

139

http://www.ivoa.net/Documents/latest/SAMP.html

9.9 Interoperability between Astro-WISE and Virtual Observatory software AWE Tutorials

Alternatively you could use javaws (if available) to start both TOPCAT and Aladin.

awe> os.system(’javaws http://aladin.u-strasbg.fr/java/Aladin-proto.jnlp &’)

awe> os.system(’javaws http://andromeda.star.bris.ac.uk/~mbt/topcat/topcat-full.jnlp &’)

3. Connect Astro-WISE to the hub and transmit your SourceList (and its frame)
through SAMP.

awe> from astro.services.samp.Samp import Samp

awe> samp = Samp()

awe> samp.broadcast(sl.frame)

awe> samp.broadcast(sl)

4. Select some sources in TOPCAT and send their SIDs to the awe-prompt. You
should see your SourceList loaded in the TOPCAT ‘Table List’ in its main window. Use
TOPCAT to select specific sources of your interest and send their SIDs to the awe-prompt.

Solution A (‘highlight’ sources):

• In the main TOPCAT window, press the (empty) button next to ‘Activation Action’
and choose ‘Transmit Row’ from the ‘Set Activation Action’ window that pops up,
and close it.

• Create a ‘Scatter Plot’ and display your favorite attributes.

• Click on an interesting source in the plot.

• Retrieve the SID in the awe-prompt with

awe> samp.highlighted(sl)

837

Solution B (‘select’ sources):

• From the main TOPCAT window create a ‘Scatter Plot’ and display your favorite
attributes.

• Use the ‘select region’ tool to select multiple interesting sources at once.

• Click the ‘select region’ button again to create a subset containing the sources (you
need to name the subset).

• Open the ‘Row Subsets’ window by clicking its button in the main TOPCAT window.

• On the ‘Row Subsets’ window, select your subset and press the ‘broadcast subset’
button.

• Retrieve the SIDs in the awe-prompt with

awe> samp.selected(sl)

[0, 2, 820, 983, 1037, 1090, 1093, 1139, 1175, 1197, 1292, 1392]

140

9.9 Interoperability between Astro-WISE and Virtual Observatory software AWE Tutorials

Figure 9.2: The TOPCAT Scatter Plot window. In blue the ‘Select Region’ button has been
circled. With this tool the blue points have been selected and labeled ‘interesting’ (Solution B).
One of the points is selected with the black cross hair and send over SAMP (Solution A)

Figure 9.3: The TOPCAT Row Subset window. The ‘Transmit Subset’ button is encircled, it
is grayed out when no subset is selected yet.

141

9.10 Where to go next after this tutorial AWE Tutorials

9.10 Where to go next after this tutorial

The tutorials written here discuss a number of key parts of Astro-WISE, but they do not intend
to be exhaustive. Here are collected some things that may be of further interest.

9.10.1 Manual, HOW-TO’s and other documentation

The Astro-WISE manual can be found here: http://www.astro-wise.org/docs/Manual.pdf.
Most of the manual (the HOW-TO’s) can be read online. See here (http://www.astro-

wise.org/portal/aw howtos.shtml). Use the menu on the left to navigate the HOW-TO’s. Note
that the suggested reading order is more or less top-to-bottom in that menu.

A number of existing number-crunching programs are used within Astro-WISE, such as SEx-
tractor (source extraction), SWarp (regridding/coaddition), NumPy (various), Eclipse (image
arithmetic, statistics etc.). Their manuals, as well as other documentation can be found on
this page (http://www.astro-wise.org/portal/aw documents.shtml)

9.10.2 Web-services

This tutorial does not cover the web-services that are part of Astro-WISE. In short there are
web-services for viewing the contents of the database, for processing data, and for (in-)validating
existing data products. There is a Guided Tour that familiarizes one with them. You can find
it at the Astro-WISE homepage (http://www.astro-wise.org) in the upper-left box.

9.10.3 Source code

Our source code is maintained using the CVS (Concurrent Versions System) software. CVS
allows multiple people to work on a set of files, stores these files in a central place and keeps
track of all changes to the files. The code is viewable on request for Astro-WISE members on
our CVS website (http://cvs.astro-wise.org). See also the CVS HOW-TO (http://www.astro-
wise.org/portal/howtos/man howto cvs/man howto cvs.shtml).

Here is a short overview of the directory structure:

Top of directory structure:

awe:

awe/astro:

Package | Provided functionality

--

config | Startup and environment/configuration files

database | Astronomy specific database modules

experimental | Experimental modules

external | Python wrappers for tools such as LDAC, Sextractor and Swarp

filerecipes | Data reduction recipes for use without database

instrument | Instrument specific modules

main | Modules for the pipeline processing of images

plot | Various plotting modules

recipes | Data reduction recipes (to create classes in "main")

services | (Web-) services for astronomy

test | Unittests

toolbox | Scripts for ingestion, installation, various maintenance

142

http://www.astro-wise.org/docs/Manual.pdf
http://www.astro-wise.org/portal/aw_howtos.shtml
http://www.astro-wise.org/portal/aw_documents.shtml
http://www.astro-wise.org
http://cvs.astro-wise.org
http://www.astro-wise.org/portal/howtos/man_howto_cvs/man_howto_cvs.shtml

9.10 Where to go next after this tutorial AWE Tutorials

util | Utility modules usable throughout the code

--

awe/common:

Package | Provided functionality

--

config | Startup and environment/configuration files

database | Persistency mechanism and implementations of its interface

log | Logging and messaging

math | Mathematical Python routines such as statistics & least squares

net | General network-related python modules

services | Common (web-) services

toolbox | Scripts for e.g. maintenance of the database, installation, etc.

util | Routines for compression, checksumming, datetime manipulation.

--

9.10.4 Links

The Howto page at our homepage is found under Astro-WISE information system − > Howtos
& Manual. Use the menu on the left to navigate the HOW-TO’s. Here are some interesting
ones:

• Observing guidelines (General − > Observing Guidelines)

• Context (AW Environment − > Context)

• Inspect method of BaseFrames (Visualization − > Inspections)

• Inspect method of PhotSrcCatalog (Visualization − > Photometric Catalog)

• Combining individual CCDs (Visualization − > Multi-extension FITS)

See also the glossary of Astro-WISE concepts etc. (http://www.astro-wise.org/portal/glossary.shtml).

143

http://www.astro-wise.org/portal/howtos/man_howto_schedule/man_howto_schedule.shtml
http://www.astro-wise.org/portal/howtos/man_howto_context/man_howto_context.shtml
http://www.astro-wise.org/portal/howtos/man_howto_inspect/man_howto_inspect.shtml
http://www.astro-wise.org/portal/howtos/man_howto_photcat/man_howto_photcat.shtml
http://www.astro-wise.org/portal/howtos/man_howto_mef/man_howto_mef.shtml
http://www.astro-wise.org/portal/glossary.shtml

Chapter 10

Calibration Pipeline: overview

The calibration part of the Astro-WISE Environment is divided into three major pipelines : a bias
pipeline, a flat field pipeline, and a photometric pipeline. All of these are composed of several
fine-grained, atomic processing steps known as tasks. In the following sections, these pipelines
are discussed. A summary is given of the atomic tasks that make up the various pipelines, and
their place therein is described. Also given are a few examples of how the different tasks can
be steered through the DPU interface. For the interface and use of every individual task, please
read the corresponding HOW-TO.

10.1 The atomic tasks and their context

The atomic tasks that make up the calibration pipelines are summarized in Table 10.1, together
with their role in the system and the identifier under which these are known to the DPU interface.

The sequence of tasks that make up the bias and flat field pipelines is shown in Figure 10.1.
The sequence of tasks that should be run for the photometric calibration is shown in Figure 10.2.
In these figures, each one of the individual tasks is represented by one box. The arrows indicate
the flow of the pipeline, and the shaded parts show particular (optional) branches therein.

10.1.1 The bias and flatfield pipelines

The bias and flat field pipelines are pretty straightforward : no difficulties or surprises here. Note,
however, that after having derived the masterflat, the processing continues in the photometric
pipeline (hence the arrow at the end of the line in Fig. 10.1).

10.1.2 The photometric pipeline

The photometric pipeline is more tricky than the bias or flatfield pipeline for two reasons : (1)
a piece of the image pipeline must be run to process the photometric standard fields (hence
the Reduce and Astrometry boxes in Fig. 10.2), (2) the optional branch of the illumination
correction is an iterative loop that in Fig. 10.2 actually runs backwards (characterising the
illumination variation is more of an interactive process).

10.2 Examples of running the atomic tasks with the DPU

Make master biases for all CCDs of OmegaCAM for a certain bias template:

144

10.2 Examples of running the atomic tasks with the DPU Calibration Pipeline: overview

Table 10.1: The atomic processing steps that make up the various calibration pipelines and the
identifiers through which these can be selected by the user from the DPU interface. Note that
not all processing steps are available through the DPU interface.

Pipeline Processing step Purpose DPU identifier

Bias ReadNoise Deriving the read noise ReadNoise

Bias Creating a master bias Bias

HotPixels Creating a hotpixel map HotPixels

Gain Derive the gain Gain

Flat field DomeFlat Creating a domeflat DomeFlat

ColdPixels Creating a coldpixel map ColdPixels

TwilightFlat Creating a twilightflat TwilightFlat

MasterFlat Creating a masterflat MasterFlat

FringeFlat Creating a fringeflat FringeFlat

Photometric PhotCalExtractResulttable Measuring fluxes of standard stars Photcat

PhotCalExtractZeropoint Deriving the zeropoint Photom

PhotCalMonitoring1 Monitoring the atmosphere -

IlluminationCorrectionVerify1 Characterizing illumination variations -

IlluminationCorrection Creating an illumination correction frame -

1This processing step is performed on a single node

req543

TwilightFlat
req546

MasterFlat
req522

HotPixels
req541

Bias
req521

ReadNoise

req542

DomeFlat
req535

ColdPixels
req542

DomeFlat FringeFlat
req545

Figure 10.1: The order and flow of the atomic processing steps in the bias and flat field pipelines.
The lightly shaded parts show the (optional) branches.

awe> dpu.run(’Bias’, instrument=’OMEGACAM’, template=’2014-07-04T10:39:28’)

Make a twilightflat for the specified night and filter:

awe> dpu.run(’TwilightFlat’, i=’OMEGACAM’, d=’2014-06-29’, f=’OCAM_r_SDSS’)

Make photometric catalogs from a particular standard field exposure:

awe> dpu.run(’Photcat’, i=’OMEGACAM’, raw=[’OMEGACAM.2014-04-26T23:55:32.384_32.fits’])

145

10.2 Examples of running the atomic tasks with the DPU Calibration Pipeline: overview

req562(T)

PhotCalExtractResulttable
req563

PhotCalExtractZeropoint
seq634

Astrometry
seq63(2/3)

Reduce

photometric standard fields

req562

PhotCalMonitoring

IlluminationCorrectionVerify
req548(F)

IlluminationCorrection
req548

Figure 10.2: The order and flow of the atomic processing steps needed to do the photometric
calibration. The lightly shaded parts show the (optional) branches.

146

Chapter 11

Calibration: Read noise

11.1 HOW-TO Derive the read noise

11.1.1 What is the read noise?

The read-out noise is the noise introduced in the data by the read-out process of CCDs. It
is measured from pairs of bias exposures. The rms scatter of the differences between two bias
exposures is computed and divided by

√
2; this is the read noise in ADU.

11.1.2 Querying

The read noise value is stored in the database using the ReadNoise class. A query using the
select method such as the following will select the most recently created, valid ReadNoise object
available for the given instrument, date and chip:

awe> rn = ReadNoise.select(instrument=’OMEGACAM’, date=’2000-04-28’,

chip=’ESO_CCD_#65’)

awe> print rn.read_noise

11.1.3 Deriving the read noise

To derive the read noise using the DPU (for all 32 CCDs of OmegaCAM simultaneously in this
example) you can do the following (again fill in instrument and date as appropriate):

awe> # Example using distributed processing

awe> dpu.run(’ReadNoise’, i=’OMEGACAM’, d=’2014-04-28’, C=1)

To derive the read noise on your own machine you can do the following:

awe> # Example using a Task (single CCD)

awe> task = ReadNoiseTask(instrument=’OMEGACAM’, date=’2014-04-28’

chip=’ESO_CCD_#65’, commit=1)

awe> task.execute()

147

Chapter 12

Calibration: Bias

12.1 HOW-TO Create a Bias

12.1.1 Bias correction using a bias image

Figure 12.1: A typical bias exposure

One basic step in calibrating raw science images is debiassing. Every exposure by the camera
contains a non-zero “bias” level, introduced by the AD converter on the FIERA. Because the
bias is literally added by the instrument it needs to be subtracted from every exposure. A
bias image is a zero-second exposure and typically for each night multiple bias images (5-10)
are averaged to create a “master” bias image, which is subtracted from the science images. By
using a bias image to correct for bias, any structure in the bias is corrected for, especially also
any structure orthogonal to the CCD readout direction. A disadvantage of using bias images is
that there may be a significant time difference between the determination of the bias and the
(science) images that you want to correct. Therefore a different method (overscan correction)
is often used when the bias level of a camera is variable on relatively short timescales.

In AWE the bias image used to correct raw science images is called the BiasFrame.

148

12.1 HOW-TO: Bias Calibration: Bias

Figure 12.2: Pre- and overscan regions in an image. The central part of the image has much
higher intensity than the overscan regions, the color scale is such that it is white. A bad column
is visible in the central part of the image.

12.1.2 Bias correction using pre- or overscan regions

Creating bias images is not the only way to correct images for bias. Pre- and overscan regions
can be used for this purpose as well. These regions are strips of ∼100 pixels at the edges of
each image. Usually these regions are not physical pixels that exist on the CCD. Instead the
regions are produced by letting the CCD read its readout register about 100 times without
having it move charge from the pixels into the readout register (“y direction”) or within the
readout register to the read port (“x direction”). The advantage of using this method is that
pre- and overscan regions are obtained simultaneously with each (science) image, so any short
timescale variations in the bias level are accounted for. The disadvantage is that a bias value is
not determined per pixel (as in an image), but at best per line or per column.

12.1.3 AWE: combining both methods

In AWE, both methods can be used together. It is possible to subtract the overscan values from
the bias images themselves, and then create a master bias image. This master bias image will
have an average level of 0, approximately. If you then use the overscan regions in the science
images as well as the master bias image, you will correct for both structure in x direction, as
well as variations in the bias level. Obviously, if the bias changes in level as well as structure on
short time scales, there is little that can be done.
In AWE, bias images are assumed to be available for your data. Bias images are always required.
However, it is possible to use a number of different overscan correction methods. When running
tasks, the method of overscan correction can be specified with the option “overscan”. Possible
values are:

• 0 – No overscan correction

• 1 – Use median of the (entire) prescan region in X direction

• 2 – Use median of the (entire) overscan region in X direction

• 3 – Use median of the (entire) prescan region in Y direction

• 4 – Use median of the (entire) overscan region in Y direction

• 5 – Use per-row average value of the prescan region in X direction

149

12.1 HOW-TO: Bias Calibration: Bias

• 6 – Use per-row average value of the overscan region in X direction (default)

• 7 – Use per-row average value of the prescan region in X direction, smoothing the averages
over 50 rows

• 8 – Use per-row average value of the overscan region in X direction, smoothing the averages
over 50 rows

• 9 – Use per-row average value of the prescan region in X direction, smoothing the averages
over 10 rows

• 10 – Use per-row average value of the overscan region in X direction, smoothing the
averages over 10 rows

12.1.4 Syntax, examples

To derive a master bias image, it is necessary to derive ReadNoise objects first (if they are not
already present). See the ReadNoise HOW-TO (11.1) for more information.
Now derive the master bias as follows:

awe> dpu.run(’Bias’, instrument=’OMEGACAM’, date=’2014-04-28’, overscan=6, commit=1)

Or using short options:

awe> dpu.run(’Bias’, i=’OMEGACAM’, d=’2014-04-28’, oc=6, C=1)

where ”oc”, or ”overscan” is one of the values described in the previous section.

150

Chapter 13

Calibration: Hot pixels

13.1 HOW-TO Create a HotPixelMap

13.1.1 What is a hot pixel map?

Figure 13.1: BiasFrame containing several bad columns of hot pixels.

A hot pixel map is an image of so-called hot pixels in the CCD detector. Hot pixels are
pixels which indicate high values despite not being illuminated. These pixels are detected in
bias images because biases have an exposure time of 0 seconds; they are not illuminated. In
Astro-WISE the HotPixelMap is derived from the BiasFrame. Hot pixels destroy the value
of all pixels behind the broken pixel as charge is moved through it during the read-out process
of the CCD. The result is a bad column (see figure 13.1).

The HotPixelMap is a mask image: good pixels have a value of 1 and bad pixels a value
of 0.

13.1.2 Making a hot pixel map

To derive a HotPixelMap, type in the following at the AWE prompt:

awe> # Example using distributed processing (all CCDs simultaneously)

awe> dpu.run(’HotPixels’, i=’OMEGACAM’, d=’2014-04-28’, C=1)

151

13.1 HOW-TO: Hot-Pixels Calibration: Hot pixels

or

awe> # Example using a Task (single CCD)

awe> task = HotPixelsTask(instrument=’OMEGACAM’, date=’2014-04-28’,

chip=’ESO_CCD_#77’, commit=1)

awe> task.execute()

152

Chapter 14

Calibration: Cold pixels

14.1 HOW-TO Create a ColdPixelMap

14.1.1 What is a cold pixel map?

Figure 14.1: DomeFlatFrame containing a bad column of cold pixels.

A cold pixel map is an image of so-called cold pixels in the CCD detector. Cold pixels are bro-
ken pixels which report low or zero counts even when illuminated. These pixels are determined
from flat-field exposures because those have high counts (relative to the night sky background)
across the image. In Astro-WISE the ColdPixelMap is derived from the DomeFlatFrame.
Cold pixels destroy the value of all pixels behind the broken pixel as charge is moved through
it during the read-out process of the CCD. The result is a bad column (see figure 14.1).

The ColdPixelMap is a mask image: good pixels have a value of 1 and bad pixels a value
of 0.

In Astro-WISE all pixels that deviate substantially from the other pixels in the (dome) flat-
field are considered “cold” even though brighter pixels are also detected.

14.1.2 Making a ColdPixelMap

To derive a ColdPixelMap, type in the following at the AWE prompt:

awe> # Example using distributed processing

awe> dpu.run(’ColdPixels’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

153

14.1 HOW-TO: Cold-Pixels Calibration: Cold pixels

or

awe> # Example using a Task (single CCD)

awe> task = ColdPixelsTask(instrument=’WFI’, date=’2000-04-28’, chip=’ccd50’,

filter=’#842’, commit=1)

awe> task.execute()

154

Chapter 15

Calibration: Gain

15.1 HOW-TO Derive a gain

15.1.1 Definition

The gain is the conversion factor between the signal in ADU’s supplied by the readout electronics
and the detected number of photons (in units e−/ADU). The gain factors are needed to convert
ADU’s in raw bias-corrected frames to the number of electrons, i.e. detected photons. For
OmegaCAM a procedure (template) to determine the gain is defined, which involves taking
two series of 10 dome flatfield exposures with a wide range of exposure times. Derive the rms
of the differences of two exposures taken with similar exposure (integration time). Exposure
differences of pairs should not exceed 4%. The regression of the square of these values with the
median level yields the conversion factor in e−/ADU (assuming noise dominated by photon shot
noise).

15.1.2 Deriving the gain

For most instruments default gain values have been determined and are in the system, so it is
usually not necessary to make your own values. The class used to store the gain in the database
is called GainLinearity. Existing gain values can be obtained for example with this query from
the awe prompt (fill in the appropriate instrument, observing date and chip):

awe> q = (GainLinearity.instrument.name == ’OMEGACAM’) & \

(GainLinearity.template.start > datetime.datetime(2014,7,2)) & \

(GainLinearity.template.start < datetime.datetime(2014,7,4))

awe> print q[0].template.start, q[0].gain

2014-07-03 12:35:56 2.49576806277

There is a recipe to use the 20 domeflats to determine the gain. The recipe can be used like
this:

awe> task = GainTask(instrument=’OMEGACAM’, template=’2014-07-03 12:35:56’,

chip=’ESO_CCD_#65’)

awe> task.execute()

155

Chapter 16

Calibration: Flat-field

16.1 HOW-TO Create a Flat-field

16.1.1 Flat-fielding

Figure 16.1: A typical flat-field exposure

A basic step in calibrating raw science images is flat-fielding. A flat-field is the response of
the telescope-camera system to a source of uniform radiation. Typically, a flat-field does not
look flat. The flat-field is a multiplicative effect; the differences in attenuation of light over
the field of view depend on exposure level. Science images are therefore divided by a flat-field
normalized to 1. There are several ways of determining a flat-field. The attempt in the case of
both dome and twilight flats (see the next sections) is to take approximately 5-10 images with
an exposure level of around 20000-30000 ADU, combine and then normalize them. Flat-fields
usually contain a large scale gradient, out-of-focus images of dust present on the filter and dewar
window, as well as in focus features of dust on the CCDs or defects in the CCD. In other words,
flat-fields contain anything that obstructs the light as it falls on the CCD(s).

In AWE, the flat-field image used to correct raw science images is called the MasterFlatFrame.

16.1.2 Dome flat fields

A flat-field can be obtained by observing a screen on the inside of the dome of the telescope,
which is illuminated by lights. This is called a domeflat in AWE. The advantage of dome flat-

156

16.1 HOW-TO: Flat-field Calibration: Flat-field

fields is that it is easy to repeatedly obtain a good signal to noise image of around 20000 ADU.
Disadvantages are that the direction of entry of light in the telescope is different from that
during the night, and that it is very difficult to illuminate a screen in such a way that it is a
source of uniform radiation.

In AWE a flat-field made from a set of dome flats is called the DomeFlatFrame

16.1.3 Twilight flat fields

Usually flat-fields are obtained by observing the sky during evening and/or morning twilight.
During this time the sky better approximates uniform illumination than easily possible with
dome flats, and light enters the telescope in much the same way as during the night. Disadvan-
tages are that the brightness of the sky changes rapidly during twilight, and it can be difficult
to obtain at least 5 good flat-fields of around 20000-30000 ADU. Time is always an issue. In
addition, twilight flats taken in near-darkness can contain stars.

In AWE a flat-field made from a set of twilight flats is called the TwilightFlatFrame

16.1.4 Night-sky (”super”) flats

Raw science images have a non-flat background, attributed to flat-field effects. Information
about how to flat-field science images therefore is present in the science images themselves. It is
possible to use a combination of approximately 10 or more science images as a flat-field. Any
common structure can be attributed to flat-field effects and is stored in the NightSkyFlatFrame.
In the Astro-WISE system, such flats are used as a correction on the other flats, and a new
MasterFlatFrame must be derived incorporating the NightSkyFlatFrame.

In AWE a flat-field made from a set of (reduced) science frames is called the NightSkyFlatFrame

16.1.5 Combining flats into a master flat

The procedure to go from raw dome flat fields and raw twilight flat fields to the master flat that
is used to flat-field science images is as follows. First the raw dome flats are combined into a
master dome flat. This is done by normalizing the raw flats to 1 and stacking them in a cube.
Then, for the same pixel in the different input images, the average value is calculated, while
rejecting any outliers. This value is the value of the master (dome/twilight) flat for that pixel.
This procedure is applied when making the master dome, as well as the master twilight flat.

In the Astro-WISE system, master dome and master twilight flats are combined. Master
twilight flats are used to obtain the large scale structure, while master dome flats are used to
obtain the small scale structure. In addition a night-sky flat may be incorporated into the final
master flat.

16.1.6 Syntax, examples

To derive a master flat image, it is necessary to make a master dome flat as well as a master
twilight flat.

Make a master dome flat. Note that it is necessary to specify the type of overscan correction
(see the Howto for bias correction) that you want to use, which should be the same as that was
used in creating the master bias image:

awe> # Example using distributed processing

awe> dpu.run(’DomeFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

157

16.1 HOW-TO: Flat-field Calibration: Flat-field

awe> # Or specifying a different overscan correction method

awe> dpu.run(’DomeFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, oc=0, C=1)

Now make the master twilight flat:

awe> dpu.run(’TwilightFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

awe> # Or specifying a different overscan correction method

awe> dpu.run(’TwilightFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, oc=0, C=1)

Finally, make the master flat:

awe> dpu.run(’MasterFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, C=1)

16.1.7 Using the master dome or master twilight directly

When you explicitly do not want to combine the master dome flat and master twilight flat, for
example because there simply are no raw dome flats available this is also possible. A parameter
”ct” or ”combine” needs to be specified in order to do this. The value of the ”combine” parameter
can be one of:

• 1: combine the master dome and master twilight flats (default)

• 2: use only the master dome flat

• 3: use only the master twilight flat

Syntax example:

awe> dpu.run(’MasterFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, ct=3, C=1)

awe> # or using the long option name

e> dpu.run(’MasterFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, combine=3, C=1)

16.1.8 Using night sky flats

In AWE, night sky flats are applied as a correction to the master flat, thereby creating an new
master flat as the end-product. To use night sky flats, one must follow these steps:

• 1: Derive the master flat

• 2: Derive the night sky flat

• 3: Rederive the master flat, specifying that a query for night sky flats should be performed

Syntax example for step 2:

awe> dpu.run(’NightSkyFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, o=’CDF4_?’, C=1)

Syntax example for step 3:

awe> dpu.run(’MasterFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, nightsky=1,

combine=1, C=1)

or using shorter options

awe> dpu.run(’MasterFlat’, i=’WFI’, d=’2000-04-28’, f=’#842’, n=1,

ct=1, C=1)

158

Chapter 17

Calibration: De-fringing

17.1 HOW-TO Correct fringes in science images

Thinned CCD detectors may display an effect called “fringes” when filters towards the red
end of the visible spectrum are used (e.g. Johnson/Cousins R, I and Z filters). Fringes are a
thinned-film interference effect invoked by the presence of distinct emission lines produced in
the atmosphere. The structure of the fringes in a CCD is determined by variations in the thick-
ness of the CCD’s silicon layer. In addition, the amplitude of fringes depends on atmospheric
conditions and exposure time. Fringes are an additive effect; correction is achieved by creating
a FringeFrame calibration image, which is scaled and subtracted from science images after the
bias and flat-field are applied.

Figure 17.1: A science image in the I-band, displaying fringes (left) and a corresponding Fringe-
Frame calibration image (right).

OmegaCAM i-band observations can contain large-scale background fluctuations even after
flat-fielding which can cause problems with defringing. Background subtracted images are there-
fore used in the creation of the fringe frames, and the scale factor is derived from background
subtracted science frames.

159

17.1 HOW-TO: De-fringing Calibration: De-fringing

17.1.1 Creating a FringeFrame

FringeFrames are created from a subset of all science images taken during a night, by calculating
a median image of the cube of the selected science images. It is best to avoid exposures with
nearly identical pointings or extended sources to prevent artifacts due to stars or galaxies in the
median image.

In the following example all science images for a particular night, filter and CCD are selected.

awe> task = FringeTask(instrument=’WFI’, date=’1999-06-16’, filter=’#845’,

chip=’ccd54’)

awe> task.execute()

Using the DPU for all CCDs:

awe> dpu.run(’FringeFlat’, i=’WFI’, d=’1999-06-16’, f=’#845’)

Alternatively, a subset of raw science images can be specified manually, by giving their filenames:

awe> task = FringeTask(raw=[’science1.fits’, ’science2.fits’, ’science3.fits’])

awe> task.execute()

Using the DPU:

awe> dpu.run(’FringeFlat’, raw=[’science1.fits’, ’science2.fits’, ’science3.fits’])

17.1.2 De-fringing science images

If a FringeFrame is available for the appropriate CCD and filter, it will automatically be used
when science images are reduced (see section 21.2).

160

Chapter 18

Calibration: Astrometry

18.1 HOW-TO Derive Astrometry

To derive an astrometric calibration for a given reduced science frame, a AstrometricParametersTask
object is used. A global astrometric solution can be derived using the GAstromTask (see §18.3).

18.1.1 AstrometricParametersTask Example

If an astrometric solution is suspect in any way, or if the methods or calibration catalogs
are improved, a new astrometric solution can be derived without having to recalibrate the
RawScienceFrame from scratch. This is accomplished with the AstrometricParametersTask.
The most ideal way to do this is with the DPU and is illustrated below:

awe> dpu.run(’Astrometry’, i=’WFI’, red_filenames=[’Sci-USER-WFI-#877-red-53664

.5.fits’, ...],

C=0)

where i is the instrument name (mandatory argument), red filenames is a file list of ReducedScienceFrames,
and C is the commit switch used to commit the results to the database. Without the DPU, the
task would be run like:

awe> task = AstrometricParametersTask(red_filenames=[’Sci-USER-WFI-#877-red-536

64.5.fits’],

... commit=0)

awe> task.execute()

where red filenames is a list of filenames of ReducedScienceFrames and commit is the commit
switch. The advantage of using the DPU over this method is that it automatically loops over a list
of ReducedScienceFrame objects and can run the task on more than one CPU simultaneously.

18.1.2 Astrometric calibration - a detailed description

Under the hood of the pre-cooked recipes described in §18.1, a set of LDAC routines is called.
This section describes these routines and their role in deriving the astrometric calibration. All
steps are performed on catalogs of extracted objects and a reference catalog of astrometric stars.
For single frame and global frame astrometric processing, the following steps are made:

1. Preastrometric pairing and approximate determination of the affine transformation pa-
rameters (preastrom)

161

18.1 HOW-TO: Astrometry Calibration: Astrometry

2. Application of the affine transformation to the extraction catalog (aplastrom)

3. Association of extracted and reference catalogs (associate)

4. Filter extranous pairs

5. Building of a pairs catalog based on the derived associations (make ssc)

6. Derivation of the full astrometric solution (astrom)

7. Conversion of the astrometric solution parameters to PV parameters (make distort)

preastrom

Preastrometric pairing is done on the basis of the WCS information in the FITS header of the
image. For the image area the reference objects are extracted from the reference catalog and
their (alpha, delta) values are converted to the (x, y) coordinates of the image. Then the x and
y distances between all extracted and reference objects are derived. In this distances space a
concentration is found through boxcar smoothing. The boxcar has a width of 2×POS ERROR
and the maximum distance area used for searching is 2×MAX OFFSET. The found peak defines
the offset between the WCS information from the FITS header and the actual pointing of the
instrument. If the scaling and rotation of the image is well represented by the WCS the peak in
the distance plane will be tight. The peak will be smeared, however, if scaling and/or rotation
are incorrectly stated in the WCS header information. For example, a scaling error of 1%
in a 4000 pixel high CCD will cause the distances to vary over 4000/100 = 40 pixels, so a
POS ERROR of 20 is appropriate in that case.

This offset thus found is applied to the extraction catalog and then a triangulation method
is used to derive the remaining affine parameters. For a detailed description of the triangulation
method see the LDAC pipeline documentation. In short, vectors connecting triplet of objects
are used and a peak is sought in the length/position-angle plane of the vectors. The resulting
affine parameters are applied and the number and rms of the fit are reported. To accept the
derived affine transformation the reported rms should be less than RMS TOL.

aplastrom

Application of the derive affine transformation to the extracted objects catalogs results in adding
a Ra and Dec column to this catalog that represent a good approximation of the true ob-
ject position. In addition to the position the shape parameters (A WCS, B WCS, E WCS,
THETA WCS) are also transformed using the affine transformation.

associate

Association of the extracted objects catalog with the reference catalog is done on the basis of the
positional coincidence of extracted and reference objects based on the overlap of their shape pa-
rameters. Each object is represented by the 5-tuplet (Ra, Dec, A WCS, B WCS, THETA WCS).
Whenever an extracted object and a reference object overlap with eachother so that for one ob-
ject the (Ra, Dec) falls within the (Ra, Dec, S×A WCS, S×B WCS, THETA WCS) area a pair
is created, where S = INTER COLOR TOL. For good seeing conditions stellar images have
A WCS values in the order of 0.5 arcsec. Given the inaccuracies of the preastrometric affine
transformation one wants to seek a larger area for the associated reference object then just
inside the stellar image area. This is done by multiplying the shape parameters by a factor S.

Note that when A WCS and B WCS are large, because their is a very bright object in the
field, the S multiplication size may cause all reference stars in that large area to be associated
with the one bright star. For this reason the next step is run.

162

ftp://ftp.strw.leidenuniv.nl/pub/ldac/software/pipeline.pdf

18.1 HOW-TO: Astrometry Calibration: Astrometry

Filtering

Filter extranous pairing removes all very large associations. A good filtering criterion is a pairing
distance less than 3 arcseconds.

make ssc

Given the output from the filtered association result for administrative reasons a shuffling of
information is necessary and a pairs catalog is build.

astrom

Deriving an astrometric solutions is what we are all after here. For a detailed description
of how the astrometric solution is determined see the LDAC pipeline documentation. Here
a short description of this process is given. The affine transformation is extended to a mul-
tidimensional polynomial of degree AstrometricParameters.astromconf.PDEG. In general a 2
dimensional polynomial is good enough to represent the deformation of the light path through
the telescope and the imperfections of the plate mount in the focal plane of the telescope. The
least square fit of the estimated astrometric solution using the pair information is performed
in an iterative process where 3 sigma outliers (pairs) are discarded for the next iterative step.
Outliers are removed because propper motion or image artifacts may have created erroneous
pairs. The number of iterations steps NITER should be enough, 5 seems a good choice for many
applications.

For multi frame processing, Global astrometry, pairs among extracted objects were also
created in the previous steps. These pairs participate in the solution as well and because they
generally are in over abundance with respect to the extracted objects vs. reference objects pairs
they dominate the solution accuracy. Presuming the pointing differences among overlappin
exposures are small, the astrometric solution for each pointing could be identical (FDEG = 1 0
0). This may not be the case. In extreme conditions the astrometric solution among the different
pointing could be independent of eachother, however, their might be a gradual change of each
of the astrometric parameters with pointing. This is represented by a Chebychev polynomial
of a certain degree. For each astrometric solution polynomial parameter one can choose a
Chebychev polynomial degree. FDEG = 1 0 0 means a Chebychev polynomial of degree 1 for
the astrometric distortion polynomial of degree 1, a Chebychev polynomial of degree 0 for the
astrometric distortion polynomial of degree 2, etc.

make distort

The final result of the astrometric solution is represented in an internal format that has to be
converted to standard WCS patameters.

163

ftp://ftp.strw.leidenuniv.nl/pub/ldac/software/pipeline.pdf

18.2 HOW-TO: GAstromSourceList Calibration: Astrometry

18.2 HOW-TO Create Global Astrometric SourceLists

To derive a global astrometric solution, special SourceLists need to be made. For this purpose
GAstromSourceListTask objects are used. The global astrometric solution can be derived using
the GAstromTask (see §18.3).

GAstromSourceListTask Example

The GAstromSourceLists required for the GAstromTask are made with the GAstromSourceListTask.
Using the DPU this can be done for example like this:

awe> dpu.run(’GAstromSL’, i=’WFI’, o=’M31_?’, d=’2000-04-28’, c=’ccd50’,

f=’#842’, C=0)

or

awe> dpu.run(’GAstromSL’, red=[’Sci-#842-ccd50-Red.fits’], C=0)

When running locally the equivalent commands are:

awe> task = GAstromSourceListTask(instrument=’WFI’, object=’M31_?’,

date=’2000-04-28’,

chip=’ccd50’, filter=’#842’, commit=0)

awe> task.execute()

or

awe> task = GAstromSourceListTask(red_filenames=[’Sci-#842-ccd50-Red.fits’],

commit=0)

awe> task.execute()

where ‘instrument’ is the instrument name (mandatory argument), ‘object’ is the object name
or wildcard pattern, ‘date’ is the date of the observations, ‘chip’ is the CCD name, ‘filter’ is the
filter name, ‘red filenames’ is a list of filenames of ReducedScienceFrames, and ‘commit’ is the
commit switch used to commit the results to the database. In the first example, a sourcelist is
created from a CoaddedRegriddedFrame, while in the second example the same is done from a
single ReducedScienceFrame.

164

18.3 HOW-TO: GAstrom Calibration: Astrometry

18.3 HOW-TO Create a Global Astrometric Solution

To derive a global astrometric solution, a GAstromTask object is used. Before this can be done,
GAstromSourceLists must be made (see §18.2).

18.3.1 GAstromTask Example

An astrometric solution can be improved by using overlapping sources of multiple chips and
multiple pointings. This is known as a global astrometric solution and is derived using the
GAstromTask. The most ideal way to run this task is with the DPU and is illustrated below:

awe> dpu.run(’GAstrom’, i=’WFI’, o=’2df_I_5, f=’#879’, C=0)

where i is the instrument name (mandatory argument), o is the object name or wildcard pattern,
f is the filter name, and C is the commit switch used to commit the results to the database.
Remember, the GAstromSourceLists required for the global astrometric solution (GAS) should
be created before this task is run. Without the DPU, the task would be run like:

awe> task = GAstromTask(instrument=’WFI’, object=’2df_I_5’, filter=’#879’,

... commit=0)

awe> task.execute()

where instrument is the instrument name, object is the object name or wildcard pattern,
filter is the filter name and commit is the commit switch.

18.3.2 Finding your GAstrometric object

After the GAstrometric object is created, it may not be easy to find. This is because of the
nature of the GAstrometric object. It creates the astrometric solution, but does not store
it. The results are stored individually in the AstrometricParameters objects, one per input
ReducedSceinceFrame. There are also limitations on the number and type of attributes it
contains.

The simplest way to find a GAstrometric object is to start with the ReducedScienceFrames
that went into the solution. You can use the same parameters used in the GAstromTask to do
this:

awe> query = ReducedScienceFrame.select(instrument=’WFI’, object=’2df_I_5’,

... filter=’#879’)

awe> len(query)

40

Once you have the ReducedScienceFrames that went into the GAstrometric solution, you
can query for one of the AstrometricParameters objects and use this to locate the GAstro-
metric solution and all the associated AstrometricParameters objects.

awe> red = query[0]

awe> ap = (AstrometricParameters.reduced == red).max(’creation_date’)

awe> gas = GAstrometric.residuals == ap.residuals

awe> len(gas)

0

Here, we choose the most recent AstrometricParameters object for one of the ReducedScienceFrames
in the query, and use the residuals attribute to query for the GAstrometric object (the indi-
vidual solutions all use the same global residuals file). In this example, no GAstrometric object
exists because the above task was run with commit=0.

165

18.3 HOW-TO: GAstrom Calibration: Astrometry

18.3.3 Getting the best GAstrometric solution

Blindly combining exposures taken over large spans of time or greatly varying observing con-
ditions will likely result in a poor GAstrometric solution. Understanding the concept of fixed
focal-plane geometry is vital for high-quality solutions in Astro-WISE.

Global astrometry in Astro-WISE takes advantage of fixed focal-plane geometry applicable
under certain conditions for certain telescopes. This means that any difference in the focal-plane
geometry from pointing to pointing is assumed to change in a linear fashion only, with higher
order distortions remaining constant (e.g., only relative translations of the entire focal plane in
RA and Dec are corrected for). When valid, this assumption of fixed focal-plane geometry adds
information to the system, benefitting the astrometric solution. Generally, only closely matched
sets of exposures taken within strict temporal limits1 (generally less than one hour between
first and last exposure) will demonstrate a fixed focal-plane geometry. This condition minimizes
differences in telescope flexure caused by different altitude and azimuth locations.

The standard method in Astro-WISE of combining multiple sets of closely matched exposures
is to obtain global solution for each set independently instead of blindly combining them all at
once. The independently derived solutions can be applied to the source frames to create frames
regridded to the same grid target (spatial reference point on a fixed grid). These regridded frames
can then be coadded together to create the final combination (e.g., using SWarp, Eclipse, or
PyFITS/NumPy for the image combination).

1Strict spatial limits also aid in the global solution, but are not a condition for a fixed focal-plane geometry.
The most optimal results are derived from sets of exposures with greater than 90% overlap due to the larger
number of sources common to all exposures.

166

18.4 HOW-TO: QC Astrometry Calibration: Astrometry

18.4 HOW-TO Inspect an Astrometric Solution

Astrometric solutions are created as a result of the AstrometricParametersTask and the
GAstromTask. To determine the quality of the astrometric solution, several methods can be used.
The primary method is to inspect the astrometric solution with the AstrometricParameters

inspect() method. An alternate qualitative method is to view a calibrated catalog overlayed
on the image.

Please Note, not all inspection methods are currently available in the AWBASE

checkout, but are in the current checkout. These methods have been noted. To use
them, see the Getting Started section in the FAQ (Chapter 25) for details on using
a different checkout.

18.4.1 AstrometricParameters and GAstrometric inspect() methods

The Plots

An AstrometricParameters object can be inspected by plotting the residuals of the solution
versus themselves and versus position. This is exactly what the inspect() method does. For
a single chip (AstrometricParameters), one figure is created with 5 panels. These five panels
plot (from top down):

• DDEC versus DRA with line-connected histograms of their distributions

• DRA versus RA

• DDEC versus DEC

• DRA versus XPOS

• DDEC versus YPOS

where DRA is RAreference−RAextracted in arc-seconds, DDEC is Decreference−Decextracted in
arc-seconds, RA is in degrees, DEC is in degrees, XPOS is the X pixel position of the extracted
source, and YPOS is the Y pixel position of the extracted source.

Also included at the top of the figure is the DATE OBS of the source ReducedScienceFrame;
the mean RA (<RA>) and mean Dec (<DEC>), both calculated from the distribution plotted; the
number of pairs plotted–the same as the number of pairs used in the astrometric solution (N); the
chip name of the source ReducedScienceFrame (CHIP:); the mean RA residual (<DRA>), mean
Dec residual (<DDEC>), and sample standard deviation of each distribution (values following the
+-), all based on the distribution plotted; the RMS (root-mean-square) value of the distance of the
residual pairs with respect to the DDEC/DRA origin (0,0); and the maximum distance of any
residual pair from the DDEC/DRA origin (Max). There are also RMS and N values within the
first panel. Their significance will be clear when seen in the context of the multi-chip solution.

The multi-chip case (GAstrometric) plots exactly the same information, but with multiple
pointings per chip, one figure per chip. Each pointing has a different color to distinguish it
from the other pointings. Also, the first panel includes the RMS and N values for each pointing
individually. The values above the first panel are all calculated with respect to ALL the data
plotted.

In addition to the multi-chip reference residuals, an entire set of overlap residuals figures is
created. Instead of DRA being RAreference−RAextracted, it is RA1−RA2, both extracted from
their respective frames. RA1 and RA2 will never be from the same chip and pointing. The Dec
values are similar. There is no other difference between the previous multi-reference figures and
these multi-overlap figures.

167

18.4 HOW-TO: QC Astrometry Calibration: Astrometry

Lastly, two more figures are created: all reference residuals and all overlap residuls. These
figures simply show all the data from all the chips of their respective data set. Each pointing
is color-coded identically to the individual chip figures. The reference figure in this multi-chip,
multi-pointing case is directly equivalent to the single-chip figure.

The Methods

There are currently two ways to run the inspect method for either case. The most straight-
forward of these is to simply set the inspect switch in either the AstrometericParametersTask
or in the GAstromTask when either is run:

awe> task = AstrometricParametersTask(red_filenames=[’Sci-USER-WFI-#877-red-536

64.5.fits’],

... inspect=1, commit=0)

awe> task.execute()

or

awe> task = GAstromTask(instrument=’WFI’, object=’2df_I_5, filter=’#879’,

... inspect=1, commit=0)

awe> task.execute()

In the other method, an AstrometricParameters or GAstrometric object is instantiated
from the database, and its inspect() invoked:

awe> ap = (AstrometricParameters.reduced.filename == ’Sci-USER-WFI-#877-red-536

64.5.fits’)[0]

awe> DataObject(pathname=ap.residuals).retrieve()

awe> ap.inspect()

or

awe> gas = (GAstrometric.gasslist.filename == ’GAS-2df_I_5-53760.5784035’)[0]

awe> DataObject(pathname=gas.residuals).retrieve()

awe> gas.inspect()

Modifying the Default Output

The inspection figures described above are displayed to the screen and written to PNG files.
This behavior can be modified, but explaination of these techniques is beyond the scope of this
HOW-TO. For the latest documentation for attempting these modifications, simply view the
online help (docstrings) of the inspect method(s) and plot class(es) used to create these figures:

awe> help(AstrometricParameters.inspect)

awe> from astro.plot.AstrometryPlot import AstromResidualsPlot

awe> help(AstromResidualsPlot)

18.4.2 Applied inspection methods

The previous sections described the built-in inspection methods showing predicted results of
the derived solutions in AstrometricParameters and GAstrometric objects. This section de-
scribes extended inspection methods of the derived solutions applied to RegriddedFrames and

168

18.4 HOW-TO: QC Astrometry Calibration: Astrometry

CoaddedRegriddedFrames. All these inspection methods deliver a plot in the same 5-panel form
as the built-in inspect() methods, but using different source catalogs for the residuals. Also, the
details and latest usage information can be found in the methods’ docstrings accessed via the
help() command.

AstrometricParameters plot residuals to usno() method

• Temporarily in current checkout only.

This plot displays source position residuals between the corrected catalog positions per-
formed by LDAC or sources positions extracted from a RegriddedFrame corrected with the
same parameters and the USNO-A2.0 reference catalog. Setting the source parameter to ‘so-
lution’ or ‘applied’ selects either the catalog used in the solution or a catalog extracted from a
RegriddedFrame to which the solution parameters have been applied, respectively.

AstrometricParameters plot residuals to regrid() method

• Temporarily in current checkout only.

This plot displays source position residuals between the corrected catalog positions performed
by either LDAC or SExtractor and sources extracted from a RegriddedFrame corrected with
the same parameters. Setting the derived type parameter to ‘solution’ or ‘sextractor’ selects
either the catalog used in the solution or a catalog extracted from a ReducedScienceFrame by
SExtractor to which the solution parameters have been applied to the header, respectively.

CoaddedRegriddedFrame plot regrid residuals() method

• Temporarily in current checkout only.

This plot displays source position residuals between a given RegriddedFrame and all other
overlapping frames, all that participate in a CoaddedRegriddedFrame. Setting the use coadd

switch (use coadd=True) displays source position residuals between the CoaddedRegridded-
Frame and all RegriddedFrames that went into its creation. It plots a given RegriddedFrame
source position against the average source position from the CoaddedRegriddedFrame.

18.4.3 Image inspection method

• Temporarily in current checkout only.

The multi-purpose inspect() method used by all frames inheriting from BaseFrame can create
a plot that can be used to display the qualitative residuals on the pixel level by using either
difference images or multi-color images using the same mechanism for inspecting individual
frames. The detailed usage of this method can be found in section 23.1. The general idea for
this purpose is to inspect one RegriddedFrame, setting the compare parameter (compare=True)
and specifying the other RegriddedFrame with the other parameter. The routine automatically
compares only the overlapping region of the two frames.

awe> reg0 = RegriddedFrame(pathname=filename0)

awe> reg1 = RegriddedFrame(pathname=filename1)

awe> reg0.inspect(compare=True, other=reg1) # common region of reg0-reg1

169

18.4 HOW-TO: QC Astrometry Calibration: Astrometry

18.4.4 Overlaying a calibrated catalog

This method requires a RegriddedFrame obtained from the RegridTask. It needs to be first
loaded into SkyCat:

awe> q = RegriddedFrame.reduced.filename == ’filename.reduced.fits’

awe> os.system(’skycat %s’ % (q[0].filename))

First, set the desired cut level via the “Auto Set Cut Levels” button, or with “View:Cut Lev-
els...”. Next, overlay the catalog by choosing “Data-Servers”, then “Catalogs”, then “USNO at
ESO”2. In the dialog that comes up, choose “Search” and all the sources known to the USNO
survey will be plotted in circled cross-hairs. They can now be compared directly with the sources
on the underlying frame. When inspecting the corellation, remember that the USNO catalog is
accurate only to about 0.3 arc-sec.

If the RegriddedFrame was not created from the ReducedScienceFrame, it will need to be
regridded with the RegridTask before the inspection above can be carried out. This is because
there exist projection effects (distortions) in the ReducedScienceFrame. The RegridTask can
be run via the DPU or locally as shown in the example below:

awe> dpu.run(’Regrid’, i=’WFI’, d=’2001-01-01’, f=’#845’, o=’Science2’, C=0)

awe> regrid = RegridTask(date=’2000-01-01’, chip=’ccd50’, filter=’#845’,

... object=’Science2’, commit=0)

awe> regrid.execute()

18.4.5 Examine the AstrometricParameters values

To look at the AstrometricParameters for a given ReducedScienceFrame, the AstrometricParameters
objects of interest must first be located in the database:

awe> q = AstrometricParameters.reduced.filename == ’WFI.2001-02-16T01:42:31.289

_1.calibrated.fits’

awe> len(q)

1

awe> dt = datetime.datetime(2005,1,1)

awe> q = (AstrometricParameters.instrument.name == ’WFI’)

awe> q &= (AstrometricParameters.filter.name == ’#845’)

awe> q &= (AstrometricParameters.chip.name == ’ccd50’)

awe> q &= (AstrometricParameters.creation_date > dt)

awe> len(q)

1199

The first example shows the a query for an AstromtricParameters object by its source ReducedScienceFrame’s
filename. The second shows a more general search based on instrument, filter, chip, and date.

NOTE: Dates and times in the Astro-WISE database environment are generally in
the form of datetime objects. Therefore, when querying for them, a datetime object
must be used. The main exception is the select() method, but this method is not
universally implemented at this time.

2There are other catalogs available, but the USNO catalog was used in the astrometric solution and should
fit well.

170

18.5 HOW-TO: Troublshoot Astrometry Calibration: Astrometry

18.5 HOW-TO Troubleshoot Astrometry Quality Problems
and Improve Solutions

Astrometry, like photometry, requires good data to get a good result. The process to derive an
astrometric solution is a complex one and is described in brief in HOW-TO Derive Astrometry
(see §18.1), and in detail in the LDAC pipeline documentation and many other astrometry
references.

The scope of this document is to describe specific things that can go wrong in an astrometric
solution and approaches to improve the astrometric solution, both in the context of the Astro-

WISE Environment.
If a correction method below refers to a parameter to be set, it can be set through the process

parameters interface (see §8.4). In short:

> pars = Pars(AstrometricPatameters)

> pars.process_params.SOME_VALUE = 100

> ...

> AstrometricParametersTask(..., pars=pars.get()).execute()

As with any aspect of data reduction, a good rule of thumb if you have any problem with
astrometry, inspect the data if no obvious error presents itself. Please take a look at HOW-TO

Inspect Astrometry (see §18.4) to see how this is done in the Astro-WISE Environment.

18.5.1 Errors in LDAC

LDAC is the software suite used to create the astrometric solution, whose steps are given in
HOW-TO Derive Astrometry (see §18.1). Despite (or because of) the best efforts of programmers,
software can always have problems or can exit for very specific reasons. To help make the error
messages less cryptic, LDAC’s Python wrapper has been upgraded to output an ordered list of
debugging information in case of a software failure. All individual programs linked by a common
instance of the LDAC class (e.g., preastrom, associate, aplastrom, astrom, etc.) will have their
output logged where it normally would have been supressed so that any warnings preceeding
the failure can be seen.

The normal output of an individual LDAC program will show only the command-line, the
program version, and program description. If an error occurs, the configuration file, warnings,
and errors are also added to this output. If there are programs run from the same LDAC
instance, those that have run will have their full output preceeding the output of the failed
program. The bottom line is that errors should be easier to diagnose for both the user and the
programmer.

Viewing the log output is the best way to try and troubleshoot any astrometry error. The
LDAC class instance has verbosity set to NORMAL by default which gives the minimum of
information when all is well, and everything when there is a problem. By setting the individual
routine settings to VERBOSE (or even DEBUG) instead:

> pars = Pars(AstrometricPatameters)

> pars.preastromconf.VERBOSE = ’VERBOSE’

> ...

> AstrometricParametersTask(..., pars=pars).execute()

will increase the verbosity in the event of an error. If you need even more and want as much in-
formation as LDAC can produce, you can set the LDAC class verbosity in the code to VERBOSE
or DEBUG:

171

ftp://ftp.strw.leidenuniv.nl/pub/ldac/software/pipeline.pdf

18.5 HOW-TO: Troublshoot Astrometry Calibration: Astrometry

ldac = LDAC.LDAC(verbose=’DEBUG’)

...

ldac.preastrom(...)

...

This latter method is recommended only if it is absolutly necessary, as it involves code changes
and a very large amount of program output to go through.

Specific conditions from LDAC log output

If the solution fails with a software exception, deciphering the output is the only way to figure
out what happened. The terminal Exception (the very last error message) should contain some
indication of what happened. If there is no help there, a perusal of the previous log messages
can be helpful. If they are not, posting the output to the Issues list is the quickest way to get
expert help.

Below are included some very common log messages that may indicate specific problems.
Some terms are defined for this section only for clarity:

• num ext is the number of extracted objects, found in the line containing the text: “objects
of field”

• num ref is the number of reference objects from the extracted region, found in the line
containing the text: “objects from reference catalog”

The first term is the program where a specific error occurs. This is followed by criteria, a
possible cause, and a course of action:

• preastrom − if num ext is low (on the order of 10) and num ref is high (on the order of
100), there are still more objects to be extracted, lower extraction threshold:
AstrometricParameters.sexconf.DETECT THRESH

• preastrom − if num ext and num ref are higher (on the order of 100, 1000, respectively,
or both of the order of 100), it is possible the AstrometricCorrection is bad or was not
run, check the alignment with the reference catalog, see HOW-TO Inspect Astrometry (see
§18.4)

• preastrom − if num ext and num ref are swapped in magnitude (on the order of 1000, 100,
respectively), there may be a cluster where the reference catalog is necessarily incomplete,
try using the GAstromTask (see §18.3).

• preastrom − if num ext is about a factor of 2 larger than num ref, there may have been
an error in the pointing where the sources are doubled, inspect the image as described in
HOW-TO Inspect Astrometry (see above)

18.5.2 Quality Control (QC) Values Exceeded

Astrometric solutions in Astro-WISE, like all other calfiles, have QC limits to determine if the
calfile has the required quality. If these limits are exceeded, the solution is marked as bad and
there may be methods to help improve the quality. This section addresses specific cases where
quality may be improved.

172

http://www.astro-wise.org/portal/issues_mailing_list.shtml

18.5 HOW-TO: Troublshoot Astrometry Calibration: Astrometry

NREF too low

Low NREF (number of output reference pairs) can be caused by a number of situations, from
low SNR data (low EXPTIME), to very sparce fields, to large differences in filter band between
the extracted and reference catalogs. There are two ways that too low an NREF can harm a
solution:

1. AstrometricParameters.process params.MIN NREF sets a limit in preastrom (MIN OBJ)
where it refuses to process catalogs with fewer than this number of extracted or reference
objects in the defined region. An LDAC error will result from this.

2. AstrometricParameters.process params.MIN NREF also sets a limit for successful solu-
tions from astrom (i.e., solutions not affected by the previous point) to be flagged as poor.
In this case, it is the final number of reference pairs used in the solution. Only a flag will
be set in this case.

To improve a solution with an NREF too low where either of these situations occurred, more
reference pairs are necessary. There are a few ways to accomplish this. One method would
involve decreasing the extraction threshold:

• AstrometricParameters.sexconf.DETECT THRESH

below the default of 10.0 to increase the number of extracted sources that can be considered
for pairing. Another method involves the use of a global solution and requires a dithered set
of observations via the GAstromTask (see §18.3). One last method involves adding more chips
from the same exposure, but it is not formalized in Astro-WISE except during ingestion (the
method is called AstrometricCorrection).

NREF too high

Usually, more reference pairs are better, but only to a certain limit. If the density of sources is too
high (e.g., greater than approximately 1200 in a 2k×4k CCD chip at 0.238 arcsec/pixel, i.e., the
case with WFI) and the association radius too high (e.g., greater than approximately 3 arcsec),
false solutions due to random associations can occur. Also, attempting to solve astrometry using
data taken in a significantly different filter from reference catalog can add confusion if density
is high. For these reasons, a QC limit has been established for this condition.

Very little can be done to help this kind of data other than trying to decrease the number of
reference pairs by decreasing the number of extracted sources. This can be done by increasing
the extraction threshold:

• AstrometricParameters.sexconf.DETECT THRESH

Please note, this does nothing to decrease the number of reference sources! As such, the help-
fullness off this method is limited. In addition to reducing the number of extracted objects, the
association radius between the extracted and reference catalogs:

• AstrometricParameters.associateconf.INTER COLOR TOL

should be decreased to reduce the chance of false associations. An associated parameter,
ISO COLOR TOL, has no effect for local solutions involving only onechip. Changing it in
this case is unnecessary.

173

18.5 HOW-TO: Troublshoot Astrometry Calibration: Astrometry

SIG DRA or SIG DDEC, or RMS too high

If the standard deviation of ∆RA or ∆DEC, or the RMS of the solution is outside of the QC
limits, the solution is considered poor. To improve this, decreasing the number of reference pairs
(NREF) might help, assuming those removed were of poorer quality (e.g., fainter). A better
method is to decrease the radius over which associations can occur. Adjusting:

• AstrometricParameters.associateconf.ISO COLOR TOL

to lower values will do just this with respect to sources in a reference catalog, and adjusting:

• AstrometricParameters.associateconf.INTER COLOR TOL

will affect only overlapping sources in the same catalog (e.g., global solutions).
What is being adjusted here is the factor of the object’s size (actually an ellipse as set by

the source extraction parameters RA, DEC, a, b, Θ). Only objects whose position overlaps the
ellipse of another object will be associated with it. These settings should be used with care as
setting these values too low can result in too few reference pairs very quickly.

18.5.3 Problems with the Solution

In addition to software exceptions and QC limit issues, the data can be of such a type to
prevent a solution from converging. This section describes some specific configurations that can
be adjusted to fix certain problems.

preastrom

The first step of solving astrometry in Astro-WISE is running preastrom to solve the translation,
rotation, and scaling of the input data.

The recommendations below have been incorporated into the AstrometricParameters rou-
tines as a fallback in case preastrom fails with the basic settings. If there are still preastrom
failures at the more conservative settings, inspect the data to make sure there is nothing unusual,
and proceed carfully.

MAX OFFSET

The first step of preastrom is measuring distances between all objects and examining the (∆X,
∆Y) parameter space. The total area that goes into the distance determination is the area
covered by the input catalog plus a border of MAX OFFSET pixels around the catalog area.
Thus, if there is a pointing offset greater than MAX OFFSET pixels, preastrom will never find
the proper solution.

If inspection of the logs of failed preastrom runs reveals the number of extracted and ref-
erence objects are similar and number on the order of 100, there may be a shift beyond the
default value of MAX OFFSET. Inspect the frame as shown in HOW-TO Inspect Astrometry
(see §18.4) to see if this is the case. If so, increase the value of MAX OFFSET to larger than the
offset observed. Be aware, however, that if the object density increases in parts of the border
area (e.g., presence of a clutser), increasing MAX OFFSET may have unpredictable results.

POS ERROR

After the (∆X, ∆Y) measuremnts have been made, preastrom runs a boxcar smoothing of the
(∆X, ∆Y) parameter space with a boxcar size of POS ERROR pixels, using the peak of that
distribution to define the set of data to triangulate on.

If excessive scaling or moderate rotation (>̃2 degrees) might be causing preastrom to fail,
increasing POS ERROR can help if the density is not too high.

174

18.5 HOW-TO: Troublshoot Astrometry Calibration: Astrometry

RMS TOL & SEL MIN

Once the subset of data is chosen, a triangulation method using angle and distance is used
to determine the final rotation and scaling (affine transformation), and final offsets. If the
RMS of the fit is above RMS TOL, SEL MIN will be increased to choose a larger number of
sources and triangulation will proceed iteratively to try to reduce the RMS below RMS TOL. In
practice, this iteration seldom improves things due to the nature of the method and the quality
of the input data. Setting a higher RMS TOL is usually the only way to overcome this affine
transformation determination error.

Increasing both RMS TOL and SEL MIN will allow a poorer quality preastrometric fit to
continue through the pipeline, where the final solution may or may not be of good quality.

associate

After the gross, linear corrections have been made, the reference and extracted sources can be
associated using associate. associate has really only one parameter to help improve the
precision of the solution. This is the distance within which objects will be associated, and are
represented by the two parameters ISO COLOR TOL and INTER COLOR TOL.

ISO COLOR TOL & INTER COLOR TOL

The definitions and optimizations of these parameters was described in §18.5.2 above. Re-
peating, INTER COLOR TOL is for associations between sources in different catalogs (e.g.,
extracted and reference catalogs), ISO COLOR TOL is for associations between sources in the
same catalog (e.g., a joined extracted catalog). Setting these to lower values can result in a
more precise fit, but should be used with care.

(ζ,η)

TAN

(x,y)

Figure 18.1: A 2-dimensional illustration of mapping of observed sky to idealized sky. The
lowest plane (x,y) is the observed sky, and the middle plane (ζ,η) is the representation of the
ideal sky mapped from a tangential (Gnomonic) projection denoted by TAN, the upper-most
curved plane. The vertical line represents the radial direction with respect to the detector.

astrom

The PDEG parameter describes the polynomial degree used to map the observed sky, the pixel
image, denoted by (x,y) to the idealized sky denoted by (ζ,η), see Fig. 18.1. The required
number of associations increases exponentially with degree. Also, the spatial uniformity of the
associations becomes more critical with degree. PDEG is applicable for both single-chip and

175

18.5 HOW-TO: Troublshoot Astrometry Calibration: Astrometry

overlap solutions. When in overlap, however, the FDEG parameter will affect the solution as
well.

The FDEG parameter is a list that describes how the mapping of the PDEG degree poly-
nomial occurs from pointing to pointing. The first value in the list maps linear terms (order
1), the second, quadratic terms (order 2), etc. Only the first 3 can ever be changed. Based on
the value of each list element, the polynomial coefficents of different pointings can be mapped
to each other linearly (FDEG index 1), quadratically (FDEG index 2), etc., or held constant
(FDEG index 0). For example, in the default case:

FDEG = [1, 0, 0]

indicates all first order terms will be mapped linearly between pointings and all higher order
terms will be held constant. Similar to PDEG, as FDEG’s total value increases, so increases
the number of associations and spatial uniformity required to converge.

For single chip fields, it is unlikely that a PDEG > 3 will result in a proper fit3. To enhance
the number of associations over an area of one chip, multiple dithered observations should be
used. This enhances both the number and spatial uniformity and allows greater PDEG and
FDEG values to be used successfully. See GAstromTask (see §18.3) for how to solve astrometry
for dithered observations.

3Indeed, the number of values stored in the database (PV matrix coefficients) are currently only enough to
properly store a solution of PDEG = 3.

176

Chapter 19

Calibration: Photometry

19.1 Photometric Reference Catalog and Standard Ex-
tinction Curve

The Photometric Reference Catalog is a catalog which contains magnitudes in common bands,
coordinates and names for standard stars. The Photometric Reference Catalog and the standard
extinction curve are two calibration files that are provided by the system. Both calibration files
are directly accessible for the user from the awe-prompt.

19.1.1 The Photometric Reference Catalog

Its present contents

The Photometric Reference Catalog present in the Astro-WISE system is the result of an ongoing
project. This section describes the contents of the most recent version of this Photometric
Reference Catalog wich has the filename cal569E v11.cat. The catalog file can be found in the
CVS checkout : cvsroot/catalog. This catalog contains stars from four sources: the Landolt
catalog, the Stetson catalog, the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) catalog
and the Preliminary Catalog for the OmegaCAM Secondary Standards Programme which is
based on our own observations. For all four sources stellar magnitudes are given in both the
Johnson-Cousins UBV RI photometric system and in the Sloan ugriz photometric system (i.e.,
unprimed).

• Landolt stars: the Photometric Reference Catalog contains all 544 stars from the Landolt
catalog. The Johnson-Cousins UBV RI magnitudes are taken from Landolt 1992. The
Sloan ugriz magnitudes are computed from the Johnson-Cousins UBV RI magnitudes
using the transformation equations of Jester et al. 2005 which apply only to stars with
R− I < 1.15. The ugriz magnitudes are not computed for stars which have R− I > 1.15.
Improved coordinates are used for the 526 Landolt stars available at this ESO webpage.

• Stetson stars: the Photometric Reference Catalog contains all 39109 Stetson stars (see
Table 19.1). The Johnson-Cousins BV RI magnitudes are taken from the on-line catalog
of Stetson (U -band magnitudes are not available). The Sloan griz magnitudes are com-
puted from the Johnson-Cousins BV RI magnitudes using the transformation equations
of Jester et al. 2005 which apply only to stars with R − I < 1.15. The ugriz magnitudes
are not computed for stars which have R − I > 1.15.

177

http://www.astro-wise.org/catalog/
http://www.sdss.org/dr5/algorithms/sdssUBVRITransform.html
http://www.ls.eso.org/lasilla/Telescopes/2p2T/Landolt/
http://www2.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/community/STETSON/
http://www.sdss.org/dr5/algorithms/sdssUBVRITransform.html

19.1 HOW-TO: Photometric Reference Catalog and Extinction Curve Calibration: Photometry

• SDSS DR5 stars: the Photometric Reference Catalog contains only SDSS DR5 stars
which are located inside 1 square degree fields centered on 22 SA fields (see Table 19.1).
The Sloan ugriz magnitudes are the psfMags for objects classified as stars available in the
SDSS DR5 database. SDSS DR5 quality control flags were taken into account to exclude
stars with saturated pixels, being blended with neighboring stars or being too close to the
edge of a frame for a given band. This means that stars were excluded if any of the fol-
lowing SDSS DR5 quality flags are raised for any band: COSMIC RAY, SUBTRACTED,
SATURATED, BLENDED, BRIGHT and EDGE. The SDSS DR5 data was retrieved using
the python code sdss2refcat.py. The Johnson-Cousins UBV RI magnitudes are computed
from the Sloan ugriz magnitudes using the transformation equations of Jester et al. 2005
which apply only to stars with R− I < 1.15. The UBV RI magnitudes are not computed
for stars which turn out to have R − I > 1.15.

• Preliminary Catalog stars: we observed 7 of the 22 SA fields listed in Table 19.1
with the WideField-Camera (WFC) on the 2.5m Isaac Newton Telescope at La Palma
using Sloan ugriz filters. The derived catalog is called the Preliminary Catalog. The
SDSS DR5 stars were used as calibrators. The Johnson-Cousins UBV RI magnitudes
are computed from the Sloan ugriz magnitudes using the transformation equations of
Jester et al. 2005 which apply only to stars with R − I < 1.15. The UBV RI magni-
tudes are not computed for stars which turn out to have R − I > 1.15. Further details
of the data reduction, photometric calibration and other properties of the Preliminary
Catalog are given in Verdoes Kleijn et al. 2006. The PC data have much larger mea-
surement errors than the DR5 data. Additional plots with u − g vs g − r for PC only and
u − g vs g − r for PC plus DR5 show the same data as in Fig 4 of Verdoes Kleijn et al. 2006
but as density plots to better show the consistency in stellar locus between the DR5 and PC
data. Similar plots for g − r vs r − i for PC only and g − r vs r − i for PC plus DR5 and
for r − i vs i − z for PC only and r − i vs i − z for PC plus DR5 are also available. The
Preliminary Catalog will be used as starting point to derive the OmegaCAM Secondary
Standards with OmegaCAM itself in the first year of operations.

The catalog is in FITS table format and its columns are described in Table 19.2. Whenever
a magnitude or its associated error has value 0.0 it means that no value has been determined.

Retrieving the Photometric Reference Catalog

The Photometric Reference Catalog can be retrieved from the database to the local directory
as follows :

awe> from astro.main.PhotRefCatalog import PhotRefCatalog

awe> refcat = PhotRefCatalog.get()

awe> refcat.retrieve()

which will automatically give the most recent Photometric Reference Catalog in the system.
Note the retrieve operation in the last line; this is important. The contents of the catalog thus
retrieved to the local directory can then be queried using the methods described in §19.1.1.

Query methods

The Photometric Reference Catalog has six methods for querying/accessing its content. The
first four of these are simple methods without parameters. These are the following :

1. refcat.get number of sources(),
which returns the number of sources in he catalog.

178

http://cas.sdss.org/dr5/en/
http://www.astro-wise.org/viewvc/awe/astro/toolbox/photometry/sdss2refcat.py?revision=1.19&view=markup
http://www.sdss.org/dr5/algorithms/sdssUBVRITransform.html
http://www.sdss.org/dr5/algorithms/sdssUBVRITransform.html
http://www.astro-wise.org/Public/blankenberge_verdoes.ps.gz
http://www.astro-wise.org/Public/UminGvsGminRdensity.eps
http://www.astro-wise.org/Public/UminGvsGminRdensityWithDR5.eps
http://www.astro-wise.org/Public/blankenberge_verdoes.ps.gz
http://www.astro-wise.org/Public/GminRvsRminIdensity.eps
http://www.astro-wise.org/Public/GminRvsRminIdensityWithDR5.eps
http://www.astro-wise.org/Public/RminIvsIminZdensity.eps
http://www.astro-wise.org/Public/RminIvsIminZdensityWithDR5.eps

19.1 HOW-TO: Photometric Reference Catalog and Extinction Curve Calibration: Photometry

Table 19.1: The stars present in the 22 SA fields contained in the Photometric Reference Catalog
in AWE. The fields cover an area of 1.1×1.1 degree centered on the tabulated coordinates. The
number of Landolt standard stars, Stetson standard stars, SDSS DR5 stars and stars from the
Preliminary Catalog (PC) for the OmegaCAM Secondary Standard Programme are listed.

Field α (J2000) δ (J2000) #Landolt #Stetson #SDSS DR5 #PC
(deg) (deg)

SA 51 112.663 +29.828 0 0 214 0
SA 57 197.171 +29.384 0 0 952 0
SA 68 4.146 +15.844 0 0 1302 0
SA 92 13.946 +0.949 41 213 1094 6475
SA 93 28.783 +0.824 4 0 1128 0
SA 94 44.033 +0.571 7 0 1099 0
SA 95 58.500 +0.000 45 426 1093 0
SA 98 103.021 −0.328 46 1116 0 23840
SA 100 133.529 +0.546 6 1 3343 0
SA 101 149.112 −0.386 35 117 1776 5591
SA 102 163.779 +0.866 5 66 1517 0
SA 103 178.779 +0.556 2 0 1507 0
SA 104 190.4875 −0.5292 34 76 1576 5701
SA 105 204.533 +0.676 4 0 2172 0
SA 106 220.533 +0.427 2 15 2864 0
SA 107 234.8250 −0.2631 28 728 3889 12006
SA 108 248.033 +0.369 6 3 6148 0
SA 110 280.6000 +0.34583 39 589 0 38562
SA 112 310.529 +0.524 7 73 12087 0
SA 113 325.3750 +0.49944 42 483 4046 13947
SA 114 340.529 +0.689 9 5 1957 0
SA 115 355.779 +0.888 10 0 1170 0

179

19.1 HOW-TO: Photometric Reference Catalog and Extinction Curve Calibration: Photometry

Table 19.2: Description of the 29 columns in the Photometric Reference Catalog cal569E v*.cat.
column name description

SeqNr sequence number
origin origin of stellar magnitude:

Landolt: Landolt catalog, Stetson: Stetson catalog,
SDSS5: SDSS DR5,
AW2S: Preliminary Catalog for OmegaCAM Secondary Standards

Name Name of star
Ra/Ra err Right Ascension / its error (deg)
Dec/Dec err Declination / its error (deg)
Epoch epoch of coordinates: all J2000
Flag flag, (not used currently)
JohnsonU/JohnsonU err Johnson U / its error (mag)
JohnsonB/JohnsonB err Johnson B / its error (mag)
JohnsonV/JohnsonV err Johnson V / its error (mag)
CousinsR/CousinsR err Cousins R / its error (mag)
CousinsI/CousinsI err Cousins I / its error (mag)
SloanU/SloanU err Sloan u / its error (mag)
SloanG/SloanG err Sloan g / its error (mag)
SloanR/SloanR err Sloan r / its error (mag)
SloanI/SloanI err Sloan i / its error (mag)
SloanZ/SloanZ err Sloan z / its error (mag)

2. refcat.get list of bands(),
which returns a list of the photometric bands supported by the catalog.

3. refcat.get source attributes(),
which returns information of the data content of a source. The information is stored in a
dictionary with the attribute names of the source as keys and their types as values. To
just get the attribute names, do : refcat.get source attributes().keys().

4. refcat.make skycat(),
which dumps the catalog for overplotting in skycat.

The following query methods have a more elaborate interface. One thing that should be men-
tioned is that every single star in the catalog has an index for cross-referencing purposes. The
methods below all return dictionaries which use these indices as keys.

In order to retrieve the magnitudes for all the stars in the standard star catalog for one
particular photometric band (mag id), type :

awe> refcat.get_dict_of_magnitudes(mag_id)

which will return a dictionary with the indices of the sources as keys, and as values 2-tuples
containing the magnitude and its uncertainty. The mag id is a string that should match one of
the entries in the list generated by the get list of bands method. If one wants to retrieve the
magnitudes for only a subset of stars, it is possible to provide the method call with an additional
list of indices :

awe> refcat.get_dict_of_magnitudes(mag_id, index_list = [1, 2, 13500])

which will only give the magnitudes for the stars 1, 2 and 13500 in the list.

180

19.1 HOW-TO: Photometric Reference Catalog and Extinction Curve Calibration: Photometry

Besides this dedicated method, the Photometric Reference Catalog also has an allround
query method that can be used to retrieve any information that is needed. This method and its
signature are :

awe> refcat.get_source_data(column_list, index_list = index_list)

which will return a dictionary with the indices of the sources as keys, and as values lists of
the requested data items in the same order as specified in the input column list. The input
column list is the list of data items to be retrieved, and the optional index list is used to
get data from a subset of stars only. The entries in column list should match the keys of the
dictionary that is generated by the get source attributes method. These entries are strings.

Examples of use

Retrieve the V magnitudes of all the stars in the catalog :

awe> mag_dict = refcat.get_dict_of_magnitudes(’JohnsonV’)

Retrieve the g′ magnitudes of stars 10 to 500 :

awe> inds = range(10, 500)

awe> mag_dict = refcat.get_dict_of_magnitudes(’SloanG’, index_list = inds)

Retrieve the Ra-Dec-Epoch information from all the stars :

awe> info_dict = refcat.get_source_data([’ra’, ’dec’, ’epoch’])

Retrieve the name (star id) of the stars 1 and 2 :

awe> info_dict = refcat.get_source_data([’star_id’], index_list = [1, 2])

Retrieve the names of the catalogs from which the sources originate (origin) :

awe> info_dict = refcat.get_source_data([’origin’])

Using a subset of the catalog for photometric calibration

As was mentioned in §19.1.1, the Photometric Reference Catalog contains stars from various
contributary catalogs. To allow the user (and the system) to see/use/select the stars of only
one or a select few of the contributaries, the standard star catalog is outfitted with a filter on
the origin column. In the current version of the Photometric Reference Catalog this attribute
can have one of the following values : Landolt, SDSS5 and Stetson for Landolt, SDSS DR5 and
Stetson catalogs, respectively, and AW2S for the Preliminary Catalog.
To select/see/use only stars from the Photometric Reference Catalog that originate from the
’Landolt’ catalog use :

awe> refcat.origin_filter.activate(’Landolt’)

To select/see/use only stars from both the ’Landolt’ and ’Stetson’ sub-catalogs use :

awe> refcat.origin_filter.activate(’Landolt’, ’Stetson’)

To select/see/use only stars from the ’Stetson’, ’SDSS5’ and ’AW2S’ sub-catalogs use :

awe> refcat.origin_filter.activate(’Stetson’, ’SDSS5’, ’AW2S’)

Note, that the order in which the origin identifiers appear is not important.
To de-activate the filter so that the full view on the catalog is restored :

181

19.1 HOW-TO: Photometric Reference Catalog and Extinction Curve Calibration: Photometry

awe> refcat.origin_filter.deactivate()

To check whether the filter is actually switched on :

awe> refcat.origin_filter.is_active()

which will return either True or False. By default, the filter is disabled.
It is obvious that the setting of the filter affects the return values of the query methods described
in §19.1.1.

Standard and non-standard photometric bands for OmegaCAM

The OmegaCAM system distinguishes two types of bands : key bands, and user bands. This
distinction has its origin in the OmegaCAM calibration plan, and has implications for the inner
workings of the photometric pipeline. The key bands are the Sloan ugri bands. These bands are
fully supported by the OmegaCAM system, and form the core of the contents of the Photometric
Reference Catalog. Any other band than these four Sloan bands is a user band.

To process data that have been observed in a user band, a transformation table is needed.
This table contains information about which key bands to use in the transformation, and a set
of transformation coefficients. Such a table should be present in the database for every filter
that belongs to a user band. The contents of such a table could be so simple as providing a
substitute key band for a given user band (e.g. for a Gunn r filter, the Sloan r magnitudes will
be used), but could also contain a full-blown transformation with given color and a color-term.
The transformation table will be discussed in a separate chapter.

The Johnson-Cousins bands and the Sloan z band are strictly speaking also user bands.
However, given the wide-spread use of these systems and for convenience, the necessary trans-
formations have already been performed and the results have been stored together with the Sloan
ugri key bands. The transformation equations used are discussed in §19.1.1. It is, of course,
always possible to override these transformed magnitudes stored in the catalog by providing the
system with an appropriate transformation table.

Using your own catalog with standard stars

The Photometric Reference Catalog described above is the default Photometric Reference Cat-
alog automatically used by AWE. This standard catalog has the reserved name cal569E v*.cat,
with the version number at the asterisk. This naming convention should never be used for your
own catalog! In the event that you need to use standard stars which are not provided by the
default standard catalog you can create your own catalog and ingest it in AWE.

A Photometric Reference Catalog requires a specific format. One can create this format from
an input ascii format using the refcat generator.py code available in CVS checkout : cvsroot/catalog/tools
Typing at the operating system command line

linux> awe refcat_generator.py

will generate the help documentation.
Once created, you can ingest it into the system doing the following :

awe> from astro.main.PhotRefCatalog import PhotRefCatalog

awe> refcat = PhotRefCatalog(pathname = ’myowncatalog.cat’)

awe> refcat.store()

awe> refcat.commit()

Note the extra store command that will put the file on the fileserver.

182

http://cvs.astro-wise.org/index.cgi/catalog/tools/

19.1 HOW-TO: Photometric Reference Catalog and Extinction Curve Calibration: Photometry

19.1.2 The standard extinction curve

Its present contents

To be written.

Retrieving the standard extinction curve

To retrieve the standard extinction curve from the database, do the following :

awe> from astro.main.PhotExtinctionCurve import PhotExtinctionCurve

awe> extcurve = PhotExtinctionCurve.get()

after which it can be used immediately. For example :

awe> extcurve.get_extinction(4861.0)

0.13652400000000001

with 4861.0 the wavelength in Å, and the answer in mag/am. This method is the only query
method defined on the extinction curve.

Ingesting the standard extinction curve

Before the photometric pipeline can be used, the system should be initialized by putting a
standard extinction curve into the system. Note : this should only have to be done once
by the maintainer of the system. After initialization, every user of the system has access
to the standard extincintion curve. To put a standard extinction curve into the system, do the
following :

awe> from astro.main.PhotExtinctionCurve import PhotExtinctionCurve

awe> extcurve = PhotExtinctionCurve(pathname = ’cal564E.dat’)

awe> extcurve.commit()

The standard extinction curve file can be found in a separate CVS checkout : /cvsroot/catalog.
The file cal564E.dat represents the La Palma extinction curve in units of mag/am.

References

Landolt, A.U. 1992, AJ, 104 (1), 340
Jester, S., et al. 2005, AJ, 130, 873
Verdoes Kleijn et al. 2006

183

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1992AJ....104..340L&db_key=AST&data_type=HTML&format=&high=43c2adf22401012
http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2005AJ....130..873J&db_key=AST
http://www.astro-wise.org/Public/blankenberge_verdoes.ps.gz

19.2 HOW-TO: Photometric Source Catalog Calibration: Photometry

19.2 HOW-TO make a Photometric Source Catalog

The very first processing step in the photometric pipeline always consists of deriving catalogs
from standard field observations. These observations should be fully reduced, i.e. de-biased
and flatfielded (ReducedScienceFrame objects), and an astrometric calibration should also be
available for the observations (AstrometricParameters objects). This step in the processing is
the only time when image data actually enters the photometric pipeline. After this point, the
rest of the photometric pipeline only works with the catalogs produced in this very first step.

19.2.1 Content of the Photometric Source Catalog

The Photometric Source Catalog contains one row per identified standard star with 8 values.
These 8 columns are described in table 19.3.

19.2.2 Making photometric catalogs from the awe-prompt

The catalogs produced in this first processing step are represented by the PhotSrcCatalog class.
This class is the real ‘working’ class in the photometric system because instances of it are used
throughout. These photometric catalogs are the result of associating a SExtractor catalog with
a photometric standard star catalog. The following sub-sections describe the two ways in which
such catalogs can be produced from the awe-prompt.

Using a pre-cooked recipe

Deriving a photometric catalog from the awe-prompt using a pre-cooked recipe is done thus :

1. awe> from astro.recipes.PhotCalExtractResulttable import PhotcatTask

2. awe> task = PhotcatTask(instrument = ’WFC’,

... raw_filenames = [’r336603_3.fits’])

3. awe> task.execute()

To get detailed information about the use of the task, type :

awe> help(PhotcatTask)

which will, for example, show the parameters that can be passed to the constructor of the task.

Using the basic building blocks

A more elaborate but also very enlightening way of making a photometric catalog is by using
the basic building blocks of the photometric pipeline themselves. This allows tweaking of the
processing down to the nitty-gritty details. The most common way of deriving a photometric
catalog in this way is given here :

1. awe> from astro.main.PhotSrcCatalog import PhotSrcCatalog

2. awe> from astro.main.PhotRefCatalog import PhotRefCatalog

3. awe> from astro.main.AstrometricParameters import AstrometricParameters

4. awe> from astro.main.ReducedScienceFrame import ReducedScienceFrame

5. awe> frame = (ReducedScienceFrame.filename == ’r336603_3.reduced.fits’)[0]

6. awe> query = (AstrometricParameters.reduced == frame) &

... (AstrometricParameters.is_valid == 1)

7. awe> astrom_params = query.max(’creation_date’)

8. awe> refcat = PhotRefCatalog.get()

9. awe> photcat = PhotSrcCatalog()

184

19.2 HOW-TO: Photometric Source Catalog Calibration: Photometry

10. awe> photcat.refcat = refcat

11. awe> photcat.frame = frame

12. awe> photcat.astrom_params = astrom_params

13. awe> photcat.refcat.retrieve()

14. awe> photcat.frame.retrieve()

15. awe> photcat.frame.weight.retrieve()

16. awe> photcat.make()

17. awe> photcat.commit()

In lines (1)-(4) the relevant classes are imported, and in steps (5)-(8) the necessary dependencies
are retrieved from the database. In lines (9)-(16), a PhotSrcCatalog object is instantiated, its
dependencies are set, and the make method is called. In step (17), the PhotSrcCatalog object
is committed to the database. Note the explicit retrieve calls in steps (13)-(15) that access the
fileserver.

It is important to realize that the separate steps detailed here are roughly the same as the
ones performed by the PhotcatTask (§19.2.2).

19.2.3 Configuring the photometric catalog

Any PhotSrcCatalog object has two knobs that allow the user to configure the behaviour of
the make method and its results. The first one of these deals with configuring SExtractor, the
other one with configuring the make method itself.

SExtractor can simply be configured through the sexconf attribute of the PhotSrcCatalog

object. To give an example of how this works :

awe> photcat.sexconf.PHOT_APERTURES = 30

which tells SExtractor to use an aperture with a diameter of 30 pixels in measuring the FLUX APER

of the standard stars. More information about the configuraton of SExtractor can be found in
the SExtractor manual.

The configuration of the make method itself is done through the process params attribute
of the PhotSrcCatalog object. To get information about the available configuration options,
just type :

awe> photcat.process_params.info()

which will show the available configurable parameters, their meaning, and their default setting.

19.2.4 Inspecting the contents of the photometric catalog

To view the content of a PhotSrcCatalog object after it has been made, simply invoke its inspect
method:

awe> photcat.inspect()

which will result in an output to screen that looks like the one shown in Figure 19.1. The inspect
plot shows the magnitudes of the individual standard stars as known to the standard star catalog
on the x-axis, and their associated raw zeropoints on the y-axis. The inspect method of course
also functions on PhotSrcCatalog objects retrieved from the database.

185

19.2 HOW-TO: Photometric Source Catalog Calibration: Photometry

13 14 15 16 17 18

24.2

24.4

24.6

24.8

25

Stetson
SDSS3
AW2S

median : 24.60
mean : 24.60
stdev : 0.04

Number of stars : 94
Frame : name longer than 58 characters !
Date : 2003-02-16 06:14:43.00
Airmass : 1.17

M (SloanR)

M
 - m

 (
S
lo

a
n
R

)

PhotSrcCatalog

Figure 19.1: The result of invoking the inspect method of a PhotSrcCatalog object.

More visualisation options

The inspect method of a PhotSrcCatalog object re-directs the actual work to a dedicated
plot object. This plot object is, by default, configured to show its output on screen with the
individual raw zeropoints and magnitudes of the stars contained in the catalog on the vertical
and horizontal axis, respectively. However, more visualisation options are available if one uses
the plot object directly.

A plot object for PhotSrcCatalog can be retrieved through a factory function :

awe> from astro.plot.PhotometryPlot import create_plot

awe> plot = create_plot(’Photcat’)

whereafter it will be ready for use. The method to be called for plotting the contents of the
PhotSrcCatalog object is :

awe> plot.show(photcat)

where photcat is a valid PhotSrcCatalog object. Note that calling the show method just like
that will just produce the same result as the inspect method of the PhotSrcCatalog object.

Using the plot object allows the user to plot several other quantities on the horizontal axis
besides the magnitudes of the standard stars. Other quantities that can be plotted are the
X-position, Y-position, and radial position of the stars on the chip. The plot object can be
configured to do that as follows :

awe> plot.plot_params.XAXIS_TYPE = ’XPOS’

with MAGS, XPOS, YPOS and RADIAL as possible values. The default used by the inspect method
is always MAGS.

The plot object can also be configured to send its output to a postscript file with a user-
specified name :

186

19.2 HOW-TO: Photometric Source Catalog Calibration: Photometry

awe> plot.plot_params.FILE_OUTPUT = 1

awe> plot.plot_params.FILE_NAME = ’my_photcat.eps’

where the FILE OUTPUT toggle is set to True.

19.2.5 Query methods

Any given PhotSrcCatalog object features a large collection of methods that allow access to
its data contents (many of these are actively used by the photometric pipeline). The most
important simple methods are :

1. photcat.get number of sources(),
which returns the number of sources in he catalog.

2. photcat.get source attributes(),
which returns information of the data content of a source. The information is stored in a
dictionary with the attribute names of the source as keys and their types as values. To
just get the attribute names, do : photcat.get source attributes().keys().

3. photcat.get dict of raw zeropoints(),
which returns a dictionary with the raw zeropoints of the sources in the catalog as values,
and their indices as keys.

4. photcat.get median raw zeropoint(),
which returns the median raw zeropoint of the sources within the catalog.

5. photcat.get average raw zeropoint(),
which returns the average and standard deviation of the raw zeropoint distribution.

6. photcat.make skycat(),
which dumps the catalog for overplotting in skycat.

The most flexible way of retrieving source information from the catalog is through the fol-
lowing query method :

awe> photcat.get_source_data(column_list)

which will return a dictionary with the indices of the sources as keys, and as values lists of
the requested data items in the same order as specified in the input column list. The input
column list is the list of data items to be retrieved. The entries in column list should match
the keys of the dictionary that is generated by the get source attributes method. These
entries are strings.

19.2.6 Querying the database

Just like any other persistent data item in the system, a PhotSrcCatalog object has a large
collection of attributes that can be used to retrieve it from the database. The most important
of these are the instrument, filter, chip and date obs attributes. The value of the latter
corresponds exactly to the DATE OBS attribute of the ReducedSciencFrame object that went
into making the catalog, and serves as the master timestamp for PhotSrcCatalog objects.

187

19.2 HOW-TO: Photometric Source Catalog Calibration: Photometry

Example queries

In the first example, the PhotSrcCatalog object derived from a science frame taken at 2003-
02-11T21:00:00 is retrieved from the database. Only the one that has been marked as valid is
requested.

awe> date_obs = datetime.datetime(2003,2,11,21)

awe> photcat = (PhotSrcCatalog.date_obs == date_obs) &\

... (PhotSrcCatalog.is_valid == 1)

In the second example, the PhotSrcCatalog objects for the night from 2003-02-11 to 2003-02-12
are retrieved, and from these only those that are derived from science frames observed through
the WFC broad-band Sloan G filter and from chip A5382-1-7.

awe> date_start = datetime.datetime(2003,2,11,12)

awe> date_end = date_start + datetime.timedelta(1)

awe> photcat = (PhotSrcCatalog.date_obs >= date_start) &\

... (PhotSrcCatalog.date_obs < date_end) &\

... (PhotSrcCatalog.filter.name == ’220’) &\

... (PhotSrcCatalog.chip.name == ’A5382-1-7’) &\

... (PhotSrcCatalog.is_valid == 1)

The last example shows the situation in which several PhotSrcCatalog objects have been made
from one and the same science frame, and that only the last one created is wanted. The science
frame has the name r300100 4.calib.fits.

awe> photcats = (PhotSrcCatalog.frame.filename == ’r300100_4.calib.fits’)

awe> photcat = photcats.max(’creation_date’)

188

19.2 HOW-TO: Photometric Source Catalog Calibration: Photometry

Table 19.3: Description of the 8 columns in a Photometric Source Catalog.

Column name Description
index index number of the star as listed in the Photometric Reference Catalog
origin origin of stellar magnitude as listed in Photometric Reference Catalog:

Landolt: Landolt catalog,
Stetson: Stetson catalog,
SDSS5: SDSS DR5,
AW2S: Preliminary Catalog for OmegaCAM Secondary Standards

ra Right Ascension (deg)
dec Declination (deg)
mag stellar magnitude in Photometric Reference Catalog,

if a transformation table has been applied the value of mag incorporates this transformation.
mag err error on mag
instmag -2.5*log10(countrate)
instmag err error on instmag

189

19.3 HOW-TO: Transformation Tables Calibration: Photometry

19.3 Photometric Pipeline (2) : Transformation Tables

The photometric pipeline distinguishes between two types of photometric bands : key bands,
and user bands. The key bands are the Sloan u′g′r′i′ bands. These bands are fully supported
by the photometric pipeline, and form the core of the contents of the standard star catalog. Any
other band than these four Sloan bands is a user band.

Processing data that has been observed in one of the key bands is easy in the photometric
pipeline : all the necessary data is present in the system. However, an extra data item is required
to process data that has been observed in a user band. This extra data item is a transformation
table. For every filter of which the photometric band is a user band, a transformation table
should be present in the system. These transformation tables are represented in the photometric
pipeline by the PhotTransformation class.

19.3.1 The data structure of a transformation table

The PhotTransformation class represents a table of parameters used to transform magnitudes
of standard stars from one photometric system to another (color terms). The equation used to
calculate this ‘transformed’ magnitude M(T) from other bands is :

M(T) = M(prm) − CT × [M(scd) − M(trt)] + C, (19.1)

with CT the color term, and C an additional shift that can be applied. The M(prm), M(scd)
and M(trt) parameters must each separately be set to any of the bands for which magnitude
information is available in the standard star catalog.

The various components of Eqn. 19.1 all map to their own attribute of a PhotTransformation
object. The M(prm), M(scd) and M(trt) parameters respectively map to the primary band,
secondary band and tertiary band attributes. These attributes should always be set. The
CT and C parameters are assigned to the color term and coefficient attributes of the ob-
ject. Both these parameters are 0.00 by default. The uncertainties on the two parameters are
assigned to the color term error and coefficient error atrtibutes, respectively.

19.3.2 Using a transformation table

The transformation table is used in deriving a photometric catalog, where it is an extra de-
pendency that should be set. The transformation is applied to the magnitudes of the standard
stars as recorded in the standard star catalog. As is the case for making a photometric catalog
without a transformation table, there are two ways in which catalogs can be produced from the
awe-prompt with a transformation table.

Using a pre-cooked recipe

Deriving a photometric catalog with a transformation table using a pre-cooked recipe from the
awe-prompt is done thus :

1. awe> from astro.recipes.PhotCalExtractResulttable import PhotcatTask

2. awe> raw = ’r336604.fits’

3. awe> task = PhotcatTask(instrument=’WFC’, raw=raw, chip=’A5506-4’,

transform=1)

4. awe> task.execute()

where the extra transform boolean switch tells the system to use a transformation table.

190

19.3 HOW-TO: Transformation Tables Calibration: Photometry

Using the basic building blocks

The more elaborate way of making a photometric catalog is extended by a few extra ‘moves’ :

1. awe> from astro.main.PhotTransformation import PhotTransformation

2. awe> from astro.main.PhotSrcCatalog import PhotSrcCatalog

3. awe> from astro.main.PhotRefCatalog import PhotRefCatalog

4. awe> from astro.main.AstrometricParameters import AstrometricParameters

5. awe> from astro.main.ReducedScienceFrame import ReducedScienceFrame

6. awe> frame = (ReducedScienceFrame.filename == ’r336603_4.reduced.fits’)[0]

7. awe> query = (AstrometricParameters.reduced == frame) &

... (AstrometricParameters.is_valid == 1)

8. awe> astrom_params = query.max(’creation_date’)

9. awe> refcat = PhotRefCatalog.get()

10. awe> transform = PhotTransformation.get(’2003-02-11’, ’#844’,

... instrument=’WFI’)

11. awe> photcat = PhotSrcCatalog()

12. awe> photcat.refcat = refcat

13. awe> photcat.transform = transform

14. awe> photcat.frame = frame

15. awe> photcat.astrom_params = astrom_params

16. awe> photcat.refcat.retrieve()

17. awe> photcat.frame.retrieve()

18. awe> photcat.frame.weight.retrieve()

19. awe> photcat.make()

20. awe> photcat.commit()

In lines (1)-(5), the PhotTransformation class is imported together with the usual suspects. In
lines (6)-(10), the necessary dependencies are retrieved from the database. In lines (11)-(19), a
PhotSrcCatalog object is instantiated, its dependencies are set, and the make method is called.
Please note step (13), where the extra dependency is set with the transformation table. The
photometric catalog is committed to the database in step (20).

19.3.3 Retrieving a transformation table from the database

A transformation table for a given filter can be retrieved from the database as shown in the
example below :

awe> from astro.main.PhotTransformation import PhotTransformation

awe> transform = PhotTransformation.get(’2003-02-11’, ’#844’,

... instrument=’WFI’)

which will return the transformation table for filter #844 that is valid for the given date.

19.3.4 Inserting a transformation table into the system

To insert a transformation table for a certain filter and instrument into the database, a simple
tool is available. This tool is located in the ./awe/astro/toolbox/photometry/ directory of
the CVS checkout and is called ingest transformation. To get information about how to use
the tool just type :

awe $AWEPIPE/astro/toolbox/photometry/ingest_transformation.py

191

19.3 HOW-TO: Transformation Tables Calibration: Photometry

and a doc-string will appear on screen. The tool only accepts input for filters and instruments
that are actually present in the database. If a certain filter or instrument is not present, the
tool refuses to comply.

192

19.4 HOW-TO: Extinction and Zeropoint Calibration: Photometry

19.4 Photometric Pipeline (3) : Extinction and Zeropoint

This chapter describes how the extinction and zeropoint are derived for a given night. The two
steps, for the time being, should be done in tandem. The results are only committed to the
database at the very last processing step.

19.4.1 Deriving the atmospheric extinction

The photometric pipeline supports several ways of obtaining the atmospheric extinction :

1. using two observations of standard fields at two different airmasses

2. using a default value for the extinction coefficient stored in the database

3. using one single observation of a standard field and a set of already known zeropoints

4. using a combination of a standard extinction curve and an extinction report

The first two of these methods are the most flexible, while the fourth method derives from the
OmegaCAM photometric calibration plan. It should be pointed out that, contrary to other parts
of the photometric pipeline, the first and third way of deriving the atmospheric extinction use
input data from whole images. All the extinctions used in the photometric pipeline are in units
of mag/am.

Using two observations of standard fields

The ‘classical’ case of the two standard field observations taken at two different airmasses is
dealt with by the AtmosphericExtinctionFrames class. Its dependencies consist of two lists of
PhotSrcCatalog objects derived earlier from the standard field data, one for every observation.
Instances of this class are used as follows:

1. awe> from astro.main.AtmosphericExtinctionFrames import \

... AtmosphericExtinctionFrames

2. awe> from astro.main.PhotSrcCatalog import PhotSrcCatalog

3. awe> import datetime

4. awe> date_obs_first = datetime.datetime(2003,2,12,20,15)

5. awe> date_obs_second = datetime.datetime(2003,2,12,20,20)

6. awe> photcats_1 = (PhotSrcCatalog.date_obs == date_obs_first) &\

... (PhotSrcCatalog.filter.name == ’191’) &\

... (PhotSrcCatalog.is_valid == 1)

7. awe> photcats_2 = (PhotSrcCatalog.date_obs == date_obs_second) &\

... (PhotSrcCatalog.filter.name == ’191’) &\

... (PhotSrcCatalog.is_valid == 1)

8. awe> extinct = AtmosphericExtinctionFrames()

9. awe> extinct.polar = list(photcats_1)

10. awe> extinct.equat = list(photcats_2)

11. awe> extinct.make()

In lines (1)-(2) the relevant classes are imported, and in steps (6) and (7) the necessary depen-
dencies are retrieved from the database. In lines (8)-(11), an AtmosphericExtinctionFrames

object is instantiated, its dependencies are set, and the make method is called.

193

19.4 HOW-TO: Extinction and Zeropoint Calibration: Photometry

Using a default value from the database

If no suitable data is present to derive the extinction from, it is (or at least should be) possible
to retrieve a ready-made extinction coefficient from the database. This particular extinction is
covered by the AtmospericExtinctionCoefficient class. Such an extinction is retrieved from
the database as follows:

awe> from astro.main.AtmosphericExtinction import \

... AtmosphericExtinctionCoefficient

awe> extinct = AtmosphericExtinctionCoefficient.get(’191’, ’A5382-1-7’)

which will give you the value for the INT/WFC B filter and chip A5382-1-7:

awe> extinct.value

0.22

This extinction can readilly be used.

Inserting an extinction coefficient into the system

To insert an extinction coefficient for a certain filter/instrument combination into the database,
a simple tool is available. This tool is located in the ./awe/astro/toolbox/photometry/

directory of the CVS checkout and is called ingest extinction. To get information about how
to use the tool just type :

awe $AWEPIPE/Toolbox/photometry/ingest_extinction.py

and a doc-string will appear on screen. The tool only accepts input for filters and instruments
that are actually present in the database. If a certain filter and/or instrument is not present,
the tool refuses to comply.

Using one observation and known zeropoints

This particular way of deriving the extinction is covered by the AtmosphericExtinctionZero-

point class. For instances of this class to work, two dependencies should be set : polar and
photoms. The first dependency expects a list of PhotSrcCatalog objects derived from the
single observation of the standard field, whereas the second dependency likes to see a list of
PhotometricParameters objects (see §19.4.2 for more on this class). An example of its use :

1. awe> from astro.main.AtmosphericExtinctionZeropoint import \

... AtmosphericExtinctionZeropoint

2. awe> from astro.main.PhotSrcCatalog import PhotSrcCatalog

3. awe> from astro.main.PhotometricParameters import PhotometricParameters

4. awe> import datetime

5. awe> date_obs = datetime.datetime(2003,2,12,20,15)

6. awe> photcats = (PhotSrcCatalog.date_obs == date_obs) &\

... (PhotSrcCatalog.filter.name == ’191’) &\

... (PhotSrcCatalog.is_valid == 1)

7. awe> photoms = (PhotometricParameters.timestamp_start <= date_obs) &\

... (PhotometricParameters.timestamp_end > date_obs) &\

... (PhotometricParameters.filter.name == ’191’) &\

... (PhotometricParameters.is_valid == 1)

8. awe> extinct = AtmosphericExtinctionZeropoint()

9. awe> extinct.polar = list(photcats)

10. awe> extinct.photoms = list(photoms)

11. awe> extinct.make()

194

19.4 HOW-TO: Extinction and Zeropoint Calibration: Photometry

In lines (1)-(3) the relevant classes are imported, and in steps (6) and (7) the necessary dependen-
cies are retrieved from the database. In lines (8)-(11), an AtmosphericExtinctionZeropoint

object is instantiated, its dependencies are set, and the make method is called.
In the context of deriving a zeropoint, this particular method of deriving an atmospheric

extinction seems somewhat out of place. Its primary use lies in the derivation of a nightly
extinction report. It is mentioned here for completeness.

Using an extinctioncurve and an extinction report

The final, and likely most inflexible, way of deriving the extinction combines the results from
a nightly monitoring/extinction report with a standard extinction curve. The class that deals
with this situation is the AtmosphericExtinctionCurve class. Its use is as follows :

1. awe> from astro.main.AtmosphericExtinctionCurve import \

... AtmosphericExtinctionCurve

2. awe> from astro.main.PhotometricExtinctionReport import \

... PhotometricExtinctionReport

3. awe> from astro.main.PhotExtinctionCurve import PhotExtinctionCurve

4. awe> from astro.main.Filter import Filter

5. awe> import datetime

6. awe> date = datetime.datetime(2003,2,12)

7. awe> report = (PhotometricExtinctionReport.timestamp_start <= date) &\

... (PhotometricExtinctionReport.timestamp_end > date) &\

... (PhotometricExtinctionReport.is_valid == 1)

8. awe> extcurve = PhotExtinctionCurve.get()

9. awe> filter = (Filter.name == ’191’)[0]

10. awe> extinct = AtmosphericExtinctionCurve()

11. awe> extinct.report = report[0]

12. awe> extinct.extcurve = extcurve

13. awe> extinct.filter = filter

14. awe> extinct.make()

In lines (1)-(4) the relevant classes are imported, and in steps (7)-(9) the necessary dependencies
are retrieved from the database (note the Filter object). In lines (10)-(14) an Atmospheric-

ExtinctionCurve object is instantiated, its dependencies are set and the make method is called.

Notes on the monitoring/extinction report

The monitoring/extinction report is defined in the OmegaCAM photometric calibration plan.
This report is derived from a set of data with a very unique feature : every single observation in
the data set is observed in FOUR photometric bands SIMULTANEOUSLY. In the photometric
pipeline, this particular, dedicated report is represented by the PhotometricExtinctionReport
class. The make method of the PhotometricExtinctionReport class is very strict with respect
to the DATE OBS of the original standard field observations that go into making it : unless the
instrument from which the data to be reduced happens to have the capability to observe FOUR
different photometric bands simultanesouly, using this class will be very difficult.

19.4.2 Making the zeropoint from the awe-prompt

The zeropoint for the night is derived in the final processing step of the photometric pipeline.
It is this end result that is used by the image pipeline. The class that represents the final result
is PhotometricParameters. Instances of this class combine the zeropoint and the atmospheric
extinction for the night.

195

19.4 HOW-TO: Extinction and Zeropoint Calibration: Photometry

Using a pre-cooked recipe

Deriving the zeropoint for the night using a pre-cooked recipe is done as follows :

awe> from astro.recipes.PhotCalExtractZeropoint import PhotomTask

awe> task = PhotomTask(instrument = ’WFI’, raw_filenames = [’r336603_3.fits’])

awe> task.execute()

To get detailed and full information about the use of the task, type :

awe> help(PhotomTask)

which will, for example, show the parameters that can be passed to the constructor of the task.
The PhotomTask object will, by default, search the database for a PhotometricExtionction-

Report object to fullfill the dependency of the atmospheric extinction. If the database does not
return a result, the task will try to retrieve an AtmosphericExtinctionCoefficient object
from the database instead. If both queries fail, the PhotomTask will raise an error.

Using the basic building blocks

Besides using the pre-cooked recipe, it is also possible to use the basic building blocks of the
photometric pipeline themselves. This gives much more control over the processing down to the
smallest of details. The following code gives an example of what the use of the basic building
blocks would look like :

1. awe> from astro.main.PhotometricParameters import PhotometricParameters

2. awe> from astro.main.PhotSrcCatalog import PhotSrcCatalog

3. awe> photcat = (PhotSrcCatalog.frame.filename == ’my_standards.fits’)[0]

4. awe> photom = PhotometricParameters()

5. awe> photom.photcat = photcat

6. awe> photom.extinct = extinct

7. awe> photom.make()

8. awe> photom.commit()

In lines (1)-(2) the relevant classes are imported, and in step (3) the necessary dependency is re-
trieved from the database. In lines (4)-(7), a PhotometricParameters object is instantiated, its
dependencies are set, and the make method is called. In step (8), the PhotometricParameters

object is committed to the database. Please note that in step (6) the atmospheric extinction is
the one derived previously. The result of calling the make method is a zeropoint that is valid
for an airmass of 0.00 (the response of your instrument), and an exposure time of 1 second.

Configuring the photometric CalFile

Any PhotometricParameters object has a knob that allows the user to configure the behaviour
of its make method. To get information about the available configuration options, just type :

awe> photom.process_params.info()

which will show the available configurable parameters, their meaning, and their default setting.

Inspecting the results of making the zeropoint

Just as for photometric catalogs, the PhotometricParameters object has an inspect method
that allows the user to see and validate the results of deriving the zeropoint. The method is
called thus :

196

19.4 HOW-TO: Extinction and Zeropoint Calibration: Photometry

15 16 17 18 19 20 21

24.5

24.6

24.7

24.8

24.9

25

25.1

SDSS3
Zeropoint : 24.802
Zeropoint error : 0.001

Extinction : 0.090
Extinction error : 0.000

SIGCLIP_LEVEL : 1.50

Frame : r336602_3.calibrated.fits

M (SloanR)

M
 - m

 (
S
lo

a
n
R

)

PhotometricParameters

Figure 19.2: The result of invoking the inspect method of a PhotometricParameters object.

awe> photom.inspect()

which will result in an output to screen that looks like the one shown in Figure 19.2. The inspect
plot shows the magnitudes of the individual standard stars as known to the standard star catalog
on the x-axis, and their associated (extinction corrected) zeropoints on the y-axis. The blue
dot-dashed lines enclose the sources that have been used in deriving the zeropoint, and the thick,
blue, dashed line shows the location of the finally derived zeropoint within the distribution of
individual zeropoints. The inspect method of course also functions on PhotometricParameters

objects retrieved from the database.

Inserting a photometric CalFile into the system

To insert a photometric CalFile for a given filter/chip/instrument combination into the database
in the case that no photometric calibration can be done, a simple tool is available. The tool is
located in the ./awe/astro/toolbox/photometry/ directory of the CVS checkout and is called
ingest photometrics. To get information about how to use the tool just type :

awe\ $AWEPIPE/astro/toolbox/photometry/ingest_photometrics.py

and a doc-string will appear on screen. The tool only accepts input for chips, filters and
instruments that are actually present in the database. If a certain chip, filter and/or instrument
are not present, the tool refuses to comply.

197

19.5 HOW-TO: Illumination Correction Calibration: Photometry

19.5 Photometric Pipeline (4) : Illumination Correction

19.5.1 Characterising the illumination variation

Using a pre-cooked recipe

Deriving the characterisation of the illumination variation from the awe-prompt using a pre-
cooked recipe is done thus :

1. awe> from astro.recipes.IlluminationCorrectionVerify import IlluminationVerifyTask

2. awe> task = IlluminationVerifyTask(raw=’WFI.1999-06-18T06:02:14.059’)

3. awe> task.execute()

To get detailed information about the use of the task, type :

awe> help(IlluminationVerifyTask)

which will, for example, show the parameters that can be passed to the constructor of the task.

Using the basic building blocks

A more elaborate way of deriving the characterisation of the illumination variation is by using
the basic building blocks of the photometric pipeline themselves. An illumination variation
characterisation can be derived from the basic building blocks as follows :

1. awe> from astro.main.IlluminationCorrection import IlluminationCorrection

2. awe> from astro.main.PhotSrcCatalog import PhotSrcCatalog

3. awe> from astro.main.RawFitsData import RawFitsData

4. awe> raw = (RawFitsData.filename == ’WFI.1999-06-18T06:02:14.059.fits’)[0]

5. awe> query = (PhotSrcCatalog.date_obs == raw.DATE_OBS) &\

... (PhotSrcCatalog.is_valid == 1)

6. awe> len(query)

8

7. awe> photcats = [p for p in query]

8. awe> illum = IlluminationCorrection()

9. awe> illum.photcats = photcats

10. awe> illum.make()

11. awe> illum.commit()

In lines (1)-(3) the relevant classes are imported, and in step (5) the necessary dependency
is retrieved from the database. In this case, the dependeny consists of a list of photometric
catalogs. Note that, in this example, the Python equivalent of a join is used to find these. In
lines (8)-(10), an IlluminationCorrection object is instantiated, its dependency is set, and
the make method is called. In step (11), the IlluminationCorrection object is committed to
the database.

Configuring the illumination correction

Any IlluminationCorrection object has a knob that allows the user to configure the behaviour
of its make method. To get information about the available configuration options, just type :

awe> illum.process_params.info()

which will show the available configurable parameters, their meaning, and their default setting.

198

19.5 HOW-TO: Illumination Correction Calibration: Photometry

Inspecting the characterisation result

To view the result of making an IlluminationCorrection object, simply invoke its inspect
method:

awe> illum.inspect()

which will result in an output to screen that looks like the one shown in Figure 19.3. The
inspect plot shows the result of the overall fit to the zeropoints as a function of their position
on the complete detector block. Super-imposed on these are some relevant contours. The units
on the contours are linear, as is the case for the fit shown on the background. The vertical and
horizontal axes give the pixel position on the detector block. The inspect method of course also
functions on IlluminationCorrection objects retrieved from the database.

-4000 -3000 -2000 -1000 0 1000 2000 3000

-3000

-2000

-1000

0

1000

2000

3000

4000 0.950
0.950

0.960

0.960

0.970 0.970

0.970

0.980

0.980

0.990

0.990

1.000

1.000

1.010

1.020

Illumination variation map

X-position (pix)

Y
-p

o
s
it

io
n
 (

p
ix

)

Figure 19.3: The result of invoking the inspect method of an IlluminationCorrection object.

Inserting an illumination correction map into the system

To insert an external illumination correction map for a certain filter and instrument into the
database, a simple tool is available. This tool is located in the ./awe/astro/toolbox/photometry/
directory of the CVS checkout and is called ingest illuminationmap. To get information about
how to use the tool just type :

awe $AWEPIPE/astro/toolbox/photometry/ingest_illuminationmap.py

and a doc-string will appear on screen. The tool only accepts input for a filter/instrument
combination that is actually present in the database. If a certain filter or instrument is not
present, the tool refuses to comply. The external map provided should, of course, adhere to the
mathematical structure used by the system.

199

19.5 HOW-TO: Illumination Correction Calibration: Photometry

19.5.2 Creating an illumination correction frame

The illumination correction is applied to the pixel data in the image pipeline. This is done using
an illumination correction frame that is derived from the illumination variation characterisation.
This frame is represented in the system by the IlluminationCorrectionFrame class. The
following sub-sections describe the two ways in which such frames can be produced from the
awe-prompt.

Using a pre-cooked recipe

Deriving an illumination correction frame from the awe-prompt using a pre-cooked recipe is
done in the following way :

1. awe> from astro.recipes.IlluminationCorrection import IlluminationTask

2. awe> task = IlluminationTask(date=’2003-02-11’, chip=’A5382-1-7’, \

... filter=’220’, instrument=’WFC’)

3. awe> task.execute()

To get detailed information about the use of the task, type :

awe> help(IlluminationTask)

which will, for example, show the parameters that can be passed to the constructor of the task.

Using the basic building blocks

A more elaborate way of making an illumination correction frame is by using the basic building
blocks of the photometric pipeline themselves. The most common way of deriving an illumination
correction frame using these builing blocks is given here :

1. awe> from astro.main.IlluminationCorrectionFrame import IlluminationCorrectionFrame

2. awe> from astro.main.IlluminationCorrection import IlluminationCorrection

3. awe> from astro.main.Chip import Chip

4. awe> illum = IlluminationCorrection.select(date=’2003-02-11’, filter=’220’, \

... instrument=’WFC’)

5. awe> chip = (Chip.name == ’A5506-4’)[0]

6. awe> illumframe = IlluminationCorrectionFrame()

7. awe> illumframe.illuminationcorrection = illum

8. awe> illumframe.chip = chip

9. awe> illumframe.set_filename()

10. awe> illumframe.make()

11. awe> illumframe.store()

12. awe> illumframe.commit()

In lines (1)-(3) the relevant classes are imported, and in steps (4) and (5) the necessary depen-
dencies are retrieved from the database. In lines (6)-(10), an IlluminationCorrectionFrame

object is instantiated, its dependencies are set, and the make method is called. In steps (11) and
(12), the IlluminationCorrectionFrame object is stored on the fileserver, and then committed
to the database.

200

Chapter 20

Calibration: Miscellaneous

20.1 HOW-TO Set Timestamps from the awe-prompt

Time stamps and validity of a frame are usually set by the Calibration Time-stamp editor web
service CalTS, but they can also be changed at the awe-prompt. After changing these attributes
the object can be commited to the database using the recommit method. Notice that only the
timestamp start, timestamp end and is valid (super flag) can be (re)commited to the database
in this manner, any other attribute that is changed will not be updated in the database.

Python example:

WARNING: the recommit(s) have been commented out in this example, these will
change the timestamps and is valid of the BiasFrame in the database!!

query for a BiasFrame

awe> qry = BiasFrame.instrument.name == ’WFI’

awe> bias = qry[0]

substract one day from the timestamps start

awe> bias.timestamp_start -= datetime.timedelta(1)

and set timestamp_end to far future

awe> bias.timestamp_end = datetime.datetime(2010, 1, 1)

and commit changes to the database

awe> #bias.recommit()

make the BiasFrame invalid

awe> bias.is_valid = 0

awe> #bias.recommit()

make the BiasFrame valid again

awe> bias.is_valid = 1

awe> #bias.recommit()

201

http://calts.astro-wise.org

20.2 HOW-TO: Subtract Sky Background Calibration: Miscellaneous

20.2 HOW-TO Subtract Sky Background

20.2.1 Overview

Sky background subtraction is a factor in several places in the reduction process. In most cases
SExtractor/SWarp is involved in the algorithm to determine the background image.
Sky background subtraction may be applied first and foremost in RegriddedFrame. This is
the last opportunity in the data-reduction process before images are coadded into a Coadde-
dRegriddedFrame. But here is a complete overview of the places where background subtraction
plays a role:

• RegriddedFrame: see text above

• ReducedScienceFrame: when/if an IlluminationCorrectionFrame is applied, a background
image is created and the illumination correction is applied to everything but the back-
ground. Afterwards the background is added again.

• SourceList: when SExtractor is run, default behaviour of SExtractor is to subtract a
background.

• In SWarp. Default behaviour of SWarp is to make and subtract a background image. In
Astro-WISE this default is changed to no background subtraction.

• In addition, background images are determined in the algorithms for HotPixelMap, Cold-
PixelMap, CosmicMap and SatelliteMap.

20.2.2 Configuring background subtraction

At this point it is not possible to configure the background subtraction in great detail, but it is
possible to choose from several options in RegriddedFrame.

awe> pars = Pars(RegriddedFrame)

awe> pars.show()

RegriddedFrame

|

+--process_params

| |

| +--BACKGROUND_SUBTRACTION_TYPE: 0

| +--MAXIMUM_PSF_DIFFERENCE: 0.25

|

+--swarpconf

| |

| +--BACK_DEFAULT: 0.0

| +--BACK_FILTERSIZE: 3

| +--BACK_SIZE: 128

| +--BACK_TYPE: AUTO

etc.

Note in particular the process parameter BACKGROUND SUBTRACTION TYPE. The
possible values for this parameter are:

• 0: Leave background subtraction to SWarp

• 1: Create a background image outside SWarp, which gives better results than SWarp

202

20.2 HOW-TO: Subtract Sky Background Calibration: Miscellaneous

• 2: Subtract a constant as background, which is determined by iteratively clipping around
the median pixel value

See §8.4 for details about how to configure process parameters.

Note that a check is performed to prevent subtracting background both outside and inside
SWarp; in other words, when setting the BACKGROUND SUBTRACTION TYPE parameter
to something other than 0, the RegriddedFrame.swarpconf.SUBTRACT BACK option has to
be ’N’, which is the default.

The background image

When option 1 is chosen for the BACKGROUND SUBTRACTION TYPE, a background image
is created. How is this image created? The process consists of these steps:

1) Determine all pixels which are part of sources. This is done by running SExtractor on the
image and using the ”segmentation” check image.

2) Exclude those pixels and calculate the median of the other pixels.

3) Replace the pixels attributed to sources with the median calculated in the previous step.

4) Run SExtractor to obtain the “background” check image. This is the background image
that will be subtracted.

203

20.3 HOW-TO: Subwindow statistics Calibration: Miscellaneous

20.3 HOW-TO Subwindow statistics

To make it easier to do automatic quality control, statistics in sub-windows are derived for
calibration files (including raw frames). On the basis of these statistics various tests can be
derived in order to disqualify bad data.

20.3.1 How to work with subwindows

Statistics in subwindows are stored in the form of the SubWinStat class. This class has a ”frame”
dependency pointing to the frame the statistics were derived from. The class hierarchy here may
be somewhat counter-intuitive: there is no link from e.g. a RawBiasFrame to a SubWinStat
object, instead there is one from the SubWinStat object to the RawBiasFrame. Therefore, to
get the subwindow statistics for a particular frame, the following queries should be done:

awe> raw = (RawDarkFrame.filename == ’WFI.2001-03-27T21:24:07.546_7.fits’)[0]

awe> subwin = (SubWinStat.frame == raw)[0]

The SubWinStat class also has a dependency ”windows”, which contains a list of Imstat objects,
which in turn house the statistics such as ”mean”, ”median”, ”stdev” etc. The Imstat class
also contains attributes ”x lower”, ”x upper”, ”y lower”, and ”y upper” defining the region the
statistics were derived from. Example:

awe> for w in subwin.windows: print w.x_lower, w.y_lower, w.x_upper, w.y_upper

...

49 1 559 512

49 513 559 1024

49 1025 559 1536

49 1537 559 2048

49 2049 559 2560

49 2561 559 3072

49 3073 559 3584

49 3585 559 4096

560 1 1070 512

560 513 1070 1024

560 1025 1070 1536

560 1537 1070 2048

560 2049 1070 2560

560 2561 1070 3072

560 3073 1070 3584

560 3585 1070 4096

1071 1 1581 512

1071 513 1581 1024

1071 1025 1581 1536

1071 1537 1581 2048

1071 2049 1581 2560

1071 2561 1581 3072

1071 3073 1581 3584

1071 3585 1581 4096

1582 1 2092 512

1582 513 2092 1024

1582 1025 2092 1536

1582 1537 2092 2048

204

20.3 HOW-TO: Subwindow statistics Calibration: Miscellaneous

1582 2049 2092 2560

1582 2561 2092 3072

1582 3073 2092 3584

1582 3585 2092 4096

There are 4 groups of 8 subwindows here for a total of 32 subwindows, the default.

20.3.2 Verify

A number of verify methods are implemented that use subwindows. The actual checks are TBD
or improved by experience.

20.3.3 Deriving SubWinStat yourself

For RegriddedFrames and CoaddedRegriddedFrames subwindow statistics are not derived by
default. It is possible to create subwindow statistics for these images if you want to, however.
Example:

awe> query = CoaddedRegriddedFrame.filename == ’Sci-GVERDOES-WFI-------#844---C

oadd---Sci-53814.4484972.fits’

awe> frame = query[0]

awe> sub = SubWinStat()

awe> sub.frame = frame

awe> sub.process_params.NUMBER_OF_WINDOWS_X = 10

awe> sub.process_params.NUMBER_OF_WINDOWS_Y = 15

awe> sub.make()

awe> sub.commit()

205

20.4 HOW-TO: Weights Calibration: Miscellaneous

20.4 HOW-TO Understand Weights

The weighting scheme in the Astro-WISE system is relatively elaborate as a result of the regrid-
ding performed. In the course of the image pipeline (seq631-seq636 as described in the Data
Flow System) 3 different weights may be constructed, the first weight is described in the §20.4.1
and the latter two are described in §20.4.2.

20.4.1 Science frames and their weight

m
as

te
r f

la
t

ho
t p

ix
el

s

co
ld

 p
ix

el
s

sa
tu

ra
te

d
pi

xe
ls

co
sm

ic
 ra

y
hi

ts

sa
te

lli
te

 tr
ac

ks

in
di

vi
du

al
 w

ei
gh

t

ill
um

. c
or

re
ct

io
n

x

Figure 20.1: Individual weights

The science image is the end product of the pipeline for observations made in Stare mode,
where no regridding operation is performed. Each science image has an associated weight.

The (normalized) flat-field describes the response of the telescope and instrument to a source
of uniform radiation. In other words, it shows the relative amount of light received as a function
of pixel position. This is a measure of the weight of a pixel relative to a pixel at a different
position; the produced weights are relative weights.

Some pixels in an image are defect, counting too many or too few photons. These pixels
are stored in hot- and cold pixel maps (values 1 for good, 0 for bad). In addition in a raw
science image pixels may be unusable due to other causes. Pixel maps are created for saturated
pixels, pixels affected by cosmic ray hits and pixels in satellite tracks. Saturated pixels are
pixels whose counts exceed a certain threshold. In addition, saturation of a pixel may lead to
’dead’ neighbouring pixels, whose counts lie below a lower threshold. Cosmic ray events can
be detected using special source detections filters (retina filters), with SExtractor. These are
essentially neural networks, trained to recognize cosmic rays, taking a set of neighbouring pixels
as input. Satellite tracks can be discovered by a line-detection algorithm such as the Hough
transform, where significant signal along a line produces a ’peak’ in the transformed image. This
peak can be clipped, and transformed back into a pixelmap that masks the track. The weight
can therefore be written as:

Wij ∝ FijPhotPcoldPsaturatedPcosmicPsatellite (20.1)

It is possible that an illumination correction (photometric superflat) is used in the pipeline.
As a result of stray light received by the detector the background of raw images is not flat. This
effect is present both in science images and in flat-fields. In this case, dividing by the flat-field
in the image pipeline results in a flat background, but in a non-uniform gain across the detector.
In order to correct for this difference an illumination correction frame is made. This image
is the result of the difference of the catalog magnitude of standard stars and their magnitude

206

20.4 HOW-TO: Weights Calibration: Miscellaneous

measured on reduced science frames, as a function of pixel position. The illumination correction
can be viewed as a correction on the (incorrect) flat-field. Correctly applying the illumination
correction therefore results in a non-flat background.

When an illumination correction is used the weight changes as follows:

Wij ∝ Fij

Iij

PhotPcoldPsaturatedPcosmicPsatellite (20.2)

In terms of our code base the object oriented class hierarchy for calibrated science images is
shown below (specifying only relevant class dependencies):

ReducedScienceFrame (seq632)

+-RawScienceFrame (seq631)

+-MasterFlatFrame (req546)

+-BiasFrame (req541)

+-FringeFrame (req545)

+-IlluminationCorrectionFrame (req548)

+-WeightFrame (seq633)

+-MasterFlatFrame (req546)

+-IlluminationCorrectionFrame (req548)

+-ColdPixelMap (req535)

+-DomeFlatFrame (req535)

+-HotPixelMap (req522)

+-BiasFrame (req541)

+-SaturatedPixelMap

+-RawScienceFrame

+-CosmicMap

+-RawScienceFrame

+-HotPixelMap

+-ColdPixelMap

+-SaturatedPixelMap

+-MasterFlatFrame

+-IlluminationCorrectionFrame

+-SatelliteMap

+-RawScienceFrame

+-HotPixelMap

+-ColdPixelMap

+-SaturatedPixelMap

+-MasterFlatFrame

+-IlluminationCorrectionFrame

20.4.2 Weights created by SWarp

Image coaddition is divided in two parts, resampling and combination. Image resampling ad-
dresses the problem that two independent observations of the same area of sky will, in general,
result in images whose coordinate systems are different. Projection of these coordinate systems
to a new coordinate system requires a mapping x, y ⇒ α, δ ⇒ x′, y′. Since the area of sky
covered by an input pixel will in general not map directly to an area of sky covered by a single
output pixel, some sort of interpolation is required. Unfortunately interpolation will inevitably
result in aliasing artifacts, hence, a careful choice of interpolation kernel is required.

Once all input images and their weights have been resampled onto the grid specified by the
coordinate system of the coadded image, it is straightforward to compute the coadded image

207

20.4 HOW-TO: Weights Calibration: Miscellaneous

and its weight. Given resampled input images 1 ≤ i ≤ N entering co-addition, one can define
for each pixel j:

• the local uncalibrated flux fij = fij + ∆fij , where fij is the sky background, and ∆fij

the contribution from celestial sources,

• the local uncalibrated variance σ2

ij = σ2

ij + ∆σ2

ij , where σ2

ij is background noise and ∆σ2

ij

the photon shot noise of celestial sources,

• the local, normalized weight wij ,

• the electronic gain of the CCD gi,

• the relative flux scaling factor pi, deduced from the photometric solution, with pi∆fij =
pl∆flj for all i, l, j,

• the weight scaling factor ki.

Optimal weighting is obtained using

kiwij =
1

p2

i σ
2

ij

,

leading to a co-added flux (assuming the background of the input images has been subtracted),

fj =

∑
i kiwijpi∆fij∑

i kiwij

,

and variance

σ2

j =

∑
i k2

i w2

ijp
2

i σ
2

ij

(
∑

i kiwij)2
,

The software package SWarp, developed by E. Bertin (IAP) for Terapix provides a set of
regridding and co-addition algorithms specifically optimized to handle large area CCD mosaics.

Regridded frames and their weights

Whenever a calibrated science image is created in Dither mode (seq635) it is resampled to one of
a number of pre-defined field centers (part of seq636). This affects both the science and weight
images.

The default configuration of Swarp for making RegriddedFrames and their weights results
in weight frames that are the resampled weight frame of the ReducedScienceFrame multiplied
by 1/σ2, where σ2 is the variance of the local background in units ADU2.

The class hierarchy for regridded images is as follows:

RegriddedFrame

+-AstrometricParameters

+-PhotometricParameters

+-ReducedScienceFrame

+-(see section 1)

+-WeightFrame (produced by SWarp)

208

20.4 HOW-TO: Weights Calibration: Miscellaneous

Figure 20.2: Regridded weights

R
eg

rid
de

d
im

ag
e

R
eg

rid
de

d
im

ag
e

R
eg

rid
de

d
im

ag
e

R
eg

rid
de

d
im

ag
e

R
eg

rid
de

d
im

ag
e

R
eg

rid
de

d
w

ei
gh

t

R
eg

rid
de

d
w

ei
gh

t

R
eg

rid
de

d
w

ei
gh

t

R
eg

rid
de

d
w

ei
gh

t

C
oa

dd
ed

 w
ei

gh
t

C
oa

dd
ed

 im
ag

e

Inverse
variance
weighting

R
eg

rid
de

d
w

ei
gh

t

Figure 20.3: Coadded weights

Coadded frames and their weights

When a collection of the regridded images described in the previous section are coadded a new
weight is constructed by adding the (regridded) weights. In this step variance weighting is used
to get a total weight.

The default configuration of Swarp for making CoaddedRegriddedFrames and their weights
results in weight frames that contain the summation of the weights of the RegriddedFrames
scaled by 1/FLXSCALE2, where FLXSCALE2 is conversion factor from counts to the units
of the CoaddedRegridded science frame.1 Thus the weightframe is 1/σ2, where σ2 is the variance
of the local background with σ in the same units as the CoaddedRegriddedFrame science frame.

The class hierarchy for coadded frames is as follows:

CoaddedRegriddedFrame

+-RegriddedFrame(s)

+-(see section 2.1)

1TBD: is it the sum of each weightframe of a RegriddedFrame scaled with its own FLXSCALE (i.e., Re-
griddedFrame.FLXSCALE)?

209

20.4 HOW-TO: Weights Calibration: Miscellaneous

+-WeightFrame (produced by SWarp)

20.4.3 Weights in quality control

Three methods are defined for most calibration files, subdividing the quality control. The
verify method is used to provide internal checks, often this takes the form of sanity checks on
parameters of e.g. a BiasFrame. The compare method compares aspects of e.g. a BiasFrame
(standard deviation for example) with that of a previous instance. Inspect is intended to show
plots or images so that after an interactive analysis a decision can be made on the quality of
the object.

In particular, statistics in subwindows of all images are used. While determining these
statistics it is possible to provide a pixelmap of acceptable pixels. Below is a table that shows
which weights/pixelmaps are (can be) used.

210

2
0
.4

H
O

W
-T

O
:
W

eig
h
ts

C
a
lib

ra
tio

n
:

M
iscella

n
eo

u
s

Class HotPixelMap ColdPixelMap SaturatedPixelMap CosmicMap SatelliteMap Individual Weight
RawFrame - - - - - -
BiasFrame - - - - - -

DomeFlatFrame + + - - - -
TwilightFlatFrame + + - - - -
MasterFlatFrame + + - - - -

FringeFrame + + - - - -
ReducedScienceFrame + + + + + +

RegriddedFrame - - - - - +

Table 20.1: Table of weights/pixelmaps and their application in quality control

211

Chapter 21

Image Pipeline

21.1 HOW-TO Image Pipeline: overview

The image pipeline is the part of the system that processes science data. In this section, the
image pipeline is discussed. A summary is given of the atomic tasks that make up the pipeline,
and their place therein is described. Also given is an overview of how the image pipeline as a
whole can be steered through the DPU interface. For the interface and use of every individual
task, please read the corresponding HOW-TO.

21.1.1 The atomic tasks and their context

The atomic tasks that make up the image pipeline are summarized in Table 21.1, together with
their role in the system and the identifier under which these are known to the DPU interface.

The sequence of tasks that make up the image pipeline is shown in Figure 21.1. In this
figure, each one of the individual tasks is represented by one box. The arrows indicate the flow
of the pipeline, and the shaded part shows a particular (optional) branch therein.

Contrary to the calibration pipelines, the start and end points of the image pipeline are
flexible; one can choose to only de-bias and flatfield the data, but it is also possible to run the
full pipeline including the global astrometry. The exception is the photometric calibration which
has to be done separately. This requires performing Reduce, Astrometry and Photometry on
a raw science frame of a standard star field. The resulting photometric parameters are then
applied to the science image during the Regrid process.

21.1.2 Astrometry in the image pipeline

The astrometry in the image pipeline can be done in one of two ways. The first, and default,
way is the traditional single-chip astrometry. This path through the image pipeline is shown
in black in Figure 21.1. A more elaborate way of deriving the astrometric calibration is by
combining the data of overlapping images to get a more accurate result for the single chips.
This particular branch in the image pipeline, and the various tasks performed therein, is shown
in light grey. Note that this branch augments the image pipeline, it does not supersede it.

21.1.3 Running the image pipeline with the DPU

There are three ways in which the image pipeline can be run through the DPU interface : (1)
one task at a time, (2) using a pre-defined sequence without global astrometry, (3) using a
pre-defined sequence with global astrometry.

212

21.1 HOW-TO: Image Pipeline: overview Image Pipeline

se
q

63
6

C
o

ad
d

se
q

63
4/

63
5/

63
6

R
eg

ri
d

se
q

63
4

A
st

ro
m

et
ry

se
q

63
2/

se
q

63
3

R
ed

u
ce

S
in

gl
e−

ch
ip

 A
st

ro
m

et
ry

G
lo

ba
l A

st
ro

m
et

ry

G
A

st
ro

m
S

o
u

rc
eL

is
t

G
A

st
ro

m
S

o
u

rc
eL

is
t

A
st

ro
m

et
ry

se
q

63
4

Figure 21.1: The order and flow of the atomic processing steps in the image processing part of
the system. The lightly shaded part shows the (optional) branch into the global astrometry.

213

21.1 HOW-TO: Image Pipeline: overview Image Pipeline

Table 21.1: The various atomic processing steps that make up the image pipeline and the
identifiers through which these can be selected by the user from the DPU interface.

Processing step Purpose DPU identifier

Reduce De-biasing and flatfielding Reduce

Astrometry Single-chip astrometry Astrometry

Photometry Photometric calibration Photom

Regrid Regridding pixel data Regrid

Coadd1 Coadding pixel data Coadd

GAstromSourceList Making a sourcelist for global astrometry GAstromSL

GAstrom1 Deriving the global astrometry GAstrom
1This processing step is performed on a single node

The first way of running the image pipeline is simple : provide the DPU interface with one
task identifier (see Table 21.1) and the appropriate query parameters. Example :

awe> dpu.run(’Reduce’, i=’WFI’,

raw_filenames=[’WFI.2000-04-29T00:40:57.671_1.fits’])

which will result in only de-biasing and flatfielding the selected frame. Another example :

awe> dpu.run(’Reduce’, i=’WFI’,

raw_filenames=[’WFI.2000-04-28T23:06:49.353_1.fits’])

which will result in determining photometric parameters, such as zeropoint and extinction co-
efficient, based on the standard star field frame ’WFI.2000-04-28T23:06:49.353 1.fits’.

Besides this simple way of steering the image pipeline, it is also possible to provide the DPU

interface with an identifier that selects a whole pre-defined sequence of tasks. The present set
of pre-defined sequences (with and without global astrometry) is given in Table 21.2. All these
sequences define ‘sane’ image pipelines that are internally consistent.

The identifiers given in Table 21.2 have the following structure:

(starting point of the pipeline)>(end point of the pipeline),

which will yield a traditional image pipeline with only single-chip astrometry. If one wants to
include the global astrometry in the reduction, the structure is modified as follows:

(starting point of the pipeline)>GAstrometry>(end point of the pipeline),

where the extra GAstrometry clause explicitly instructs the image pipeline to switch to the
global astrometry branch (the grey branch in Fig. 21.1).

Examples of using pre-defined sequences of tasks

Run the complete image pipeline all the way from de-biasing and flatfielding up to and including
co-addition, but without global astrometry:

awe> dpu.run(’Reduce>Coadd’, instrument=’WFI’, date=’2000-04-28’,

filter=’#842’, object=’PG1525_B’, commit=1)

214

21.1 HOW-TO: Image Pipeline: overview Image Pipeline

Table 21.2: The pre-defined sequences of image pipeline processing steps and their identifiers
for the DPU interface. Note the way in which the global astrometry is enabled.

Processing steps DPU identifier

Reduce + Astrometry Reduce>Astrometry

Reduce + Astrometry + Regrid Reduce>Regrid

Reduce + Astrometry + Regrid + Coadd Reduce>Coadd

Reduce + (GAstrometry) + Regrid Reduce>GAstrometry>Regrid

Reduce + (GAstrometry) + Regrid + Coadd Reduce>GAstrometry>Coadd

Regrid + Coadd Regrid>Coadd

(GAstrometry) = Astrometry+GAstromSourceList+GAstrom

Now do the same, but with global astrometry enabled (using short options this time):

awe> dpu.run(’Reduce>GAstrometry>Coadd’, i=’WFI’, d=’2000-04-28’, f=’#842’,

o=’PG1525_B’, C=1)

Note that this particular sequence contains two processing steps that will be done on a single
node, using results from the previous processing step.

Only de-biasing, flatfielding, and single-chip astrometry (for e.g. photometric standard fields):

awe> dpu.run(’Reduce>Astrometry’, i=’WFI’,

raw_filenames=[’WFI.2000-04-28T23:06:49.353_1.fits’])

Only de-biasing, flatfielding, single-chip astrometry, and regridding:

awe> dpu.run(’Reduce>Regrid’, i=’WFI’,

raw_filenames=[’WFI.2000-04-28T23:06:49.353_1.fits’])

215

21.2 HOW-TO: ReduceTask Image Pipeline

21.2 HOW-TO Create a ReducedScienceFrame

When an instrument is added to the Astro-WISE database environment, it is initialised (boot-
strapped) with calibration frames that are valid “forever”. This allows one to always be able to
reduce RawScienceFrames albeit with less than optimal results.

NOTE: In many cases, however, calibration files taken near to the date-obs of the
science data can exist and be valid for that data. This may occur if another observer’s
data has been reduced first. Although these calibration frames may give optimal
results, it is always possible to create new calibration frames specific to the data
being processed. The recipes will always choose the most recent calibration frames
by default.

21.2.1 Making ReducedScienceFrames using the DPU

The most ideal way to process data in AWE is to process it with the DPU (see §7.7).
The DPU interface is built into AWE so that its use is simple and transparent. A basic DPU

usage looks like:

awe> dpu.run(’task_name’, option1=’’, option2=’’, . . .)

For the ReduceTask, the DPU command would look more like:

awe> dpu.run(’Reduce’, d=’2001-01-22’, i=’WFI’, f=’#841’, o=’AXAF’)

or

awe> dpu.run(’Reduce’, i=’WFI’, raw_filenames=[’WFI.2000-01-01T08:57:15.410_3.fits’])

The ReduceTask options via the DPU are as follows:

• i (instrument, mandatory): string

• d (date): string of the form CCYY-MM-DD

• f (filter): string

• raw filenames (raw filenames): list of strings

• o (object): string with possible wildcards * and ?

• oc (overscan): integer=0..10 (optional, default=6)

• C (commit): integer=0..1 (optional, default=0)

The first example shows how to run the DPU ReduceTask using date, filter, and object
information. This allows one to process all data for a given object on a specific day taken in
a certain filter, for all CCDs of the mosaic. The second example shows how to run the DPU

ReduceTask using specific data with known raw filenames.
The options can be used in any order and can be omitted (except ‘i’), but the likelihood of

locating required data depends on relaying a minimum of information as shown in the examples.

216

21.2 HOW-TO: ReduceTask Image Pipeline

21.2.2 Making a ReducedScienceFrame using the ReduceTask

Although the ideal method to process RawScienceFrames is the DPU, this task can be performed
on a per chip basis. The ReduceTask is the main part of the recipe $AWEPIPE/astro/recipes/Reduce.py.
Two examples of the syntax for the ReduceTask are given below:

awe> from astro.recipes.Reduce import ReduceTask

awe> task = ReduceTask(date=’2001-01-22’, chip=’ccd51’, filter=’#841’,

... object=’AXAF’, i=’WFI’)

awe> task.execute()

or

awe> task = ReduceTask(raw_filenames=[’WFI.2000-01-01T08:57:15.410_3.fits’])

awe> task.execute()

The ReduceTask options are as follows:

• date: string of the form CCYY-MM-DD

• chip: string

• filter: string

• raw filenames: list of strings

• object: string with possible wildcards * and ?

• overscan: integer=0..10 (optional, default=6)

• commit: integer=0..1 (optional, default=0)

The first example shows how to run the ReduceTask using date, chip, filter, and object
information. This allows one to process all data for a given object on a specific day taken in
a certain filter, and only one CCD of the mosaic. The second example shows how to run the
ReduceTask using specific data with known raw filenames.

The options can be used in any order and can be omitted, but the likelihood of locating
required data depends on relaying a minimum of information as shown in the examples.

21.2.3 Making a ReducedScienceFrame using the basic building blocks

The third, and most powerful, way of creating a ReducedScienceFrame is by using the basic
building blocks of the system directly from the awe-prompt. This method is used if one wants to
manipulate the system down to the nitty-gritty details. An example of how a ReducedScienceFrame
is made from the awe-prompt in this fashion is given below :

1. awe> from astro.main.RawFrame import RawScienceFrame

2. awe> from astro.main.ReducedScienceFrame import ReducedScienceFrame

3. awe> from astro.main.MasterFlatFrame import MasterFlatFrame

4. awe> from astro.main.ColdPixelMap import ColdPixelMap

5. awe> from astro.main.HotPixelMap import HotPixelMap

6. awe> from astro.main.BiasFrame import BiasFrame

7. awe> raw = (RawScienceFrame.filename == ’WFI.2000-01-01T08:57:15.410_3.fi

... ts’)[0]

217

21.2 HOW-TO: ReduceTask Image Pipeline

8. awe> hot = HotPixelMap.select_for_raw(raw)

9. awe> cold = ColdPixelMap.select_for_raw(raw)

10. awe> flat = MasterFlatFrame.select_for_raw(raw)

11. awe> bias = BiasFrame.select_for_raw(raw)

12. awe> reduced = ReducedScienceFrame()

14. awe> reduced.raw = raw

15. awe> reduced.hot = hot

16. awe> reduced.cold = cold

17. awe> reduced.bias = bias

18. awe> reduced.flat = flat

19. awe> reduced.raw.retrieve()

20. awe> reduced.hot.retrieve()

21. awe> reduced.cold.retrieve()

22. awe> reduced.bias.retrieve()

23. awe> reduced.flat.retrieve()

24. awe> reduced.set_filename()

25. awe> reduced.make()

26. awe> reduced.store()

27. awe> reduced.weight.store()

28. awe> reduced.commit()

In steps (1)-(6), the minimum number of classes relevant for this processing step are imported.
Other classes that could be used here are FringeFrame and IlluminationCorrectionFrame.
In steps (7)-(11), the database is queried for the necessary dependencies. In step (7), the
RawScienceFrame to be processed is retrieved, and in steps (8)-(11) the calibration files to use. In
steps (12) and (13), the ReducedScienceFrame object is instantiated, and one of its process con-
figuration parameters is set. In steps (14)-(24), the dependencies of the ReducedScienceFrame

are set, and the pixel-data underlying the calibration files are retrieved from the fileserver. In
step (24), the filename of the ReducedScienceFrame to be is created and set. Finally, in steps
(25)-(28), the ReducedScienceFrame is made, its pixel-data is stored, and the object itself
is committed to the database. Note that in step (27), the WeightFrame associated with the
ReducedScienceFrame object is also stored; the weights are a very important by-product of
making the ReducedScienceFrame that should never be forgotten.

21.2.4 Output Logs

In both the DPU and non-DPU processing methods, log files are created (of the form CCYYM-
MDD hhmmsssss.log). For both cases, logs are printed to both the screen and the log file. For
the non-DPU method, nothing needs to be done to retrieve the logs, they just come as they are
created. For the DPU method, the processing is done remotely, and they have to be retrieved
manually. There is a simple mechanism with which to do this, a method of the DPU object
called get logs(). When this method is invoked, all the finished jobs are retrieved one at a
time1, displayed to screen, and printed to the log file. An example of this mechanism is given
below:

awe> dpu.jobids()

[313L]

awe> dpu.get_logs()

1The get logs() method also can be invoked with a job ID (or a list of job IDs) as an argument.

218

21.2 HOW-TO: ReduceTask Image Pipeline

<log printed to file and screen>

awe> dpu.jobids()

[]

For more complete information on the functionality of the DPU, see §7.7.

21.2.5 Viewing the results

Query for and retrieve ReducedScienceFrames

When one of the above commands are run, it should generally be run first without the commit

switch set (C=0, the default) so as to test whether all steps were successful. Once the logs have
been examined and no serious problems found, the command can be run with the commit switch
set to C=1.

If all went well, the RawScienceFrame has had all the calibration frames available applied to
it to create the ReducedScienceFrame. Now this frame can be retrieved from the data server
for inspection. This is done by first querying the database for the ReducedScienceFrames just
created:

awe> q = ReducedScienceFrame.raw.filename == ’WFI.2000-01-01T08:57:15.410_3.fits’

awe> len(q)

1

awe> q = ReducedScienceFrame.raw.filename.like(’WFI.2000-01-01T08:57:15.410*’)

awe> len(q)

8

Once the desired ReducedScienceFrame is in the query, it is a simple matter to look at the
images statistics and retrieve it:

awe> for f in q:

... print f.imstat.mean, f.imstat.median, f.imstat.stdev

111.557922989 111.463745117 8.56794497829

107.94240659 107.812011719 8.38193208213

106.126105882 106.035461426 7.48044620812

97.2398969938 97.0784301758 8.0901417073

98.4600191901 98.3441619873 7.53172611373

91.9374131475 91.8213806152 7.21070922762

118.980466828 118.880493164 8.97856755639

106.038520679 105.926620483 8.20778339642

awe> for f in q:

... f.retrieve()

15:37:34 - Retrieving Sci-USER-WFI-------#877-ccd54-----Sci-53664.4795766.fits

15:37:37 - Retrieving Sci-USER-WFI-------#877-ccd55-----Sci-53664.4796525.fits

15:37:40 - Retrieving Sci-USER-WFI-------#877-ccd52-----Sci-53664.4797027.fits

15:37:43 - Retrieving Sci-USER-WFI-------#877-ccd53-----Sci-53664.4797485.fits

15:37:46 - Retrieving Sci-USER-WFI-------#877-ccd57-----Sci-53664.4801416.fits

15:37:49 - Retrieving Sci-USER-WFI-------#877-ccd56-----Sci-53664.4801463.fits

15:37:52 - Retrieving Sci-USER-WFI-------#877-ccd50-----Sci-53664.4803221.fits

15:37:55 - Retrieving Sci-USER-WFI-------#877-ccd51-----Sci-53664.4803202.fits

219

21.2 HOW-TO: ReduceTask Image Pipeline

Display ReducedScienceFrames

Once the images are retrieved, they can be viewed in a number of ways. There currently exists
no efficient built-in mechanism to view images in AWE, so external viewers viewers should be
used. One external viewer in common use is ESO’s SkyCat tool. The syntax used to view one
of the images (the first in the query in this case) with SkyCat is:

awe> os.system(’skycat %s’ % (q[0].filename))

To view the entire mosaic with SkyCat, the mosaic must first be converted into a multi-
extension FITS (MEF) file. The entire process is illustrated below:

awe> newname = ’Sci-USER-WFI-#877-53664.5.fits’

awe> mef = Image(newname)

awe> mef.frames = q

awe> mef.make()

awe> os.system(’skycat %s’ % (newname))

Once SkyCat appears, click the “Display as one Image” button to see the entire image. See
§23.3 for more detailed information.

Ask ReducedScienceFrames about themselves

The database objects that are created (ReducedScienceFrames in this example) hold informa-
tion about their history. This information can be found by inspecting various attributes of the
object. For example:

awe> q = (ReducedScienceFrame.filename != ’’) &

... (ReducedScienceFrame.instrument.name == ’WFI’)

awe> len(q)

37965

awe> frame = q[0]

awe> frame.filename

’Sci-WVRIEND-WFI-------#845-ccd56-----Sci-53628.6100091.fits’

awe> frame.raw.filename

’WFI.2000-12-20T01:21:43.805_7.fits’

awe> frame.bias.filename

’2000-04-26cal541_ccd56.fits’

awe> frame.flat.filename

’2000-04-21cal546-#845_ccd56.fits’

220

http://archive.eso.org/skycat/

21.3 HOW-TO: Astrometric Solution Image Pipeline

21.3 HOW-TO Derive an Astrometric Solution

Astrometric solutions in AWE can be done in two different ways: on a chip-by-chip basis and
globally (multiple chips at once). For the single-chip solution, an AstrometricParametersTask

is used, and for the multi-chip solution, both GAstromSourceListTask and GAstromTask are
used. See the appropriate HOW-TO section for instructions on how to do these:

• AstrometricParametersTask (§18.1)

• GAstromSourceListTask (§18.2)

• GAstromTask (§18.3)

221

21.4 HOW-TO: RegridTask Image Pipeline

21.4 HOW-TO Create a RegriddedFrame

21.4.1 Making RegriddedFrames using the DPU

For the RegridTask, the DPU command would look something like:

awe> dpu.run(’Regrid’, d=’2001-01-22’, i=’WFI’, f=’#841’, o=’AXAF’)

The RegridTask options via the DPU are as follows:

• i (instrument, mandatory): string

• d (date): string of the form CCYY-MM-DD

• f (filter): string

• o (object): string, possibly using wildcards * and/or ?

• raw (raw filenames): list, a list of filenames of raw science frames that have reduced science
frames

• red (red filenames): list, a list of filenames of reduced science frames

• gra (grid ra): float, right ascension of grid target

• gdec (grid dec): float, declination of grid target

• gps (grid pixelscale): float, requested pixelscale (

• C (commit): integer=0..1 (optional, default=0)

This example shows how to run the DPU RegridTask using date, filter, and object informa-
tion. This allows one to process all data for a given object on a specific day taken in a certain
filter, for all CCDs of the mosaic.

The options can be used in any order and can be omitted (except ‘i’), but the likelihood of
locating required data depends on relaying a minimum of information as shown in the examples.

The GridTarget is the RegriddedFrame(s) its regrid center. The RA and DEC of the Grid-
Target are determined by a system that divides the sky in a set of pre-determined plates. Note:
for large fields of view like OMEGACAM, the determined grid target ra and dec can be those of
different place. This will cause errors in a later step called CoaddTask. However ,it is possible
for the user to force all regridded frames to the same grid target. For the DPU the following
two steps should be taken:

1. Determine grid target of one frame For instance do:

awe> dpu.run(red_filenames=[<filename>])

The logs of this task step show the grid target ra and dec of the frame.

2. Apply the grid target of step one to all other frames The logs of the first step show the
grid target ra and dec, these should now be included as arguments, like:

awe> dpu.run(red_filenames=[<all filenames>],gra=<grid target ra as determined from step 1>,gdec=<grid

222

21.4 HOW-TO: RegridTask Image Pipeline

21.4.2 Making a RegriddedFrame using the RegridTask

Although the ideal method to create RegriddedFrames is the DPU, this task can be performed in
on a per chip basis. The RegridTask is the main part of the recipe $AWEPIPE/astro/recipes/Regrid.py.
An example of the syntax for the RegridTask is given below:

awe> reg = RegridTask(date=’2001-01-22’, chip=’ccd51’, filter=’#841’,

... object=’AXAF’)

awe> reg.execute()

The RegridTask options are as follows:

• date: string of the form CCYY-MM-DD

• chip: string

• filter: string

• object: string, possibly using wildcards * and/or ?

• raw (raw filenames): list, a list of raw science frames that have reduced science frames

• red (red filenames): list, a list of reduced science frames

• gra (grid ra): float, right ascension of grid target

• gdec (grid dec): float, declination of grid target

• gps (grid pixelscale): float, requested pixelscale (

• fsg (force single gridtarget): force the grid target to be similar for all input frames

• commit: integer=0..1 (optional, default=0)

This example shows how to run the RegridTask using date, chip, filter, and object informa-
tion. This allows one to process all ReducedScienceFrames for a given object on a specific day
taken in a certain filter, and with only one CCD of the mosaic.

The options can be used in any order and can be omitted, but the likelihood of locating
required data depends on relaying a minimum of information as shown in the examples.

The GridTarget is the RegriddedFrame(s) its regrid center. The RA and DEC of the Grid-
Target are determined by a system that divides the sky in a set of pre-determined plates.
Note: for large fields of view like OMEGACAM, the determined grid target ra and dec can be
those of different place. This will cause errors in a later step called CoaddTask. However ,it
is possible for the user to force all regridded frames to the same grid target. The argument
force single gridtarget has to be includeded, like for instance

awe> reg = RegridTask(red_filenames=[<filenames>], fsg=True)

21.4.3 Making a RegriddedFrame using the basic building blocks

The third, and most powerful, way of creating a RegriddedFrame is by using the basic building
blocks of the system directly from the awe-prompt. This method is used if one wants to ma-
nipulate the system down to the nitty-gritty details. An example of how a RegriddedFrame is
made from the awe-prompt in this fashion is given below :

223

21.4 HOW-TO: RegridTask Image Pipeline

1. awe> from astro.main.RegriddedFrame import RegriddedFrame

2 awe> from astro.main.RegriddedFrame import GridTarget

3. awe> from astro.main.ReducedScienceFrame import ReducedScienceFrame

4. awe> from astro.main.AstrometricParameters import AstrometricParameters

5. awe> from astro.main.PhotometricParameters import PhotometricParameters

6. awe> from astro.main.GainLinearity import GainLinearity

7. awe> reduced = (ReducedScienceFrame.filename == ’Sci-GVERDOES-WFI---

... ----#842-ccd55-Red---Sci-53811.3816955.fits’)[0]

8. awe> astrom_query = (AstrometricParameters.reduced == reduced) &\

... (AstrometricParameters.quality_flags == 0) &\

... (AstrometricParameters.is_valid == 1)

9. awe> astrom_params = astrom_query.max(’creation_date’)

10. awe> photom_params = PhotometricParameters.select_for_raw(reduced.raw)

11. awe> gain = GainLinearity.select_for_raw(reduced.raw)

12. awe> from astro.util.PlateSystem import PlateSystem

13. awe> platesystem = PlateSystem()

14. awe> ra, dec = platesystem.get_field_centre(reduced.astrom.CRVAL1,

... reduced.astrom.CRVAL2)

15. awe> grid_target = GridTarget()

16. awe> grid_target.RA = ra

17. awe> grid_target.DEC = dec

18. awe> grid_target.pixelscale = 0.20

19. awe> regrid = RegriddedFrame()

20. awe> regrid.process_params.MAXIMUM_PSF_DIFFERENCE = 0.30

21. awe> regrid.swarpconf.SUBTRACT_BACK = ’Y’

22. awe> regrid.swarpconf.BACK_SIZE = 256

23. awe> regrid.reduced = reduced

24. awe> regrid.grid_target = grid_target

25. awe> regrid.astrom_params = astrom_params

26. awe> regrid.photom_params = photom_params

27. awe> regrid.gain = gain

28. awe> regrid.reduced.retrieve()

29. awe> regrid.reduced.weight.retrieve()

30. awe> regrid.set_filename()

31. awe> regrid.make()

32. awe> regrid.store()

33. awe> regrid.weight.store()

34. awe> regrid.commit()

In steps (1)-(6), the classes relevant for this processing step are imported. In steps (7)-(11),
the database is queried for the necessary dependencies. In step (7), the ReducedScienceFrame

to be regridded is retrieved, and in steps (8)-(11) the calibration data to use. The steps (12)-
(18) are unique for making a RegriddedFrame; the GridTarget is a non-ProcessTarget object
that provides the RegriddedFrame its regrid center. The RA and DEC of the GridTarget are
determined by a system that divides the sky in a set of pre-determined plates (hence the steps
(12)-(14)). In steps (19)-(22), the RegriddedFrame object is instantiated, and a few of its process

224

21.4 HOW-TO: RegridTask Image Pipeline

configuration parameters are set. In steps (23)-(30), the dependencies of the RegriddedFrame

are set, and the pixel-data of the input ReducedScienceFrame and its associated weight are
retrieved from the fileserver. In step (30), the filename of the RegriddedFrame to be is created
and set. Finally, in steps (31)-(34), the RegriddedFrame is made, its pixel-data is stored, and the
object itself is committed to the database. Note that in step (33), the WeightFrame associated
with the RegriddedFrame object is also stored; the weights are a very important by-product of
making the RegriddedFrame that should never be forgotten.

225

21.5 HOW-TO: CoaddedRegriddedFrame Image Pipeline

21.5 HOW-TO Create a CoaddedRegriddedFrame

Several RegriddedFrames created from ReducedScienceFrames (see §21.2 or §21.4) can be
coadded to form a deeper image with a substantial reduction of chip defects and divisions (a
CoaddedRegriddedFrame).

NOTE: At this time, the CoaddTask does not allow frames from multiple instruments
to be coadded. It should be possible to do this provided all the RegriddedFrames

were regridded to the same grid target (R.A., DEC., and pixel scale2), but this
operation is currently not supported.

21.5.1 DPU Method

At the moment, the CoaddTask is a purely serial operation which takes place on only one node
of the DPU. Some possible reasons to use the DPU for this task are because the machines on
the DPU are much faster than the local machine, or because no local machine is available.

For the CoaddTask, the DPU command would look something like:

awe> dpu.run(’Coadd’, d=’2000-01-01’, i=’WFI’, f=’#843’, o=’Science1_?-*’)

The CoaddTask options via the DPU are as follows:

• i (instrument, mandatory): string

• f (filter, mandatory): string

• d (date): string of the form CCYY-MM-DD

• o (object): string or “regular expression”

• C (commit): integer=0..1 (optional, default=0)

This example shows how to run the DPU CoaddTask using date, filter, and object information.
This allows one to process all data for a given object on a specific day taken in a certain filter,
for all CCDs of the mosaic.

The options can be used in any order and can be omitted (except ‘i’), but the likelihood of
locating required data depends on relaying a minimum of information as shown in the examples.

21.5.2 Non-DPU Method

This task can also be performed in on a per chip basis. The CoaddTask is main part of
the recipe $AWEPIPE/astro/recipes/Coadd.py. This is most basic front-end for creating
CoaddedRegriddedFrames in AWE. An examples of the syntax for the CoaddTask is given below:

awe> coa = CoaddTask(instrument=’WFI’, date=’2000-01-01’, chip=’ccd50’,

... filter=’#843’, object=’Science1_?-*’)

awe> coa.execute()

The CoaddTask options are as follows:

• instrument, mandatory: string

• filter, mandatory: string

2Current default pixel scale is 0.200 arcsec/pixel

226

21.5 HOW-TO: CoaddedRegriddedFrame Image Pipeline

• date: string of the form CCYY-MM-DD

• chip: string

• object: string or “regular expression”

• commit: integer=0..1 (optional, default=0)

This example shows how to run the CoaddTask using date, chip, filter, and object informa-
tion. This allows one to process all data for a given object on a specific day taken in a certain
filter, and only one CCD of the mosaic.

The options can be used in any order and can be omitted, but the likelihood of locating
required data depends on relaying a minimum of information as shown in the examples.

21.5.3 Coadd algorithm

The algorithm behind the coaddition is described via the coaddition of two RegriddedFrames
which have the (object)name reg1 and reg2. The value fout of a pixel in the resulting Coadde-
dRegriddedFrame (which we give object name coad) is computed as follows:

fout = Σi(wi ∗ FLXSCALEi ∗ fi)/Σi(wi), (21.1)

where the summation is over the RegriddedFrames.
FLXSCALEi=value of FLXSCALE attribute of each input RegriddedFrame (i.e.,, reg1.FLXSCALE).
wi = weighti/FLXSCALE2

i where weighti is the value of the pixel in the associated weight-
frame (i.e., reg1.weight).
The fi is the pixel value in the regridded frame.
The value wout of the pixel in the resulting weight frame associated with the coad (i.e., coad.weight)
is computed as:

wout = Σi(wi) (21.2)

21.5.4 Coadd units

The pixel units of the CoaddedRegriddedFrame are fluxes relative to the flux corresponding to
magnitude=0. In other words, the magnitude m corresponding to a pixel value f0 is:

m = −2.5log10f0. (21.3)

The relation between pixel units in CoaddedRegriddedFrame and the RegriddedFrames from
which it was derived is as follows. For a RegriddedFrame object named reg we have:

reg.FLXSCALE == 10.0−0.4×reg.ZEROPNT (21.4)

A magnitude=0 picels will have counts countsreg(mag = 0) in the RegriddedFrame:

countsreg(mag = 0) == 100.4×reg.ZEROPNT = 1/reg.FLXSCALE (21.5)

(Note that reg.ZEROPNT is exposure-time specific, therefore counts instead of countrate.)
Suppose one makes a CoaddedRegriddedFrame from this single RegriddedFrame reg. In this
case the relation between the counts countreg in the RegriddedFrame and pixel value vcoad in
the CoaddedRegriddedFrame is made to be:

vcoad = countsreg ∗ reg.FLXSCALE (21.6)

227

21.5 HOW-TO: CoaddedRegriddedFrame Image Pipeline

Suppose you know the physical flux density of the magnitude=0 object to be f0 Jy. The physical
flux corresponding to vcoad is then:

fcoad(Jy) = f0 ∗ vcoad (21.7)

For example, in the AB magnitude system f0 == 3631 Jy and hence:

fcoad(Jy) = 3631 ∗ vcoad (21.8)

If ones make a CoaddedRegriddedFrame out of multiple overlapping RegriddedFrames the
resulting flux is the weighted average of the input RegriddedFrames fluxes (see Section 21.5.3).

228

21.6 SourceLists in the Astro-WISE System Image Pipeline

21.6 SourceLists in the Astro-WISE System

After having reduced the science data, source lists can be derived. This basically boils down to
running SExtractor on this data, but to make sure that the extracted sources are also stored in
the database for later scrutiny, some extra steps are performed. The way this is handled in the
Astro-WISE system is described in the following subsections.

21.6.1 HOW-TO: Create Simple SourceLists From Science Frames

In the Astro-WISE system source lists are represented by SourceList objects. The SourceList

class is imported by default when starting AWE, but if you need to import it in a script, this is
done as follows:

awe> from astro.main.SourceList import SourceList

In order to derive a source list from a reduced science frame, an instance of the SourceList class
must be created and the reduced science frame must be assigned to this object as a dependency.
The three types of science frames for which a source list are commonlt made are:

• ReducedScienceFrame: requires separate astrometric solution (AstrometricParameters)

• RegriddedFrame: a resampled ReducedScienceFrame with incorporated astrometric solu-
tion

• CoaddedRegriddedFrame: a mosaic of RegriddedFrames

Invoking the ‘make’ method of the SourceList object creates the source list which is then
automatically stored into the database. From the awe-prompt this reads for a RegriddedFrame
:

awe> query = RegriddedFrame.filename == ’frame.fits’

awe> frame = query[0]

awe> frame.retrieve()

awe> frame.weight.retrieve()

awe> sourcelist = SourceList()

awe> sourcelist.frame = frame

awe> sourcelist.make()

awe> sourcelist.commit()

which will create the source list in the database. The ‘make’ method of the SourceList object
first calls the ‘make sextractor catalog’ method (which obviously runs SExtractor), followed by
a call to the ‘make sourcelist from catalog’ method that ingests the sources into the database.
In a similar fashion one can make a SourceList for a CoaddedRegriddedFrame. However, for a
ReducedScienceFrame a separate astrometric solution is required. In this case the awe-prompt
reads :

awe> query = ReducedScienceFrame.filename == ’frame.fits’

awe> frame = query[0]

awe> astrom = (AstrometricParameters.reduced == frame).max(’creation date’)

awe> frame.retrieve()

awe> frame.weight.retrieve()

awe> sourcelist = SourceList()

awe> sourcelist.frame = frame

awe> sourcelist.astrom params = astrom

awe> sourcelist.make()

229

21.6 SourceLists in the Astro-WISE System Image Pipeline

awe> sourcelist.commit()

which will create the source list in the database. The ‘make’ method of the SourceList object
first calls the ‘make sextractor catalog’ method (which obviously runs SExtractor), followed by
a call to the ‘make sourcelist from catalog’ method that ingests the sources into the database.

The configuration of SExtractor and its output can be manipulated through the SourceList
interface as well. This is done through the sexconf and sexparam dependencies, respectively.
For example, if one wants to run SExtractor with a detection threshold of 12, and to have
MAG APER and MAGERR APER as additional output, the AWE-session above changes into (skipping
the database query and retrieve operations):

awe> sourcelist = SourceList()

awe> sourcelist.frame = frame

awe> sourcelist.astrom params = astrom

awe> sourcelist.sexconf.DETECT THRESH = 12

awe> sourcelist.sexparam = [’MAG APER’, ’MAGERR APER’]

awe> sourcelist.make()

awe> sourcelist.commit()

with the extra output parameters added to the definition of the sources contained in the list.
A special feature has been implemented to allow for skipping some specified records in the

SExtractor catalog. This works as follows:

awe> sourcelist = SourceList()

awe> sourcelist.record skiplist = [13, 169]

The last statement will make sure that the sources on record 13 and 169 of the SExtractor
catalog are NOT ingested into the list.

21.6.2 SegmentationImage

When a SourceList is created, by default a SegmentationImage is also made. A segmentation
image is a file that SExtractor can generate, that defines which pixels are part of what object
as detected by SExtractor.

A SegmentationImage is derived from the class CheckImage. If you have made a SourceList,
its associated SegmentationImage can be found with a query such as this one:

awe> sl = (SourceList.SLID == 423431)[0]

awe> segm = (SegmentationImage.sourcelist == sl)[0]

and display it ...

awe> segm.display()

21.6.3 Using SourceList with SExtractor double-image mode

When a SourceList is made for an image one has the option to specify a secondary image. This
makes the SExtractor software which SourceList uses, run in the so-called “double-image mode”.

To explain the process, this is how you would normally run SExtractor in double-image
mode:

sex -c sex.conf image1.fits image2.fits

Here “image1.fits” is called the detection image and “image2.fits” is the measurement image.
The detection image and measurement image must have identical dimensions. The detection

230

21.6 SourceLists in the Astro-WISE System Image Pipeline

image is the image used to determine which pixels are part of sources. Physical properties are
derived from the measurement image, using the pixels attributed to sources in the detection
image. Changing the measurement image for another image will not modify the number of
detected sources, nor will it affect their pixel positions or basic shape parameters. All other
parameters (photometric parameters in particular) will use measurement image pixel values,
which allows one to easily measure pixel-to-pixel colours.

The images must have identical dimensions because in double-image mode all sources de-
tected in the detection image have their photometry measured at exactly the same pixel locations
in the measurement image.

Using SExtractor image mode is only accurately possible when using RegriddedFrames or
CoaddedRegriddedFrames that have been regridded to the same grid. A cutout of the overlapping
region is automatically made during the creation of the SourceList. For other frames (i.e.
ReducedScienceFrames) no attempt it made to determine an overlap; the images are assumed
to cover exactly the same area on the sky.

When using SourceListTask the measurement images are specified via the “filenames” vari-
able and all corresponding detection images are specified via the “detection filenames” variable.
Example:

awe> task = SourceListTask(filenames=[’image2.fits’],

detection_filenames=[’image1.fits’])

awe> task.execute()

or with short options:

awe> task = SourceListTask(f=[’image2.fits’], df=[’image1.fits’])

awe> task.execute()

Note that the primary image used in the SourceList is the measurement image; while this is the
second filename that is given to SExtractor.

For your information, here are most (if not all) parameters that are derived from the detection
image in double image mode:

X_IMAGE X2_IMAGE A_IMAGE

Y_IMAGE Y2_IMAGE B_IMAGE

XMIN_IMAGE XY_IMAGE ELONGATION

XMAX_IMAGE CXX_IMAGE ELLIPTICITY

YMIN_IMAGE CYY_IMAGE KRON_RADIUS

YMAX_IMAGE CXY_IMAGE

THRESHOLD (same for all sources)

MU_THRESHOLD (same for all sources)

21.6.4 HOW-TO: Use External SourceLists

The description of the use of SourceList objects given in §21.6.1 deals with deriving source lists
directly from a science frame. However, already existing source lists can also be stored into the
database through the use of SourceList objects. This is useful if one wants to store a catalog
of standard stars into the database. This is done by instantiating a SourceList object with as-
signing the external source list name to catalog, and calling the ‘make sourcelist from catalog’
method. As seen from the awe-prompt:

awe> sourcelist = SourceList()

awe> sourcelist.catalog = ’external.fits’

231

21.6 SourceLists in the Astro-WISE System Image Pipeline

awe> sourcelist.make sourcelist from catalog()

awe> sourcelist.commit()

and the ingestion of the external source list is complete.
For this mechanism to work, the external catalog has to meet some conditions. First and

foremost, the external catalog has to be of the same type and layout of a Sextrator catalog like
the ones produced in the Astro-WISE system. This means that the external catalog should be in
LDAC fits format, and must have an OBJECTS and FIELDS table. Secondly, the OBJECTS table
should have the following columns : RA or ALPHA SKY, DEC or DELTA SKY, A, B, Theta or POSANG,
and FLAG. Besides these mandatory columns, any other column may be present in the catalog
with no restrictions on the name.

21.6.5 HOW-TO: Use SourceLists

Once a SourceList is ingested into the database, the usual method of retrieving database ob-
jects should be used to access the stored information, i.e.

awe> sourcelist = (SourceList.SLID == 0)[0]

Each SourceList has an unique SoureList Identifier (SLID) and/or a name. A SourceList

name does not have to be unique, so the following statement might result in many sourcelists:

awe> sourcelists = (SourceList.name == ’MySourcelists’)

Each source in a SourceList has a unique Source Identifier (SID), which is assigned during
ingestion into the data base and which starts at zero. The number of sources in the sourcelist
is obtained with the len function:

awe> number of sources = len(sourcelist.sources)

or with the special attribute number of sources:

awe> number of sources = sourcelist.number of sources

The column information is obtained as follows:

awe> column info = sourcelist.sources.get attributes()

column info is a dictionary with column names as keys and column types as contents. Column
data is for example retrieved with the following statement:

awe> RA = sourcelist.sources.RA

where RA is a list containing the values of column ‘RA’. Row data is retrieved in a similar way,
for example:

awe> first source = sourcelist.sources[0]

where first source is a dictionary with column names as keys and column values as contents.

There are some methods defined for sourcelists. At the moment these are:

• sourcelist.sources.make_skycat(sid_list=None, filename=None)

make_skycat creates a ”dump” of the SourceList object that can be used to overplot a
frame in ESO skycat.
If sid_list is given it should be a list of SID’s (Source IDentifiers) which will be output
to the skycat output file.
The default filename is the name of the SourceList with extension .scat.

232

21.6 SourceLists in the Astro-WISE System Image Pipeline

• sourcelist.sources.area_search(self_search=True, htm_depth=20, Area=None)

area_search searches the specified area for sources within a given distance from a position
{i.e. Area=(RA,DEC,Distance)} or within an area delimited by three or four positions
{i.e. Area=[(RA0,DEC0),(RA1,DEC1),(RA2,DEC2)]}.
All positions and distances are in degrees.
For the search, htm trixel ranges are searched at the specified depth (default is 20). If
self_search==True, only the current SourceList is examined, if self_search==False,
all SourceLists will be examined.
Return value is a dictionary with the SLID’s (SourceList IDentifiers) for keys and lists of
SID’s (Source IDentifiers) for values. Example:

awe> r = sourcelist.sources.area_search(Area=[(1.0,0.0),(0.0,0.0),(0.0,1.0),(1.0,1.0)])

awe> print ’Sources found: ’, len(r[sourcelist.SLID])

• sourcelist.sources.get_data(dict)

get_data returns the data associated with given attributes. dict is a dictionary where
the keys represent the attributes returned and their subsequent values should be on input
None or an empty list ([]).
On output the actual values of the attributes are stored as key values.
The function returns a list of Source IDentifiers (SID’s). Example:

awe> dict = {’RA’:[], ’DEC’:[], ’MAG_ISO’:[]}

awe> r = sourcelist.sources.get_data(dict)

• sourcelist.sources.sql_query(dict, query_string)}

sql_query performs an SQL query on source attributes. query_string may contain only
valid SQL query syntax and the names of the attributes between double quotes (”).
dict is a dictionary where the keys represent the attributes returned and their subsequent
values should be on input None or an empty list ([]).
On output the actual values of the attributes are stored as key values.
The function returns a list of Source IDentifiers (SID’s). Example:

awe> dict = {’RA’:[], ’DEC’:[], ’MAG_ISO’:[]}

awe> r = sourcelist.sources.sql_query(dict, ’"MAG_ISO"<18.5 AND "A">0.2’)

• sourcelist.sources.make_image_dict(sids, mode=’sky’)

make_image_dict returns a dictionary which can be used as input for the interface to the
image server.
sids may contain one SID or a list of SID’s.
mode is used to specify whether sky (default) or grid coordinates are wanted. Example:

awe> imgdict = sourcelist.sources.make_image_dict(0)

awe> from astro.services.imageview.imgclient import imgclient

awe> ic = imgclient(imgdict, wide_high=[150, 150])

awe> ic.getimg()

233

21.6 SourceLists in the Astro-WISE System Image Pipeline

21.6.6 HOW-TO: Associate SourceLists

To spatially associate two different sourcelists the make method of the AssociateList class can
be used. The association is done in the following way:

• First the area of overlap of the two sourcelists is calculated. If there is no overlap no
associating will be done.

• Second the sources in one sourcelist are paired with sources in the other sourcelist if they
are within a certain distance from eachother. Default distance is 5”. The pairs get an
unique associate ID (AID) and are stored in the associatelist. A filter is used to select only
the closest pairs.

• Finally the sources which are not paired with sources in the other list and are inside the
overlapping area of the two sourcelists are stored in the associatelist as singles. They too
get an unique AID.

NOTE: in default mode all objects in the to-be associated sourcelists, which have SEx-
tractor Flag > 0, are filtered out. To keep objects which have Flag > 0, one must type
’AL.process params.SEXTRACTOR FLAG MASK=255’ in the example below.
In Python this is done as follows:

awe> AL = AssociateList()

awe> sl0 = (SourceList.SLID == 0)[0]

awe> sl1 = (SourceList.SLID == 1)[0]

awe> AL.input lists.append(sl0)

awe> AL.input lists.append(sl1)

awe> AL.set search distance(5.0)

awe> AL.associatelisttype=1

awe> AL.make()

awe> AL.commit()

If one does not want to filter for closest pairs, the following statement should be executed before
the make:

awe> AL.single out closest pairs(False)

Optionally one can also specify the search area. Only sources from both sourcelists which lie
inside this area are matched. This can be done as follows, before you do AL.make()

awe> AL.set search area(llra,lldec,lrra,lrdec,urra,urdec,ulra,uldec)

where

llra = lower left R.A. of search area

lldec = lower left Dec. of search area

lrra = lower right R.A. of search area

lrdec = lower right Dec. of search area

urra = upper right R.A. of search area

urdec = upper right Dec. of search area

ulra = upper left R.A. of search area

uldec = upper left Dec. of search area

A previously created AssociateList can also be input to a new AssociateList. Simply put
the existing AssociateList in the input lists as shown in the following example:

awe> AL = AssociateList()

234

21.6 SourceLists in the Astro-WISE System Image Pipeline

awe> ALs = (AssociateList.ALID == 0)

awe> SLs = (SourceList.SLID == 2)

awe> AL.input lists.append(ALs[0])

awe> AL.input lists.append(SLs[0])

awe> AL.make()

awe> AL.commit()

The member sourcelists can be derived from the AssociateList attribute sourcelists. The
above example creates a so-called ‘chain’ association: The new SourceList is paired with the
last SourceList in the sourcelists of the existing AssociateList. Figure 21.2 gives an
example of a chain association.

The pairing can also be done in a different way in that the pairing is always done between
the new SourceList and the first one in the sourcelists list of the input AssociateList. This
is a so-called ‘master’ association. Figure 21.3 gives an example of a master association.

Another method of pairing sourcelists is by matching sources of a number of sourcelists
simultaneously. Here only sources which have at least one companion end up in an association,
so singleton sources are out. This is a so called ‘matched’ association. Figure 21.4 gives an
example of a matched association. Once a matched associatelist has been created, it can not be
used as input to another association.

The AssociateList attribute associatelisttype sets the type of association: 1 for chain,
2 for master and 3 for matched type, chain is the default.
Once an AssociateList is created the number of associates can be obtained as follows:

awe> print len(AL)

There are two functions which count the associations:

• count from members(members=0, mode=’EQ’) counts the number of associations which
have a specified number of members. With mode you can specify whether you want asso-
ciations counted with ’LT’, ’LE’, ’EQ’, ’GE’ or ’GT’ the specified number of members.
For example, to count the number of pairs in an associatelist derived from only 2 sourcelists
one could do the following:

awe> print AL.associates.count from members(members=2,mode=’EQ’)

To count the number of singles one could do:

awe> print AL.associates.count from members(members=1,mode=’EQ’)

• count from flag(mask=None, mode=’ANY’, count=None, countmode=’EQ’) returns the
number of associations which contain sources from specified sourcelists. mask works as a
bitmask, each bit set representing a sourcelist which was input to the associatelist. For
example bit 2 set means that only the wanted associations which contain a source from
sourcelist number 2 will be counted (depends on mode). mode determines how the masking
works. mode can be: ’ALL’ (count only the associations which contain sources from exact
the specified sourcelists), ’INTERSECT’ (count only the associations which contain sources
from at least the specified sourcelists) and ’ANY’ (count only the associations which con-
tain sources from at least one of the specified sourcelists).

It is also possible to specify a bitcount operation with parameter count. count determines
the number of different sourcelists which participate in an association, i.e. if count = 3

then only associations are counted which have sources from 3 different sourcelists (depends

235

21.6 SourceLists in the Astro-WISE System Image Pipeline

source 3−09

source 3−08

source 3−07

source 3−06

source 3−05

source 3−04

source 3−03

source 3−02

source 3−01

source 3−00

source 2−09

source 2−08

source 2−07

source 2−06

source 2−05

source 2−04

source 2−03

source 2−02

source 2−01

source 2−00

source 1−08

source 1−07

source 1−06

source 1−05

source 1−04

source 1−03

source 1−02

source 1−01

source 1−00

source 1−09

source 0−08

source 0−07

source 0−06

source 0−05

source 0−04

source 0−03

source 0−02

source 0−01

source 0−00

source 0−09

SourceList 0 SourceList 1 SourceList 2 SourceList 3

Figure 21.2: An example of a chain association with 4 sourcelists. Each sourcelist is always
paired with the previous sourcelist

source 2−09

source 2−08

source 2−07

source 2−06

source 2−05

source 2−04

source 2−03

source 2−02

source 2−01

source 2−00

source 3−09

source 3−08

source 3−07

source 3−06

source 3−05

source 3−04

source 3−03

source 3−02

source 3−01

source 3−00

source 1−09

source 1−08

source 1−07

source 1−06

source 1−05

source 1−04

source 1−03

source 1−02

source 1−01

source 1−00

source 0−08

source 0−07

source 0−06

source 0−05

source 0−04

source 0−03

source 0−02

source 0−01

source 0−00

source 0−09

SourceList 0 SourceList 1 SourceList 2 SourceList 3

Figure 21.3: An example of a master association with 4 sourcelists. All sourcelists are paired
with the first sourcelist

236

21.6 SourceLists in the Astro-WISE System Image Pipeline

source 1−08

source 1−07

source 1−06

source 1−05

source 1−04

source 1−03

source 1−02

source 1−01

source 1−00

source 1−09 source 3−09

source 3−08

source 3−07

source 3−05

source 3−04

source 3−03

source 3−02

source 3−01

source 3−00

source 2−09

source 2−08

source 2−06

source 2−05

source 2−04

source 2−03

source 2−02

source 2−01

source 2−00

source 0−04

source 0−09

source 0−08

source 0−07

source 0−06

source 0−05

source 0−03

source 0−01

source 0−00

SourceList 0 SourceList 1 SourceList 2 SourceList 3

Figure 21.4: An example of a matched association with 4 sourcelists. All sourcelists are paired
with the other sourcelists simultaneously. All interconnected pairs make one association.

on countmode). countmode determines whether the number of participation sourcelists
should be less than (’LT’), less than or equal (’LE’), equal (’EQ’), greater than or equal
(’GE’) or greater than (’GT’) count.

For example, to count the number of pairs in an associatelist derived from only 2 sourcelists
(i.e. the first and the second sourcelist so mask = 1 + 2) one could do the following:

awe> print AL.associates.count from flag(mask=3,mode=’ALL’)

To count the number of singles one could do:

awe> print AL.associates.count from flag(mask=1,mode=’ALL’)

awe> print AL.associates.count from flag(mask=2,mode=’ALL’)

The first command counts the number of singles from the first Sourcelist, the second
command those from the second sourcelist.

With the function get data one can get the SLID, SID or in fact any attribute of member
sources. The function is described as follows:
get data(attrlist=[], mask=None, mode=’ANY’, count=None, countmode=’EQ’) returns re-
quested attributes of the associated sources. The function returns a dictionary with as key the
AID (Association IDentifier) and as value the attribute values according to the modified list of
specified attributes. For each requested sourcelist a separate list of attributes is returned.
attrlist contains the wanted attributes. Note that SLID and SID will always be returned and
that SLID is the first and SID the second item. On return attrlist will be modified accordingly.

mask, mode, count and countmode work as in count from flag.

The following example shows how to obtain the RA, DEC and MAG ISO attributes from an
associatelist:

237

21.6 SourceLists in the Astro-WISE System Image Pipeline

awe> attrlist = [’RA’, ’DEC’, ’MAG ISO’]

awe> r = AL.associates.get data(attrlist,mask=3,mode=’ALL’)

awe> aids = [k for k in r.keys()]

awe> aids.sort()

awe> print ’AID’, attrlist

awe> for aid in aids[:10]:

awe> for row in r[aid]:

awe> print aid, row

The output looks like:

AID [’SLID’, ’SID’, ’RA’, ’DEC’, ’MAG ISO’]

0 [44, 0, 280.86871938032101, 0.36483871219556502, -4.8930621147155797]

0 [45, 12, 280.868644520494, 0.36475058531692101, -6.9002099037170401]

1 [44, 1, 280.86753832027802, 0.28356582313986001, -4.3539190292358398]

1 [45, 24, 280.86745181025799, 0.28365591902279302, -6.2037878036498997]

2 [44, 2, 280.86763239079198, 0.27250082665266701, -5.1681485176086399]

2 [45, 11, 280.86766082401601, 0.27245588811475802, -6.6134591102600098]

3 [44, 3, 280.867557240373, 0.26285186993244197, -5.4812445640564]

3 [45, 19, 280.867494620603, 0.262849873260255, -7.01251125335693]

4 [44, 4, 280.86742472466602, 0.25502430125932601, -5.4748520851135298]

4 [45, 16, 280.86738586918, 0.25500542211914801, -6.6722841262817401]

5 [44, 7, 280.86738062915998, 0.275450798599644, -4.89949655532837]

5 [45, 20, 280.86741490360203, 0.27540606762365499, -6.2980375289917001]

6 [44, 8, 280.86823775792999, 0.32890289165032699, -6.9213681221008301]

6 [45, 40, 280.86818782868102, 0.328900495041689, -8.8428869247436506]

7 [44, 9, 280.86780428279701, 0.26950356072341503, -7.1055769920349103]

7 [45, 32, 280.86776951099699, 0.26946985609771201, -8.1041078567504901]

8 [44, 13, 280.86790089506002, 0.345712819247041, -6.1025667190551802]

8 [45, 38, 280.86788627250701, 0.345742041485333, -7.4083743095397896]

9 [44, 14, 280.86739941046397, 0.333885857133919, -5.7742152214050302]

9 [45, 41, 280.86730665910602, 0.33388354451305802, -6.7259593009948704]

As for sourcelists, a function called make image dict has been implemented:
al.associates.make image dict(aids, mode=’sky’)

make image dict returns a dictionary which can be used as input for the interface to the image
server.
aids may contain one AID or a list of AID’s.
mode is used to specify whether sky (default) or grid coordinates are wanted. Example:

awe> imgdict = al.associates.make image dict(0)

awe> from astro.services.imageview.imgclient import imgclient

awe> ic = imgclient(imgdict, wide high=[150, 150])

awe> ic.getimg()

For inspecting the distances between all associated source pairs one can use the method
get distances:
get distances calculates the distances between all possible pairs in an association. The output
is a dictionary with as key the associate ID (AID) and as value a list containing for each pair a
tuple which consists of three items: ((SLID1, SID1), (SLID2, SID2), DISTANCE). SLID1 is

238

21.6 SourceLists in the Astro-WISE System Image Pipeline

always <= SLID2 and when SLID1=SLID2, SID1 < SID2.

21.6.7 Scientific Examples Using AssociateLists

In this section some examples for scientific use of AssociateLists are shown.
The first example shows how to use an associate list to find extraordinary sources. Suppose

we have an AssociateList which is created by associating two sourcelists which were derived
from images with different filters, say B and V. To find those sources which have a B - V > 1.5

one could do the following:

awe> attrlist = [’RA’, ’DEC’, ’MAG_ISO’]

awe> r = al.associates.get_data_on_associates(attrlist, mask=3, mode=’ALL’)

awe> print ’Found %d pairs’ % (len(r))

awe> i = attrlist.index(’MAG_ISO’)

awe> newr = {}

awe> for aid in r.keys():

awe> if (r[aid][0][i] - r[aid][1][i]) > 1.5:

awe> newr[aid] = r[aid]

awe> print ’Found %d pairs with MAG_ISO diff > 1.5’ \% (len(newr))

Note that we use mask = 3 to indicate that we want only those associations which have a source
from the first (bit 1 = 1) and second (bit 2 = 2) sourcelist (mask = 1 + 2).

The second example shows how to find ’drop-outs’ in an AssociateList which has been
created associating three sourcelists, each having been obtained for different filters. We are
looking for sources which appear only in the second and third sourcelist (i.e. they were not
detected with the filter used for obtaining the first sourcelist). This could be done as follows:

awe> attrlist = [’RA’, ’DEC’, ’MAG ISO’]

awe> r = al.associates.get data on associates(attrlist, mask=6, mode=’ALL’)

awe> print ’Found %d pairs’ % (len(r))

Note that we use mask = 6 to indicate that we want only those associations which have a source
from the second (bit 2 = 2) and third (bit 3 = 4) sourcelist (mask = 2 + 4).

The third example shows how to obtain the data to make a B - V vs. U - V plot. Suppose
we have associated three sourcelists, each obtained for different filters U, B, V. Then we could
do this as follows:

awe> attrlist = [’RA’, ’DEC’, ’MAG ISO’]

awe> r = al.associates.get data on associates(attrlist, mask=7, mode=’ALL’)

awe> print ’Found %d triples’ % (len(r))

awe> i = attrlist.index(’MAG ISO’)

awe> x = []

awe> y = []

awe> for aid in r.keys():

awe> x.append(r[aid][1][i] - r[aid][2][i])

awe> y.append(r[aid][0][i] - r[aid][2][i])

Note that we use mask = 7 to indicate that we want only those associations which have a source
from the first (bit 1 = 1), the second (bit 2 = 2) and third (bit 3 = 4) sourcelist (mask = 1 +
2 + 4).

239

21.6 SourceLists in the Astro-WISE System Image Pipeline

21.6.8 Visualizing associated sources: creating a skycat catalog

It is possible to visualize which sources are associated in an AssociateList by creating a skycat
catalog. This catalog can be used in the skycat FITS viewer. Use the following method:

• make skycat on associates(slid, mask=None, mode=’ALL’) takes as input a SourceList
identifier; the SourceList in the AssociateList for which to produce the skycat catalog. The
arguments mask and mode are the same as described in the count from flag method. If
the optional arguments are not specified the resulting catalog will contain the associates
that have members in each input SourceList.

Example:

awe> al.make skycat on associates(slid=123456)

21.6.9 HOW-TO: CombinedList

CombinedList is a library which was written to create a SourceList from AssociateList. At
the moment the size of the newly created SourceList is limited to 200,000 sources, the bigger
SourceLists are possible with the special function provided by the user request.

Main principles

The Astro-Wise user has an ability to associate SourceLists cross-identifying sources. The
functionality of AssociateList is described in the corresponding how-to.

AssociateList contains links to sources in SourceList only and does not provide any ability to
combine attribute values of cross-identified SourceLists. CombinedList fills this gap and allow
user to create a permanent SourceList with combined attributes for all sources. This is especially
useful for creating of multiband catalogs. At the same moment CombinedList is not a persistent
class but a library of methods. The input for the CombinedList methods is an AssociateList,
the output is a SourceList.

The main task - creating a stable multiband catalog - is realized by adding a new attributes.
The user can set an attribute which he would like to treat as a magnitude (normally this is
MAG_ISO or other magnitude attributes from sextractor) and create an average magnitude for
associated sources (MAG_1) accompanied by the rms of the magnitude (MAGERR_1), corresponding
flags (if user provided information about attribute with flags, MAGFLAG_1), and number of sources
which were joint (MAGN_1).

In the case of the same filters for SourceLists (Fig. 21.5) the newly created SourceList will
have the only attribute set for magnitude, in the case of different filters (Fig. 21.6) two sets of
magnitudes will be created.

The information about filters is saved in the string filters in the following format ’MAG_1:<filter_name>,MAG_2:<filter_name>’
There are up to 20 filters possible.

The user has an ability to set a type of operations which will be provided with input Asso-
ciateList. AssociateList is created over SourceLists, sources in SourceLists which corresponds
to AID (ID of associations) will be combined according to the specification from user and in-
serted into a newly created SourceList. The user has an ability to insert into this newly created
SourceList not only associated sources but non-associated ones as well.

Let us see the case of an overlapped SourceLists (SL1 and SL2, Fig. 21.7, sources are asso-
ciated in the area of AssociateList AL). In the case of COMBINE_METHOD=1 all sources, including
non-associated from the area out of bounding box of AssociateList will be included into newly
created SourceList (Fig. 21.7). In the case of COMBINE_METHOD=2 associated sources from the area

240

21.6 SourceLists in the Astro-WISE System Image Pipeline

Figure 21.5: CombinedList on the same filter

SourceList

 MAG_ISO

filter:#844

SourceList

 MAG_ISO

filter:#844

SourceList

 MAG_1

 MAGERR_1

 MAGFLAG_1

 MAGN_1

 filters = ’MAG_1:#844’

Figure 21.6: CombinedList on different filters

SourceList

 MAG_ISO

filter:#844

SourceList

 MAG_ISO

filter:#849

SourceList

 MAG_1

 MAGERR_1

 MAGFLAG_1

 MAGN_1

 MAG_2

 MAGERR_2

 MAGFLAG_2

 MAGN_2

 filters = ’MAG_1:#844,MAG_2:#849’

241

21.6 SourceLists in the Astro-WISE System Image Pipeline

Figure 21.7: Spatial localization in the case of COMBINE METHOD=1

AL

SL1

SL2

covered by AssociateList will be included only (Fig. 21.8), and in the case of COMBINE_METHOD=3
only non-associated sources will be inserted (Fig. 21.8). Please, note, that usually area cov-
ered by AssociateList contains non-associated sources as well (sources which do not satisfy to
requirements implied by the user for AssociateList). These sources will be included as well if
user chooses COMBINE_METHOD=1 and COMBINE_METHOD=3.

The life cycle of SourceList

The realization of CombinedList library allows to reuse of a newly created SourceList as an
input for a new AssociateList. Fig. 21.10 shows the possible life cycle of the new SourceList.
New attributes are:

associatelist - the ID of the parent AssociateList,

filters - the list of magnitudes in the SourceList,

COMBINE_METHOD - the method used by CombinedList to make new coordinates/magnitudes,

for each photometric band 4 attributes - mag_i for magnitudes, magErr_i for errors of
magnitudes, magFlag_i for the flag and magN_i for number of stars combined for this
value of magnitude.

As result there are three types of SourceLists (in the single SourceList class):

• “original” SourceList - a SourceList from sextractor

• “external data source” SourceList - a sourcelist ingested from an external to Astro-Wise
catalog. This SourceList can contain a number of magnitudes per source

• “combined” SourceList produced by CombinedList

242

21.6 SourceLists in the Astro-WISE System Image Pipeline

Figure 21.8: Spatial localization in the case of COMBINE METHOD=2

AL

SL1

SL2

Figure 21.9: Spacial localization in the case of COMBINE METHOD=3

AL

SL1

SL2

243

21.6 SourceLists in the Astro-WISE System Image Pipeline

Figure 21.10: New SourceList cycle

SourceList: ingestion

AssociateList: association

CombinedList: joining of SourceLists

SourceList

+associatelist: int = None

+filters: str = None

+COMBINE_METHOD: int = None

+mag_1: float = None

+magErr_1: float = None

+magFlag_1: int = None

+magN_1: int = None

AssociateList

+ALID: int = not NULL

SourceList

+associatelist: int = not NULL

+filters: str = not NULL

+COMBINE_METHOD: int = not NULL

+mag_1: float = not NULL

+magErr_1: float = not NULL

+magFlag_1: int = NULL

+magN_1: int = not NULL

244

21.6 SourceLists in the Astro-WISE System Image Pipeline

Functions and Attributes

Initializing CombinedList must be initiated with the AssociateList of type 1 or 2.

cl=CombinedList(input_AssociateList)

The place of CombinedList is in astro.main.CombinedList.

Setting method of combining of sources

cl.set_combined_method(COMBINE_METHOD)

COMBINE_METHOD can be 1, 2 or 3. By default COMBINE_METHOD=2.

Setting user defined magnitudes

cl.set_user_defined_magnitudes(attributes)

attributes is a dictionary which specify magnitude-like attributes defined by the user. The
format of the dictionary is

attributes={<attribute_name>:<filter_name>,}

for example,

attributes={’MAG_IZO’:’#844’,’MAG_AUTO’:’#849’}

Please, note that the definition like this:

attributes={’MAG_IZO’:’#844’,’MAG_AUTO’:’#844’}

will join MAG_IZO and MAG_AUTO in one attribute in newly created SourceList.

Setting user defined attributes Unlike user defined magnitudes user defined attributes will
be joint in a new SourceList in an attribute with the same name. For example,

cl.set_user_defined_attributes(attributes)

where attributes is a list

attributes=[’B’,’MAG_RAD’]

will create in a new SourceList two attributes B and MAG_RAD. The aggregation function by
default is AVG, but the user can set any Oracle aggregation function as attribute with the same
name. For example,

cl.set_aggregate_functions(attributes)

where attributes is a dictionary

attributes={<attribute_name>:<aggregate_function>}

For example,

attributes={’B’:’MAX’,’MAG_RAD’:’MIN’}

245

21.6 SourceLists in the Astro-WISE System Image Pipeline

Setting magnitude flags The user can accompany a magnitude with a flag taken from the
SourceList using a function

cl.set_magnitude_flags(attributes)

where

attributes={<magnitude_name>:<flag_attribute>}

For example, if the user would like to insert magnitude flags for MAG_ISO from MAG_FLAG

attributes={’MAG_ISO’:’MAG_FLAG’}

By default the maximum flag will be taken but the user can select aggregate function the same
way it was described above.

attributes={’MAG_FLAG’:’MIN’}

Debugging The user can set a debugging during creating of a SourceList

cl.set_debug()

The debugging information shows user executed SQL statements and time spent for execution.

Making and committing

cl.make()

and

cl.commit()

the last function shows the information for created SourceList.

Use in practice

AssociateLists is created. How to make a new SourceList from AssociateList? This can be done
with CombinedList library.

First, let us select an AssociateList

awe> als=(AssociateList.ALID==7842)

awe> als[0].info()

Name of AssociateList :Assoc-GVERDOES-------------------53923.5717701.0000007842.alist

AssociateList ID :7842

Associates in list :26360

Then we initialize a CombinedList with the selected AssociateList

awe> cl=CombinedList(als[0])

We have to select method which we will use to combine data. There are three of them:
combined_method=1 will include in the resulting SourceList all sources (associated by Associ-
ateList and non-associated), combined_method=2 will include only sources which are presented
in AssociateList, and combined_method=3 will include only sources which are presented in
SourceLists (used to create AssociateList) but not in AssociateList itself. By default combined_method=2.

awe>cl.set_combined_method(1)

246

21.6 SourceLists in the Astro-WISE System Image Pipeline

We have also to specify which attributes of input SourceLists (input to AssociateList) we
would like to see in the output SourceList. There are two modes: to treat attributes as a
magnitude attribute (4 new attribute will be created - MAG_1 to store average value, MAGFLAG_1
to store flag for the magnitude, MAGERR_1 to store rms of the value, MAGN_1 to store a number
of input values, 2 or 1 in the example) or to specify the attribute as user-defined with the
user-selected aggregate function.

For example, we want to see in the output SourceList MAG_ISO which is a magnitude in the
Astro-WISE filter ’#844’.

awe>cl.set_user_defined_magnitudes({’MAG_ISO’:’#844’})

At the same time we want to see in the output SourceList FLUX_RADIUS and YM2, and we
want a maximum value for the first attribute not an average.

awe>cl.set_user_defined_attributes([’FLUX_RADIUS’,’YM2’])

awe>cl.set_aggregate_functions({’FLUX_RADIUS’:’MAX’})

Next we make and commit a new SourceList

awe>cl.make()

awe>cl.commit()

SourceList: Name of SourceList : SL-YOURNAME-0000423231

SourceList ID : 423231

Sources in list : 34645

Parameters in list : 15

|

+-COMBINE_METHOD: 1

+-OBJECT:

+-SLID: 423231

+-associatelist: 7842

+-astrom_params: None

+-chip: None

+-creation_date: 2008-08-14 15:46:20.921300

+-detection_frame: None

+-filename:

+-filter: None

+-filters: MAG_1:#844

+-frame: None

+-globalname:

+-instrument: None

+-is_valid: 1

+-llDEC: -43.2780281843

+-llRA: 201.747154592

+-lrDEC: -43.2780165148

+-lrRA: 200.962548787

+-name: SL-YOURNAME-0000423231

+-number_of_sources: 34645

+-object_id: ’5220897963995C33E0407D81C5063020’

+-process_params: <astro.main.SourceList.SourceListParameters object at 0xb42bc5ac>

+-sexconf: <astro.main.Config.SextractorConfig object at 0xb42bcd4c>

+-sexparam: <class ’common.database.typed_list.typed_list’>(<type ’str’>, [])

+-sources: {’MAGFLAG_1’: <type ’long’>, ’YM2’: <type ’float’>,

247

21.6 SourceLists in the Astro-WISE System Image Pipeline

’MAG_1’: <class’common.util.types.single_float’>,

’FLUX_RADIUS’: <class ’common.util.types.single_float’>,

’MAGERR_1’: <class ’common.util.types.single_float’>,

’MAGN_1’: <type ’long’>}

+-ulDEC: -42.7262721851

+-ulRA: 201.743662417

+-urDEC: -42.7262607388

+-urRA: 200.966071491

None

As we can see, new SourceList with SLID=423231 has attributes MAG_1 (contains MAG_ISO

from input SourceLists), FLUX_RADIUS (maximum FLUX_RADIUS from input SourceLists) and
YM2 (average YM2 from input SourceLists) and contains 34645 sources.

248

Chapter 22

Analysis Tools

22.1 HOW-TO use Galfit in Astro-WISE

22.1.1 Introduction

GALFIT is a galaxy/point source fitting algorithm that fits 2-D parameterized, axisymmetric,
functions directly to images (Peng, Ho, Impey, & Rix 2002, AJ, 124: 266). The program has
been developed by Chien Peng who maintains a Galfit homepage.

22.1.2 Astro-WISE implementation

The program Galfit (version 2.0.3b Feb 2005) has been incorporated into Astro-WISE. This is
done by providing a Python wrapper around the Galfit program which stores the Galfit input
and output to the Astro-WISE database.

The main classes in the Galfit object model for Astro-WISE (i.e. those classes that are stored
in the database, and must be queried on to get results) are these:

• GalFitModel: The main Galfit class. Conceptually this is the model of a single galaxy. It
contains methods to create a model image, residual image etc. Additionally it contains a
list of GalFitComponents (see below), which together constitute the model of the galaxy.

• GalFitComponent: parent class for GalFitSersic, GalFitDevauc, GalFitSky, etc.

• GalFitSersic: stores the parameters of the Sersic function, contains initial values, final
values, and errors of fitted parameters, as well as a switch which defines whether the
parameter was fixed or free in the fit (see table 22.1).

• GalFitDevauc, GalFitSky, etc.: analogous to GalFitSersic

• GalFitList: used as a tool to link a certain group of GalFitModels together through an
identifier, and optionally a name.

• GalFitParameters: stores the global configuration parameters (named A-S in the Galfit
configuration file), see table 22.2 for Astro-WISE names.

• GalFitConstraint, GalFitAbsConstraint, GalFitDiffConstraint, etc.: controls and stores
constraints on fitted parameters

249

http://adsabs.harvard.edu/abs/2002AJ....124..266P
http://www.ociw.edu/~peng/work/galfit/galfit.html

22.1 HOW-TO: Galfit Analysis Tools

The input which Galfit needs to run are an image of the object to be fitted, information on
the 2-D profile to be fitted and various parameters which configure how to perform the fitting.
The galaxy images to be fitted by Galfit are defined via a SourceList ID (SLID) and the source
IDs (SID) of sources in it. For each source a cut-out of the image is made, centered on the
source position which is then fed to Galfit.

The 2-D parameterized functions (e.g., a sersic profile) that can be fitted to this cut-out
image are called “components” in Astro-WISE. The components that currently can be fitted
in Astro-WISE are listed in Table 22.1. The definition of the components can be found in the
Galfit manual.

22.1.3 Running GalFit

For example to fit a sersic profile plus a sky background to 4 sources from the sourcelist with
SLID=57424 which have SID=7,3,9,33 using the cpu on your own machine, enter at the awe-
prompt:

Import the class GalFitTask:

from astro.recipes.GalFit import GalFitTask

task = GalFitTask(instrument=’WFI’, slid=57424, sids=[7,3,9,33],

models=[{’name:’sersic’}, {’name’:’sky’}], commit=1)

task.execute()

the same input as above but using the cpus of the parallel cluster of computers:

Import Processor class: needed to run processes on parallel cluster:

from astro.recipes.mods.dpu import Processor

Import Environment class: needed to run processes on parallel cluster:

from common.config.Environment import Env

Instantiate an object of class dpu: needed to run processes on parallel cluster:

dpu = Processor(Env[’dpu_name’])

Run GalFit (see previous example for explanation of parameters):

dpu.run(’GalFit’, i=’WFI’, slid=57424, sids=[1,3,9,33], m=[{’name’:’sersic’},\

{’name’:’sky’}], C=1)

Working with GalFitList

The GalFitList class is intended as a simple way to group GalFitModels (and GalFitCompo-
nents). The way to use this class is to first create and commit one, and then specify its GalFitList
identifier GFLID when running the GalFit task on the DPU or locally:

Create the GalFitList object

l = GalFitList()

l.name = ’test-run-1’

l.make()

l.commit()

[schmidt] 16:27:12 - Set GalFitList identifier GFLID to 100231

250

http://users.ociw.edu/peng/work/galfit/README.ps.gz

22.1 HOW-TO: Galfit Analysis Tools

Table 22.1: The result of each profile that is fitted by Galfit is stored in a GalFitComponent
subclass. Col.(1): The 2-D profile. Col.(2): the name as given as input to the task/DPU. Col.(3):
the name of the class. Col.(4) names of the profile parameter names. Col.(5): description of the
profile parameters.

profile profile name class name parameters1 parameter
for task/DPU description

(1) (2) (3) (4) (5)
x position x [pixel]
y position y [pixel]

common parameters for all functions, except Sky posang position angle (PA)
[Degrees: Up=0, Left=90]

ratio axis ratio (b/a)
shape diskiness/boxiness

De Vaucouleurs devauc GalFitDevauc as Sersic (N=4)
Exponential Disk expdisk GalFitExpdisk as Sersic (N=1)
Gaussian gaussian GalFitGaussian mag total magnitude

fwhm FWHM of Gaussian
Modified King king GalFitKing mu surface brightness

Rc core radius
Rt truncation radius
alpha sharpness of transition alpha

Moffat moffat GalFitMoffat mag total magnitude
fwhm FWHM of Gaussian
pow value of powerlaw

Nuker nuker GalFitNuker mu surface brightness
Rb radius at which mu is determined
alpha sharpness of transition
beta outer powerlaw slope
gamma inner powerlaw slope

Sersic sersic GalFitSersic mag total magnitude
reff effective radius (Re) [pixels]
N sersic index (deVauc=4)

Sky background sky GalFitSky value sky background [ADU counts]
grad x dsky/dx (sky gradient in x)
grad y dsky/dy (sky gradient in y)

Ferrer ferrer GalFitFerrer2

Isophote isophote GalFitIsophote2

Powersic powersic GalFitPowersic2

Psf psf GalFitPsf2

1All parameters come in four variants e.g.: x (best-fit), ix (initial value), dx (error), free x (fit/fix)
2Not implemented yet

251

22.1 HOW-TO: Galfit Analysis Tools

Refer to the GalFitList object by specifying its GFLID, as reported

after committing the GalFitList (see above).

dpu.run(’GalFit’, i=’WFI’, slid=75637, sids=range(10,20), gflid=100231, C=1)

Now it is easy to query on the group of GalFitModels you called ”test-run-1” and inspect their
residual images:

query = GalFitModel.GFLID == 100211

for model in query: model.get_residual()

This will create all residual images, which can then be inspected with a FITS viewer.

22.1.4 Querying the database for GalFitModel results

To print the results from the fit made above for source with SID=7 enter at the awe-prompt:

Import the class GalFitComponent which is defined in GalFitModel:

from astro.main.GalFitModel import GalFitComponent

Query the database for the GalFitComponents which contain the results

for source with SID=3 in SourceList with SLID=57424 which

were fitted with a sersic profile:

query = (GalFitComponent.name == ’sersic’) &

(GalFitComponent.SLID==57424) &

(GalFitComponent.SID==3)

Loop over the results in the query:

for c in query:

Print x position and the effective radius:

print c.SID, c.GFID, c.x, c.reff, c.N, c.iN, c.iratio, c.ishape

To print the results from the fit made above enter at the awe-prompt in a script:

Import the class GalFitComponent which is defined in GalFitModel:

from astro.main.GalFitModel import GalFitComponent

Query the database for the GalFitComponents which contain the results

for those sources in SourceList with SLID=57424 which

were fitted with a sersic profile:

query = (GalFitComponent.name == ’sersic’) & (GalFitComponent.SLID==57424)

Loop over the results in the query:

for c in query:

Print x position and the effective radius:

print c.SID, c.GFID, c.x, c.reff, c.N, c.iN, c.iratio, c.ishape

If you have run Galfit with different parameters various times on the same set of sources. Print
the results for the last run.

Define three sources by tuples of SLID, SID, here sources 31, 52, 73 from

SourceList with SLID=57424

mysources = [(57424, 31), (57424, 52), (57424, 73)]

models = []

for slid, sid in mysources:

252

22.1 HOW-TO: Galfit Analysis Tools

q = (GalFitModel.SLID == slid) & (GalFitModel.SID == sid)

model = q.max(’GFID’)

models.append(model)

for m in models:

m.show_model_parameters()

To get a listing of all parameters of a Sersic profile:

Import all classes defined in GalFitModel (GalFitSersic being one of them):

from astro.main.GalFitModel import *

Prints a listing of all parameters of a Sersic profile:

GalFitSersic.get_persistent_properties()

22.1.5 Configuring GalFitModel

While it is possible to configure GalFitModel manually, a configuration is determined auto-
matically when no configuration is specified. The following steps can be distinguished in this
process:

• Based on the Sextractor parameters of the source you derive a GalFitModel for, a region
is extracted from the larger image the SourceList is made from. The size of the region is
related to the semi-major axis of the source (Sextractor ”A” parameter).

• Pixelscale and magnitude zeropoint are obtained from the AstrometricParameters resp.
SourceList objects.

• By default a Sersic and Sky profile are fit to the modelled source.

• The initial parameters of the specified models are set based on the Sextractor parameters.
For a Sersic profile the initial magnitude value (imag) is set to MAG ISO in the SourceList.
Similarly the Xpos and Ypos parameters are used to define the initial position.

• Neighbouring sources that are both close and bright enough to influence the fit are detected
and assigned their own Sersic profile.

Galfit’s configuration file can be considered as consisting of two separate parts. One part
is a number of general configuration parameters, such as the input and output files, pixelscales
etc. The other part is an arbitrarily large collection of initial values of functions (e.g. Sersic,
Nuker, King) that are fit to the galaxy and potentially other sources in its neighbourhood.

Configuring general process parameters of GalFitModel

To get a listing of all general parameters of Galfit (which are contained in the class GalFitModel,
see also table 22.2) type the following lines in the AWE prompt:

Import the class Pars.

from astro.util.Pars import Pars

Make an object which contains the general process parameters for GalFit.

p = Pars(GalFitModel)

p.show()

253

22.1 HOW-TO: Galfit Analysis Tools

Table 22.2: Overview of GalFitParameters

class GalFitParameters
parameter name description type default/range
data Input data image (FITS file) str galfitdata.fits1

model Output data image (FITS file) str galfitmodel.fits2

badpixels filename of bad pixels file str 3

sigma filename of sigma image str 4

constraints filename of constraints file str 5

psf filename of PSF image str “”
conv x size in x of convolution window float 0.0
conv y size in y of convolution window float 0.0
display type of display (regular, curses, both) str regular
fit xmin subsection of input FITS file to fit int 07

fit xmax subsection of input FITS file to fit int 07

fit ymin subsection of input FITS file to fit int 07

fit ymax subsection of input FITS file to fit int 07

interactive modify/create objects interactively int 08

no fit do not fit, just output model image int 0
pixelscale x pixel scale in x [arcsec/pixel] float 0.09

pixelscale y pixel scale in y [arcsec/pixel] float 0.09

subsampling PSF fine sampling factor relative to data float 1.0
zeropoint photometric zeropoint float 0.010

region xmin subsection of FITS file to extract int 011

region xmax subsection of FITS file to extract int 011

region ymin subsection of FITS file to extract int 011

region ymax subsection of FITS file to extract int 011

1Dependent on SourceList.frame.filename in the Astro-WISE class hierarchy
2Dependent on filename of “data”
3Derived from weight map
4Derived from weight map. Caveat: ReducedScienceFrames which are not calibrated with Astro-WISE in-

gested, but ingested into the system as a ReducedScienceFrame by users can contain weight image formats which
differ from the standard. The ACS ReducedScienceFrames are an example. Users can obtain correct sigma
images in such cases by adapting GalFitModel.py.

5Not currently supported
7The entire region defined by region * parameters is fit by default
8Galfit interactive mode is not supported
9Derived from AstrometricParameters object

10Derived from SourceList/sextractor input
11This is not a Galfit parameter, it is used in Astro-WISE to select the region in the image that was input of

the SourceList

254

22.1 HOW-TO: Galfit Analysis Tools

This uses the general method to show process parameters as discussed in the process parameters
howto (see section 8.4) . This how-to also explains how to use this method to set parameters
for Galfit. Here is nevertheless one example. To set the cut-out region around the source which
will be modeled by Galfit, one should specify a dictionary:

p = {’GalFitModel.process_params.region_xmin’: 1,

{’GalFitModel.process_params.region_xmax’: 10,

{’GalFitModel.process_params.region_ymin’: 1,

{’GalFitModel.process_params.region_ymax’: 10}

To get the necessary coordinates, these values have to be offset by the source position. From
the source parameters retrieve the Xpos and Ypos of the source:

sl = (SourceList.SLID == 57424)[0]

xpos = sl.sources[10][’Xpos’]

ypos = sl.sources[10][’Ypos’]

then determine the region you want around this source and fill in as above. The dictionary
specified above can be given to the DPU to change the process parameters:

dpu.run(’GalFit’, i=’WFI’, slid=57424, sids=[1,3,9,33], m=[{’name’:’sersic’},

{’name’:’sky’}], p=p, C=1)

or to the Task:

task = GalFitTask(instrument=’WFI’, slid=57424, sids=[1,3,9,33],

models=[{’name’:’sersic’}, {’name’:’sky’}], pars=p, commit=1)

task.execute()

The following commands clarify the correspondence between the names of parameters in the
original C code of Galfit and the names given in the Astro-WISE implementation. The class of
a specific profile (e.g., GalFitSersic) contains the mapping of parameters specifically for that
profile. The class GalFitParameters contains the mapping of general parameters.

Import all classes defined in GalFitModel:

from astro.main.GalFitModel import *

GalFitParameters.CONFIG_FILE_MAP

GalFitSersic.CONFIG_FILE_MAP

A dictionary is returned which has as key the parameters name in the original C code and as
value the name in the Astro-WISE implementation.

Configuring initial fitting parameters of model components

To set the initial fit parameters and/or fix parameters, their names and values must be specified
in the list of dictionaries given in the “models” (task level) or “m” (dpu level) argument:

Task level:

task = GalFitTask(instrument=’WFI’, slid=57424, sids=[1,3,9,33],

models=[{’name’:’sersic’, ’iN’:1.5, ’free_N’:0},

{’name’:’sky’}], commit=1)

task.execute()

DPU level:

dpu.run(’GalFit’, i=’WFI’, slid=57424, sids=[1,3,9,33], m=[{’name’:’sersic’,

’iN’:1.5, ’free_N’:0}, {’name’:’sky’}], C=1)

255

22.1 HOW-TO: Galfit Analysis Tools

Constraining the fit parameters

Fit parameters can be constrained in 4 different ways by Galfit. These different constraints are
represented by 4 Python classes:

• GalFitAbsConstraint: This constraint constrains a parameter between two values.

• GalFitRelConstraint: This constraint constrains a parameter between a range around the
initial value.

• GalFitDiffConstraint: This constraint constrains the difference between the same param-
eter for two different objects/components.

• GalFitRatioConstraint: This constraint constrains the ratio of the same parameter for two
different objects/components.

A list of constraints can be specified in the task as follows:

Task level:

task = GalFitTask(instrument=’WFI’, slid=57424, sids=[1,3,9,33],

constraints=[{’name’:’abs’, ’comp’:1, ’param’: ’x’,

’min’:13, ’max’:13}], commit=1)

DPU level:

dpu.run(’GalFit’, i=’WFI’, slid=57424, sids=[1,3,9,33], cs=[{’name’:’abs’,

’comp’:1, ’param’: ’x’, ’min’:13, ’max’:13}], C=1)

task.execute()

In other words, a constraint can be defined in a dictionary, which maps the properties of the
constraint object. A list of such dictionaries represents a list of constraints.

Using a PSF image

In the configuration file of Galfit a PSF image filename can be specified. Galfit uses this image
to convolve the model before comparing it to the data. PSF image files are represented by the
PSFImage class.

There are two ways to create PSFImages:

1 Use TinyTim to create it. TinyTim can only be used to create PSF images for the ACS
wide-field camera of the HST. See the TinyTim howto (section 22.2).

2 Use an existing PSF image file and store it.

Here is how you can store an existing PSF image:

p = PSFImage(pathname=’my_psf_image.fits’)

p.make()

p.store()

p.commit()

This will update the filename of the PSF image to be unique.
Now using the stored PSFImage is done by specifying its filename in the appropriate process

parameter. The presence of the filename in the process parameters object triggers a query to
find the specified file in the database:

256

22.1 HOW-TO: Galfit Analysis Tools

task = GalFitTask(instrument=’ACS’, slid=110521, sids=[50],

pars={’GalFitModel.process_params.psf’: ’Cal-EHELMICH-----

--------TinyTim---PSF-54227.5867871-83e1bd5c6e15be667a

3cc511ccca13a6ee043514.fits’}, commit=1)

task.execute()

22.1.6 Description of useful methods of GalFitModel

• get model()

Creates the model image and returns it as a BaseFrame object.

• get residual()

Creates the residual image and returns it as a BaseFrame object.

• get science()

Extracts and downloads the region in the science image for which the model was derived,
and returns it as a BaseFrame object.

• get weight()

Extracts and downloads the region in the weight image for which the model was derived
and returns it as a BaseFrame object.

• show model parameters()

Display a list of all ellipse parameters.

• get model parameters()

Returns a list of dictionaries of all components. I.e. each item of the list is a dictionary
which contains the description of one GalFitComponent.

22.1.7 Caveats

• Automatically generated sigma images incorrect.

ReducedScienceFrames which are not calibrated with Astro-WISE ingested, but ingested
into the system as a ReducedScienceFrame by users can contain weight image formats
which differ from the standard. The ACS ReducedScienceFrames are an example. Users
can obtain correct sigma images in such cases by adapting GalFitModel.py.

257

22.2 HOW-TO Use TinyTim Analysis Tools

22.2 HOW-TO Use TinyTim

The TinyTim package (http://www.stsci.edu/software/tinytim/tinytim.html) is used to create
PSF images for the instruments of the Hubble Space Telescope. In Astro-WISE only the ACS
instrument for the WFC detectors for Hubble is supported, and hence the use of TinyTim is
limited to that configuration.

TinyTim images are used in particular when running surface photometry tools such as Galfit.
When running TinyTim several choices must be made:
The meaning of the configurable parameters and their defaults:

• Av=None or embv=None Interstellar extinction of x magnitudes is applied to the
object spectrum, specified in the form of E(B-V) or visual extinction (Av). Do not specify
both.

• angle=None, see also major=None, minor=None Convolve the PSF with a ellip-
tical Gaussian kernel approximating x milliarcseconds RMS of jitter along its major axis,
y mas jitter along the minor axis, with the major axis rotated by z degrees from the +X
image axis. All three parameters must be specified if any of them is.

• chip=1 For which of the WFC ccds should tinytim make a PSF model chip 1 or 2.

• coeff=2000.0 Depending on the value of spectrum, if spectrum=2 (blackbody) this
is the Temperature in Kelvin of the black body, if spectrum=3 (Power law) this is the
powerlaw coefficient.

• diameter=3.0 Diameter of PSF in arcsec (maximum=25.7arcsec). Recommended size=3.0arcsec.

• ebmv=None or Av=None Interstellar extinction of x magnitudes is applied to the
object spectrum, specified in the form of E(B-V) or visual extinction (Av). Do not specify
both.

• filename=psf image: DO NOT CHANGE this default

• filter=F555W: name of filter to model.

• instrument=15: DO NOT CHANGE this default

• jitter=None Convolve the PSF with a symmetrical Gaussian kernel approximating x
milliarcseconds RMS of jitter.

• major=None, see also minor=None, angle=None Convolve the PSF with a ellip-
tical Gaussian kernel approximating x milliarcseconds RMS of jitter along its major axis,
y mas jitter along the minor axis, with the major axis rotated by z degrees from the +X
image axis. All three parameters must be specified if any of them is.

• minor=None, see also major=None, angle=None Convolve the PSF with a ellip-
tical Gaussian kernel approximating x milliarcseconds RMS of jitter along its major axis,
y mas jitter along the minor axis, with the major axis rotated by z degrees from the +X
image axis. All three parameters must be specified if any of them is.

• paramfile=tiny.conf. DO NOT CHANGE this default.

• spectrum=2. The only SUPPORTED VALUES here are 2 and 3 from the following list:

– 1) Select a spectrum from list

– 2) Blackbody

258

22.2 HOW-TO Use TinyTim Analysis Tools

– 3) Power law : F(nu) = nui

– 4) Power law : F(lambda) = lambdai

– 5) Read user-provided spectrum from ASCII table

• wmag=None Increase or decrease by a factor of x the default number of wavelengths
used in computing a polychromatic PSF (ie. wmag=0.5 would use only half the default
number of wavelengths, while wmag=2 would double the number, more finely sampling
the response curve). Increasing wmag provides a somewhat smoother PSF at radii beyond
about 3. A minimum of one wavelength will be used.

• x=-1 Enter position x on detector in INTEGER pixels (X range = 0-4095)

• y=-1 Enter position y on detector in INTEGER pixels (Y range = 0-2047)

An object model was made to store these choices and run TinyTim.

22.2.1 Running TinyTim

There is a DBRecipe to make TinyTim. The only arguments it takes is a dictionary specifying
the process parameters and a switch to commit the result to the database and dataserver:

awe> task = TinyTimTask(pars={’TinyTimImage.tinytimconf.x’: 200,

’TinyTimImage.tinytimconf.y’: 250}, commit=1)

The configurable parameters can be shown as conventional, using the “Pars” class:

awe> p = Pars(TinyTimImage)

awe> p.show()

etc.

259

22.3 HOW-TO: Galphot Analysis Tools

22.3 HOW-TO use Galphot in Astro-WISE

22.3.1 Introduction

Galphot is a surface photometry tool, which fits ellipses to isophotes in galaxy profiles. It was
written by Marijn Franx and is available for download from his website. The version on his
website only works by using IRAF; for Astro-WISE a number of changes were done to make it
work outside of IRAF.

22.3.2 Astro-WISE implementation

The main classes in the Galphot object model for Astro-WISE (i.e. those classes that are stored
in the database, and must be queried on to get results) are these:

• GalPhotModel: The main Galphot class. Conceptually this is the model of a single galaxy.
The model image is stored on the dataservers and can be retrieved. GalPhotModel contains
methods to create the residual image etc. The model also contains a list of GalPhotEllipses.

• GalPhotEllipse: This is the equivalent of one line in the output table produced by Galphot.
A GalPhotModel contains a list of GalPhotEllipses.

• GalPhotParameters: This class stores the Galphot configuration parameters (see table 22.3).

• GalPhotList: This class is used as tool to link any group of GalPhotModels together
through an identfier and optionally a name.

Each GalPhotModel is identified by a unique number (GPID). This also connects the GalPhotEl-
lipses to the GalPhotModel they belong to.

GalPhotModels are made based on SourceLists, so in order to run Galphot within Astro-WISE

one first has to make a SourceList and determine which source one wants to model with Galphot.
This source is then identified with the identifier combination SLID, SID, which uniquely defines
one source in a SourceList.

22.3.3 First step: making a SourceList or querying existing SourceLists

First we must decide which source to run galphot on. This means either making a new SourceList
(running Sextractor) or querying existing SourceLists. How to make SourceLists is described in
section 21.6 For now we assume you know which SourceList you have made, and now want to
find the SIDs of suitable galaxies.

Query for SourceList with identifier 57424

sl = (SourceList.SLID == 57424)[0]

This will be the output dictionary

d = {’SID’:[], ’MAG_ISO’:[], ’A’:[], ’B’:[], ’E_WCS’:[]}

Do a query to find bright galaxy-like objects

r = sl.sources.sql_query(d, ’"MAG_ISO"<20.0 AND "E_WCS"<0.5’)

At this point “d” contains the list of identifiers, magnitudes and A, B of the sources in the
SourceList that matched the query. The list “d[’SID’]” can be given as the “sids” argument to
the GalPhotTask (see the next section).

260

http://www.strw.leidenuniv.nl/~franx/galphot/

22.3 HOW-TO: Galphot Analysis Tools

22.3.4 Running Galphot; using the GalPhotTask

Here is how to create a GalPhotModel for the sourcelist with ID 57424 and source with ID 71
within it:

task = GalPhotTask(instrument=’WFI’, slid=57424, sids=[71], commit=1)

task.execute()

or equivalently using the DPU:

dpu.run(’GalPhot’, i=’WFI’, slid=57424, sids=[71], C=1)

22.3.5 Configuring GalPhotModel

Galphot can be configured with the Pars class as conventional in Astro-WISE :

p = Pars(GalPhotModel)

p.show()

this results in a list of configurable parameters (see table 22.3), now set one of them:

p.GalPhotModel.process_params.r1 = 10.0

Feed the configuration to the task using the “get()” method of Pars:

task = GalPhotTask(instrument=’WFI’, slid=57424, sids=[71], pars=p.get(),

commit=1)

task.execute()

The process parameter dictionary can also be specified by hand directly:

d = {’GalPhotModel.process_params.r1’: 10.0,

’GalPhotModel.process_params.r2’: 20.0}

task = GalPhotTask(instrument=’WFI’, slid=57424, sids=[71], pars=d, commit=1)

task.execute()

22.3.6 Masking other sources in the field

The following pixels/sources may be masked:

• Pixels with a weight of 0 (always).

• Rectangles and/or circles specified in a mask file.

The GalPhotTask can be given a list of mask file filenames. This only works when working
locally; no files are uploaded to the DPU. See below.

• Sources other than the primary source that are in the cutout may be automatically masked.
This is done on the basis of either the SourceList or the SExtractor “segmentation” check
image.

This is controlled with the process parameters “mask type” and “mask scale”. See below.

261

22.3 HOW-TO: Galphot Analysis Tools

Table 22.3: Overview of GalPhotParameters

class GalPhotParameters
parameter description type default
ngal Number of galaxies to model, fixed to 1 int 1
iter1 Number of iterations without calculating residuals int 3
iter2 Number of iterations with calculating residuals int 3
hmax Maximum number of harmonicals int 6
nsammax Maximum number of samples along the ellipse int 200
debug Debug parameter int 0
npolres Order in interpolation in intensity int 4
rmin Minimum radius float 0.5
rmax Maximum radius float 75.0
radfac Radial scaling factor float 1.1
rshap Maximum radius for modifying ellipticity and PA float 10.0
rcen Maximum radius for modifying centers float 10.0
errshap Maximum error in shape of ellipse float 0.5
errcen Maximum error in position of ellipse float 0.1
dposmax Maximum change in center per iteration float 0.1
dellmax Maximum change in ellipticity per iteration float 0.1
dangmax Maximum change in position angle per iteration float 0.1
r1 Maximum radius for single annulus sampling float 20.0
r2 Maximum radius for multiple annulus sampling float 0.0
fracmin Minimum fraction of good points along the ellipse float 0.4
cliplow Fraction of points to clip at low end float 0.1
cliphigh Fraction of points to clip at high end float 0.1
linear Linear scaling int 0
extend Extend radial interval after fit int 1
outfill Calculate residual outside of galaxy int 1
xpos X-position (in region) of galaxy to model float -1.0
ypos Y-position (in region) of galaxy to model float -1.0
region xmin Minimum x-coordinate of cutout region in larger frame int -11

region xmax Maximum x-coordinate of cutout region in larger frame int -11

region ymin Minimum y-coordinate of cutout region in larger frame int -11

region ymax Maximum y-coordinate of cutout region in larger frame int -11

region scale Factor which determines the size of the region float 12.02

mask areas List of GalPhotMask (circles, squares) objects list []3

mask type “sourcelist”, “segmentation” or “”for masking str segmentation3

mask scale Semi-major axis scale factor while masking float 3.03

1This is not a Galphot parameter, it is used in Astro-WISE to define the region extracted from SourceList.frame
2This is not a Galphot parameter, instead it is used to define the region * parameters
3This is not a Galphot parameter, instead it is used to write the “deletion” file

262

22.3 HOW-TO: Galphot Analysis Tools

Automatic masking

The automatic masking process is controlled by the following process parameters:

• mask type: Values: ’segmentation’, ’sourcelist’ or ”. If the value is segmentation the
segmentation check image created along with each SourceList will be used to identify
which pixels belong to other sources than the modelled source and they will be masked.
If the value is sourcelist, the sourcelist is scanned for nearby and bright sources, and a
circle of size mask scale*A is used to mask such sources. If the value is ” (empty string)
no masking of nearby sources will be performed.

• mask scale: See above.

Manual masking

A mask file (”.del” file, in galphot convention) can be created by the user. This text file contains
lines of either 3 or 4 numbers, describing circles and rectangles respectively. Example:

25 28 10 # Describes a circle at position (25,28) with radius 10 pixels.

20 30 35 45 # Describes the rectangle [20:30, 35:45]

Note that the pixel coordinates are in the coordinate frame of the original image, rather than
the cutout region. If such a file is created it can be specified when running the task:

task = GalPhotTask(instrument=’WFI’, slid=155211, sids=[17044],

mask_files=[’masks.txt’], commit=0)

If a mask file is specified, one must be given for each SID specified in the “sids” list.

22.3.7 Using an existing model as initial values

It is possible to use an existing GalPhotModel as input, i.e. as an “intable”, in the Galphot
configuration. This is done by specifying the existing GalPhotModel’s GPID in the “gpid in”
option of the task:

task = GalPhotTask(instrument=’WFI’, slid=57424, sids=[71], gpid_in=6721,

commit=1)

task.execute()

or equivalently in the dpu call:

dpu.run(’GalPhot’, i=’WFI’, slid=57424, sids=[71], gpid_in=6721, C=1)

22.3.8 Using GalPhotList

The GalPhotList class is intended as a simple way to group GalPhotModels (and GalPhotEl-
lipses). The way to use this class is to create it first, and only then run Galphot. I.e. first create
and commit a GalPhotList, and then specify its GalPhotList identifier GPLID when running
the GalPhot task on the DPU or locally:

Create the GalPhotList object

l = GalPhotList()

l.name = ’test-run-1’

l.make()

263

22.3 HOW-TO: Galphot Analysis Tools

l.commit()

[schmidt] 16:27:12 - Set GalPhotList identifier GPLID to 100231

Refer to the GalPhotList object by specifying its GPLID, as reported

after committing the GalPhotList (see above).

dpu.run(’GalPhot’, i=’WFI’, slid=75637, sids=range(10,20), gplid=100231, C=1)

Now it is easy to query on the group of GalPhotModels you called ”test-run-1” and inspect their
residual images:

query = GalPhotModel.GPLID == 100211

for model in query: model.get_residual()

This will create all residual images, which can then be inspected with a FITS viewer.

22.3.9 Querying for results

When you have made a GalPhotModel, the ellipse parameters are stored in the database as a
list of GalPhotEllipse objects, and the residual image is stored on a dataserver. How does one
get to this information?

Query for GalPhotModel based on its GPID

q = GalPhotModel.GPID == 20

model = q[0]

Query for GalPhotModel based on SLID/SID

q = (GalPhotModel.SLID == 57424) & (GalPhotModel.SID == 71)

model = q.max(’GPID’)

Find all GalPhotEllipses (radii) for the source defined by SLID=57424 and

SID=71, for which the fitted intensity is larger than 50000 (ADU)

q = (GalPhotEllipse.SLID == 57424) & (GalPhotEllipse.SID == 71) &\

(GalPhotEllipse.i > 50000)

GPIDs = [ellipse.GPID for ellipse in q]

gpids = []

for gpid in GPIDs:

if not gpid in gpids:

gpids.append(gpid)

models = []

for gpid in gpids:

m = (GalPhotModel.GPID == gpid)[0]

models.append(m)

Now we can have a look at the residual images:

for m in models:

m.retrieve()

264

22.3 HOW-TO: Galphot Analysis Tools

Table 22.4: Overview of GalPhotEllipse parameters

class GalPhotEllipse
parameter description unit
r, dr The root of the product of the major and minor axis of the ellipse pixel
i, di Intensity at the ellipse counts/pixel2

s, ds The slope of the intensity, the derivative of i wrt r None
x, dx Central x position in the region pixel
x orig Central x position in the original image pixel
y, dy Central y position in the region pixel
y orig Central y position in the original image pixel
eps, deps The ellipticity of the ellipse, 1-b/a None
pos, dpos The position angle of the ellipse, measured with respect to the None

axis y=0, counter clockwise
c1, c2, ..., c6 The cos(n*theta) term of the residuals along the ellipse None
dc1, dc2, ..., dc6 Errors in c1, c2, ..., c6 None
s1, s2, ..., s6 The sin(n*theta) term of the residuals along the ellipse None
ds1, ds2, ..., ds6 Errors in ds1, ds2, ..., ds6 None
f1, f2, f3, f4 Flag? None

m.display()

And plot ellipse parameters against eachother:

for m in models:

x = [ellipse.i for ellipse in m.ellipses]

y = [ellipse.r for ellipse in m.ellipses]

pylab.scatter(x,y)

22.3.10 Description of useful public methods of GalPhotModel

• get model()

Downloads the model image and returns it as a BaseFrame object.

• get residual()

Creates the residual image and returns it as a BaseFrame object.

• get science()

Extracts and downloads the region in the science image for which the model was derived,
and returns it as a BaseFrame object.

• get weight()

Extracts and downloads the region in the weight image for which the model was derived
and returns it as a BaseFrame object.

• show model parameters()

Display a list of all ellipse parameters.

265

22.3 HOW-TO: Galphot Analysis Tools

• get model parameters()

Returns a list of dictionaries of all ellipse parameters. I.e. each item of the list is a
dictionary which contains the description of one ellipse. See table 22.4 for a description of
the parameters.

266

22.4 HOW-TO: Photometric redshifts Analysis Tools

22.4 HOW-TO: Photometric redshifts

The photred code (Bender et al. 2001 (2001defi.conf...96B) and Gabasch et al. 2004 (2004A&A...421...41G))
provides a way to derive redshifts from photometric observations.

WARNING: The code currently uses the MAG ISO fluxes and magnitudes from the
SExtractor catalogs. For SourceLists generated from images with different seeing,
the colors will be inaccurate, and the derived photometric redshifts as well.

The user interface consists of two major Python classes, PhotRedConfig and PhotRedCatalog.
The PhotRedConfig contains the information about the filters and SEDs used. In PhotRedCatalog

the used SourceLists, the two resulting SourceLists with the best-fitting stellar and galactic
SEDs and redshifts are stored, as well as an AssociateList of all these lists to allow easy access
to the complete information about a given object.

awe> from astro.main.PhotRedCatalog import *

imports all the needed classes from PhotRedCatalog into the current AWE session.

22.4.1 PhotRedConfig

The PhotRedConfig class needs some input calibration files that are stored on the dataserver. In
most cases these should be already available in the system. If not, at the end of this HOW-TO,
instructions are given on how to import Filters and SEDs.

PhotRedFilter

The PhotRedFilter stores the transmission curve of the filter and is associated with an Astro-

WISE Filter object.

awe> filt = (Filter.name == ’#842’)[0]

awe> pf = (PhotRedFilter.filter == filt)[0]

PhotRedSED

A PhotRedSED object stores the unprocessed SED of a model galaxy, a table of wavelengths and
fluxes, and is referenced by a name given on import, e.g. ’mod e’ for an elliptical galaxy.

awe> pse = (PhotRedSED.sed_name == ’mod_e.sed’)[0]

awe> ps1 = (PhotRedSED.sed_name == ’mod_s210.sed’)[0]

PhotRedStarlib

The PhotRedStarlib stores a collection of PhotRedSEDs of different stars. It is referenced by
the filename of the list of SED names.

awe> starlib=(PhotRedStarlib.filename==’starlib_pickles.lis’)[0]

267

http://dx.doi.org/10.1007/10854354_18
http://dx.doi.org/10.1051/0004-6361:20035909

22.4 HOW-TO: Photometric redshifts Analysis Tools

PhotRedConfig

The PhotRedConfig takes a combination of SEDs and filter names, creates the processed SEDs
and Starlib and stores these and other information relevant for PhotRed itself. A PhotRedConfig

object is referenced by a unique name, given at creation. This allows the reuse of an existing
PhotRedConfig object.

The number of filters selected at creation time can be larger than the number of filters used
for PhotRed (as long as the filters of all the SourceLists given to PhotRedCatalog are present
in the configuration. Thus it is advisable to create the PhotRedConfig with all PhotRedFilters
available, making the combination of SEDs reusable with different combinations of SourceLists.

awe> pc = PhotRedConfig()

awe> pc.SEDs=[pse,ps1,ps2,ps3]

awe> pc.filters=[pfu,pfb,pfv,pfr,pfi]

awe> pc.starlib=(PhotRedStarlib.filename==’starlib_pickles.lis’)[0]

awe> pc.name=’MyPhotRedConfig’

awe> pc.make()

22.4.2 PhotRedCatalog

The PhotRedCatalog is the main component, doing the actual work determining the best fitting
stellar / galactic SED. It reads in the SEDs processed by PhotRedConfig, redshifts them and
calculates the least-squares fit of the magnitudes obtained from the combination of the redshifted
SEDs and the filter curves against the observed data. The least-squares fit is determined by
minimizing:

χ2(z, SED) =
1

Nfilt

Nfilt∑

i=1

[fi − αfi (z, SED)]
2

σ2

i + [0.005αfi (z, SED)]
2

The probability PT of a source being at a given redshift is calculated as:

PT = Pχ · PL · Pz = e−
1

2
χ2 · e−kβ(M−M⋆

σ)
β

· e−kγ

(
z

zlim

)γ

As input it takes the SourceLists and PhotRedConfig. The pr.master stores the master
SourceList against which the association of the other SourceLists is done. It has to be in the
SourceLists array as well, to allow correlation between the SourceLists, the extinction and
model error arrays.

awe> pr = PhotRedCatalog()

awe> pr.config=pc

awe> pr.master=sV

awe> pr.sourcelists=[sU,sV,sB,sR,sI]

Additionally, individual values for extinction (used for relative corrections of the photometric
calibration of the individual SourceLists) and model errors (to allow some spread between
the distinct SEDs) can be specified. The length and the order of the arrays must in both cases
be the same as the length iof the list of sourcelists.

awe> pr.extinc=[0.,0.,0.,0.,0.]

awe> pr.model_error=[0.,0.,0.,0.,0.]

The PhotRedCatalog object can be assigned a name for future reference. The resulting
SourceLists are created and stored in the database by calling the make function:

awe> pr.name=’FDF_UBRI’

awe> pr.make()

268

22.4 HOW-TO: Photometric redshifts Analysis Tools

22.4.3 The output SourceLists

The resulting SourceLists are stored under in the PhotRedCatalog object as:

awe> pr.datpz1 # Data of best-fitting galactic SED

and

awe> pr.datstar # Data of best-fitting stellar SED

and associate with the master AssociateList.

22.4.4 The visualization routines

For visual inspection a plot of the best-fitting SED, the best-fitting stellar SED, the datapoints
and the redshift probability distribution can be done by calling:

awe> pr.plot(23) # For the object with AID 23 in associate_list

22.4.5 An example from users view

Import the needed Python classes:

awe> from astro.main.PhotRedCatalog import *

PhotRedConfig

Create a configuration. This is only needed if no suitable configuration is present in the sys-
tem, because existing configurations could and should be reused. First select the respective
PhotRedFilter objects from the database,

awe> pf1 = (PhotRedFilter.filename == ’#843.filter’)[0]

awe> pf2 = (PhotRedFilter.filename == ’#844.filter’)[0]

awe> pf3 = (PhotRedFilter.filename == ’#846.filter’)[0]

awe> pf4 = (PhotRedFilter.filename == ’#878.filter’)[0]

awe> pf5 = (PhotRedFilter.filename == ’#879.filter’)[0]

then select the SEDs you want to use from the database,

awe> ps01 = (PhotRedSED.filename == ’manucci_soc.sed’)[0]

awe> ps02 = (PhotRedSED.filename == ’manucci_sac.sed’)[0]

awe> ps03 = (PhotRedSED.filename == ’manucci_sbc.sed’)[0]

awe> ps04 = (PhotRedSED.filename == ’mod_e.sed’)[0]

awe> ps05 = (PhotRedSED.filename == ’mod_s010.sed’)[0]

awe> ps06 = (PhotRedSED.filename == ’mod_s020.sed’)[0]

awe> ps07 = (PhotRedSED.filename == ’mod_s030.sed’)[0]

...

and create the PhotRedConfig object using the standard starlib.

awe> pc = PhotRedConfig()

awe> pc.SEDs=[pse,ps1,ps2,ps3]

awe> pc.filters=[pfu,pfb,pfv,pfr,pfi]

awe> pc.starlib=(PhotRedStarlib.filename==’starlib_pickles.lis’)[0]

awe> pc.name=’WFI_BgRIz’

awe> pc.make()

269

22.4 HOW-TO: Photometric redshifts Analysis Tools

PhotRedCatalog

To create the photometric redshifts, a PhotRedConfig object and a list of SourceLists is
needed. First select the PhotRedConfig and the SourceLists from the database:

awe> pc=(PhotRedConfig.name==’PhotRedConfig-1114174946.26’)[0]

awe> sU=(SourceList.SLID==5)[0]

awe> sB=(SourceList.SLID==6)[0]

awe> sV=(SourceList.SLID==7)[0]

awe> sR=(SourceList.SLID==8)[0]

awe> sI=(SourceList.SLID==9)[0]

With these, the PhotRedCatalog object can be created. Using the V-Band data (in this exam-
ple) as the master SourceList and the MAG APER magnitudes, only objects detected in all 5
filters are associated.

awe> pr = PhotRedCatalog()

awe> pr.config=pc

awe> pr.master=sV

awe> pr.sourcelists=[sU,sV,sB,sR,sI]

awe> pr.extinc=[0.,0.,0.,0.,0.]

awe> pr.model_error=[0.1,0.1,0.1,0.1,0.1]

awe> pr.min_num_sources=5

awe> pr.mag=’MAG_APER’

awe> pr.flux=’FLUX_APER’

awe> pr.fluxerr=’FLUXERR_APER

awe> pr.name=’photoz_1’

awe> pr.make()

Once the object is made, all data is stored in the pr.associate list AssociateList.

22.4.6 Ingestion of Filters and SEDs

The ingestion of new / additional SEDs or filter lightcurves is a straightforward process.

PhotRedFilter

The input file for PhotRedFilter is a simple ASCII file with two columns, wavelength in
Ångstroms and the transmission of the filter at this wavelength. The values should be sorted
with ascending wavelength, and to avoid possible problems contain 2 lines with 0 transmission
at the beginning and at the end. The canonical extension for these objects is ”.filter”.

To create the Python object, a new PhotRedFilter object pointing to the file on disk is
created, and the corresponding Filter object is selected. After this the make routine stores the
relevant metadata in the database and the filter curve object on the dataserver.

awe> photredfilter = PhotRedFilter(pathname=’wfi_r.filter’)

awe> photredfilter.filter=(Filter.mag_id==’Cousins R’)

awe> photredfilter.make()

270

22.4 HOW-TO: Photometric redshifts Analysis Tools

PhotRedSED

The input file for PhotRedSED is a simple text file as well, again with two columns, wavelength
in Ångstroms and the normalized flux of the SED. A new PhotRedSED object pointing to the
file on disk is created, and the object’s make method is invoked. The metadata is again stored
in the database, and the file stored on the dataserver.

awe> photredsed = PhotRedSED(pathname=’mod_e.sed’)

awe> photredsed.make()

271

22.5 HOW-TO: MDia Analysis Tools

22.5 HOW-TO: MDia

22.5.1 Introduction

The Munich Difference Imaging Analysis (MDia) package is a tool for photometry in (very)
crowded fields. The software is written in C++ and part of the “mupipe” package, which has
been developed at the University Observatory in Munich for the use in a pixel-lensing project.
The underlying algorithm has been proposed by Alard and Lupton in 1998 (ApJ...503..325A)
and later improved by Alard in 2000 (A&AS..144..363A).

22.5.2 Astro-WISE implementation

The MDia pipeline has been incorporated into Astro-WISE by J. Koppenhöfer. This is done by
providing a Python wrapper around the C++ programs which stores the input and output to
the Astro-WISE database.

Creating light curves with MDia is a two step process. The first step is the creation of a
ReferenceFrame using the best seeing images. In the second step, this ReferenceFrame is used
to create difference images of all RegriddedFrames one wants to analyze. Using the difference
images, precise photometry is obtained via PSF-fitting. In this way, light curves are created
and stored in the database for further analysis.

22.5.3 Compiling and installing the C++ code

The MDia code can be found in:

opipe/Experimental/MDIA/MDia.tar.gz

Extract this archive to whatever directory you like. After that follow the instructions given
in the README file. Up to now, the code is tested for 32-bit machines only. The MDia code
needs the library “ltl” which is usually installed during the awetomatic process.

22.5.4 Creating a ReferenceFrame

The ReferenceFrame is created using the images (typically 10) with the best seeing. These can
be selected by using the psf radius property of any ReducedScienceFrame or RegriddedFrame.
Try to reject images with high background in order to get an optimized S/N in the ReferenceFrame
(very often cloudy images have a small psf radius, so take care!!!).

In order to get good results the astrometry of all images you want to combine must be as
good as possible. Therefore use global astrometry on the best seeing images and regrid again if
needed. Having prepared the final list of RegriddedFrames you can create a ReferenceFrame

in three different ways:

1. using the DPU:

awe> dpu.run(’Reference’, i=’WFI’,

... reg_filenames=[’Sci-USER-WFI-#844-Reg-54653.3.fits’,...], C=1)

2. locally using a task:

awe> from astro.recipes.Reference import *

awe> task = ReferenceTask(reg_filenames=[’Sci-USER-WFI-#844-Reg-54653.34244.fits’,...],

... commit=0)

awe> task.execute()

272

http://arxiv.org/abs/astro-ph/9712287
http://www.edpsciences.org/articles/aas/pdf/2000/11/ds8706.pdf?access=ok

22.5 HOW-TO: MDia Analysis Tools

3. locally using the make() method of class ReferenceFrame:

awe> from astro.main.ReferenceFrame import *

awe> ref = ReferenceFrame()

awe> ref.OBJECT = ’OTSF-1c’

awe> ref.regridded_frames = best_frames

awe> ref.make()

awe> ref.store()

awe> ref.commit()

where best frames is a list of filenames of the RegriddedFrames you want to combine.

22.5.5 Creating Lightcurves

After having created a ReferenceFrame, one can use it together with a number of RegriddedFrames
and create light curves of multiple sources simultaneously. The database object of use is an in-
stance of class MDia which takes as input the ReferenceFrame, a list of RegriddedFrames,
optionally some SourceLists and a set of process parameters (MDiaParameters). The output
consists of N lightcurves in ASCII or FITS format with N being the number of sources analyzed.

Again, the astrometric accuracy is crucial in this step. The recommended procedure is the
following:

• First create a SourceList of the ReferenceFrame.

• Then use this SourceList as a replacement for the USNO catalog and (re-)calculate the
AstrometricParameters for all images to be analyzed. Finally, regrid all the individual
images using the improved AstrometricParameters. By doing it this way, a very high
relative astrometric precision between the ReferenceFrame and the RegriddedFrames is
achieved.

To create lightcurves in AWE use one of the following ways:

1. using the DPU:

awe> dpu.run(’MDia’, i=’WFI’, ref_filename=[’Sci-USER-WFI-#844-Ref-54653.3.fits’],

... reg_filenames=[’Sci-USER-WFI-#844-Reg-54653.3.fits’,...], C=1)

2. locally using a task:

awe> from astro.recipes.MDia import *

awe> task = MDiaTask(ref_filename=[’Sci-USER-WFI-#844-Ref-54653.3.fits’],

... reg_filenames=[’Sci-USER-WFI-#844-Reg-54653.34244.fits’,...],

... commit=0)

awe> task.execute()

3. locally using the make() method of class LightCurve:

awe> from astro.main.LightCurve import *

awe> my_lightcurves = LightCurve()

awe> my_lightcurves.reference_frame = reference_frame

awe> my_lightcurves.regridded_frames = frames

awe> my_lightcurves.make()

awe> my_lightcurves.store()

awe> my_lightcurves.commit()

273

22.6 Documentation Analysis Tools

where reference frame is a list with one item, namely the filename of the ReferenceFrame

and frames is a list of filenames of the RegriddedFrames you want to analyze.

22.6 Documentation

A manual with detailed description of all process parameters as well as the underlying software
will be avialable soon on the Astro-WISE web pages.

274

http://www.astro-wise.org

22.7 HOW-TO: VODIA Analysis Tools

22.7 HOW-TO: VODIA

22.7.1 Introduction

VODIA (VST OmegaCAM Difference Image Analysis) is a package optimized to detect small
photometric variations in crowded fields. The software is based on the DIA package (Difference
Image Analysis, written by Woźniak 2000, (Acta Astron. 50, 421; see also Woźniak et al. 2002,
Acta Astron. 52, 129) that makes use of the “optimal PSF matching algorithm” with a space-
varying kernel (Alard & Lupton 1998, ApJ 503, 325; Alard 2000, A&AS 144, 363). The software
includes 6 (+1) independent C programs (corresponding to 6 different steps) and does not use
any external library. The inspect method makes use of a fortran program for preliminary analysis
of the results. The different steps are:

1. wcs2pix
The astrometric solution is used to aligne (and cut accordingly) the scientific images.

2. Mstack
To obtain the reference frame from the stacking of the best seeing images.

3. Getpsf
Extract PSF from Reference to extract PSF photometry from the difference images.

4. Aga
A convolution kernel is found and used to create the difference images.

5. Getvar
Detects variable candidates.

6. Phot
Produces light curves of variable candidates.

6a. PhotRef
Produces light curves of all objects detected in the reference image (the user can choose
between Phot and PhotRef depending on the scientific goal).

22.7.2 Astro-WISE implementation

VODIA has been incorporated into Astro-WISE by A. Volpicelli and F. Getman. This is done by
providing a Python wrapper around the C programs which stores the input and output to the
Astro-WISE database/data storage. One FORTRAN program is used only by the inspect method
for preliminary analysis of the results.

22.7.3 Compiling and installing the C code

The VODIA code can be found in Astro-WISE CVS at:

opipe/Experimental/VODIA/VODIA.tar.gz

Extract this archive to whatever directory you like. To compile run ‘make’. To install: ‘make
install’. Installation will copy binaries to user bin directory or you can copy them to system
directory manually. Up to now, the code is tested for 32-bit machines only.

275

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002AcA....52..129W&link_type=ARTICLE&db_key=AST
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2000AcA....50..421W&link_type=ARTICLE&db_key=AST
http://arxiv.org/abs/astro-ph/9712287
http://www.edpsciences.org/articles/aas/pdf/2000/11/ds8706.pdf?access=ok

22.7 HOW-TO: VODIA Analysis Tools

22.7.4 Running VODIA

[import all python scripts]

awe> from astro.main.VariabilityFrame import VariabilityFrame

awe> from astro.external import Dia

awe> from astro.main.DiaConfig import DiaMstackConfig,DiaGetpsfConfig,

DiaAgaConfig,DiaGetvarConfig,DiaPhotConfig

[select science frames]

awe> q = (RegriddedFrame.OBJECT.like(’projectname’)) &\

(RegriddedFrame.filter.name == ’#842’) &\

(RegriddedFrame.chip.name == ’ccd50’)

awe> regs = [reg for reg in q]

[creates variability object]

awe> v = VariabilityFrame()

[put our list of images as input]

awe> v.regridded_frames = regs

[create the list of images to produce the reference (optional)]

awe> q = (RegriddedFrame.OBJECT.like(’projectname’)) & \

(RegriddedFrame.filter.name == ’#842’) &\

(RegriddedFrame.chip.name == ’ccd50’) &\

(RegriddedFrame.psf_radius < 0.6)

awe> v.regridded_frames_for_reference=list(q)

[run VODIA (all programs automatically)]

awe> v.make()

[to interactively check the results]

awe> v.inspect()

[Example of changing one parameter (C_MIN=detection threshold) and run again

getvar and phot]

awe> print v.getvar_config.C_MIN

awe> v.getvar_config.C_MIN = 0.9

awe> v.make_getvar()

awe> v.make_phot()

[check again new results]

awe> v.inspect()

276

22.7 HOW-TO: VODIA Analysis Tools

[storing the file with the light curves]

awe> v.store()

[commit the results to database]

awe> v.commit()

The output consists of one ASCII file with N lightcurves (N being the number of sources
analyzed).

22.7.5 Documentation

A manual with a detailed description of VODIA is available at the Astro-WISE web site.

277

http://www.astro-wise.org/doc_oac.shtml

22.8 HOW-TO: GalacticExtinction Analysis Tools

22.8 HOW-TO use Galactic extinction in Astro-WISE

We have implemented in Astro-WISE two Galactic extinction maps:

SFD: Schlegel, D., Finkbeiner, D., & Davis, M., ApJ, 1998, 500, 525

Arenou: Arenou F., Grenon M., Gomez A., Astron. Astrophys. 1992, 258, 104

In the case of SFD map we used an original IDL program rewritten in python
http://astro.berkeley.edu/ marc/dust/data/data.html

22.8.1 SFD extinction map: for extragalactic sources

To find the Galactic extinction towards an extragalactic object one can use the SFD map for
which you have to provide galactic coordinates:

awe>longvec=45.0

awe>latvec=45.0

awe>from astro.util.extinction import extinction

awe>ret=extinction(longvec,latvec)

awe>print ret

[0.0439861752093]

The returned value is an excess ratio (EB−V) in the selected direction. You can use as well
vectors for input coordinates:

awe>longvec=[0.0,45.0,90.0]

awe>latvec=[0.0,45.0,90.0]

awe>from astro.util.extinction import extinction

awe>ret=extinction(longvec,latvec)

awe>print ret

[101.313850403, 0.0439861752093, 0.012209450826]

The Galactic extinction can be calculated with an interpolation between pixels closest to the
desired direction:

awe>longvec=[0.0,45.0,90.0]

awe>latvec=[0.0,45.0,90.0]

awe>from astro.util.extinction import extinction

awe>ret=extinction(longvec,latvec,interp=True)

awe>print ret

[99.697704474, 0.0443909994508, 0.0119094799738]

Note: The number precision used in the IDL code is lower than in the python implementation.
This can cause differences in derived EB−V between the two implementations in areas of highly
varying extinction. Differences are < 0.1% for 99.8% of the sky as table 22.5 illustrates:

22.8.2 Arenou extinction map: inside the Galaxy

Arenou extinction model based on Hipparcos data and provides an extinction inside the Galaxy,
i.e., for a selected distance. The user can provide a distance (in kpc), if the distance is omitted,
an extinction for 15 kpc will be returned (according to the model).

278

http://adsabs.harvard.edu/abs/1998ApJ...500..525S
http://adsabs.harvard.edu/abs/1992A%26A...258..104A
http://astro.berkeley.edu/~marc/dust/data/data.html

22.9 Coordinate transformation Analysis Tools

Table 22.5: Differences in derived EB−V between the IDL and python implementation for SFD

Absolute difference sky area fraction
< 0.1% 99.8 %
< 1% 99.8 %
> 5% 00.02 %
> 10% 00.004 %
> 50% 00.0004 %

awe>longvec=[0.0,45.0,90.0]

awe>latvec=[0.0,45.0,90.0]

awe>from astro.util.extinction import extinction

awe>ret=extinction(longvec,latvec,source=’Arenou’)

awe>print ret

[0.51390040827009664, 0.017030418212218647, 0.032073867112540198]

or, for 100 pc distance,

awe>longvec=[0.0,45.0,90.0]

awe>latvec=[0.0,45.0,90.0]

awe>d=[0.1,0.1,0.1]

awe>from astro.util.extinction import extinction

awe>ret=extinction(longvec,latvec,source=’Arenou’,dist=d)

awe>print ret

[0.08085090032154342, 0.017030418212218647, 0.0032773954983922873]

22.9 Coordinate transformation

A number of functions for coordinate transformations are available in Astro-WISE (which are
based on the IDL astro library).

1. glactc Convert between celestial and Galactic (or Supergalactic) coordinates.

Input parameters:

ra right ascension, hours (or degrees if degree=True is set), scalar

dec declination, degrees, scalar

year equinox of ra and dec, scalar

degree if degree=True, both coordinates are in degree (overwise ra is in hours), degree=False
by default

fk4 if fk4=True, then coordinates are assumed to be in FK4, if fk4=False (default), FK5
is assumed. By B1950 coordinates use year=1950 and fk4=True

SuperGalactic SuperGalactic=False by default, if SuperGalactic=True, SuperGalactic coordinates
are returned (deVaucouleurs et al. 1976), to account for the local supercluster. The
North pole in SuperGalactic coordinates has Galactic coordinates l = 47.47, b = 6.32,
and the origin is at Galactic coordinates l = 137.37, b= 0)

eqtogal direction of conversion, eqtogal=True by default, if eqtogal=False, the input coordi-
nates (ra, dec) are galactic coordinates and returned coordinates are celestial ones

279

22.9 Coordinate transformation Analysis Tools

Example: Convert coordinates (0.0,0.0) to galactic coordinates

awe>from astro.util.idllib import glactc

awe>glactc(0.0,0.0,2008.0)

(96.112413056666824, -60.188305254568284)

Convert galactic coordinates (0.0,0.0) to FK4 coordinates for epoch 2008.0, in degrees

awe> from astro.util.idllib import glactc

awe> glactc(0.0,0.0,2008.0,degree=True,fk4=True,eqtogal=False)

(266.53170097124888, -28.938911978654406)

2. precess Precess coordinates between two epochs

Input parameters:

ra right ascension, degrees (or radians if radian=True is set), scalar

dec declination, degrees (or radians if radian=True is set), scalar

equinox1 original equinox of coordinates, numeric scalar

equinox2 equinox of precessed coordinate, numeric scalar

fk4 if fk4=True, then coordinates are assumed to be in FK4, if fk4=False (default), FK5
is assumed

radian if radian=True, coordinates must be in radians, by default radians=False

Example:

awe> from astro.util.idllib import precess

awe> ra=329.887720833

awe> dec=-56.9925147222

awe> precess(ra, dec, 1950.0,1975.0,fk4=True)

(330.3144305415542, -56.871861264857067)

280

22.10 HOW-TO: SourceCollection Analysis Tools

22.10 HOW-TO use SourceCollections in Astro-WISE

The SourceCollection classes extend the concepts of data lineage and data pulling to catalog,
for example sample selection and parameter derivation.

This HOW-TO is not yet complete and should be considered a draft. For background
information and details see the thesis of Hugo Buddelmeijer.

22.10.1 Overview

A SourceCollection is a ProcessTarget for source catalogs. A SourceCollection represents both
a catalog of sources with attributes and the operation to create the data of this catalog. Sources
are identified by their SLID-SID combination and attributes by their name. The operations
range from selection of sources to calculation of attributes and are applied to other persistent
objects, often other SourceCollections. Each operator corresponds to a separate persistent class
that is derived from the base SourceCollection class.

22.10.2 An Astro-WISE Session

Using the SourceCollection classes is demonstrated by showing an example Astro-WISE session.

Bootstrapping

A session would usually start with retrieving an existing SourceCollection. This demo session
starts with creating a new SourceCollection because this makes the pulling examples more
predictable.

For now it is required to wrap a SourceList in a SourceCollectionWrapper class in order
to use it with in the SourceCollections. Ultimately, the SourceCollection classes will be better
integrated with the SourceList and other *List classes.

from astro.main.SourceList import SourceList

from astro.main.sourcecollection.SourceCollection \

import SourceCollection

from astro.main.sourcecollection.SourceListWrapper \

import SourceListWrapper

Fetch a SourceList

sl = (SourceList.SLID == 1575051)[0]

Create a SourceCollection from the SourceList

slw = SourceListWrapper()

slw.set_sourcelist(sl)

The SourceCollection can be made persistent if wanted.

slw.commit()

print slw.SCID

100511

Pulling One Sample

SourceLists created from an image only contain photometric attributes. The SourceCollection
classes allow attributes derived from those to be created by pulling them. This example shows
how to pull a subset of the sources with newly derived attributes.

281

22.10 HOW-TO: SourceCollection Analysis Tools

Continue with ’slw’ from above.

Define a criterion to select the required sources.

query = ’ "DEC" < 11 ’

Define the requested attributes.

In this case a comoving distance and the inverse concentration index.

attributes = [’R’, ’iC’]

Pull a SourceCollection that has the requested data.

#

The information system will search for existing SourceCollections

that can be used to fulfill the request. New SourceCollections

are created if no suitable ones are found.

scnew = slw.derive(attributes=attributes, query=query)

New SourceCollections are created to be as general as possible

in order to facilitate reuse. In this case, the SourceCollection

calculating ’R’ will be created to calculate the attribute for all the

sources of slw, not only for the sources with a declination below 11.

Check whether the SourceCollection has been processed.

scnew.is_made()

If False is returned, the SourceCollection has to be processed.

scnew.make()

The is_made() and make() functions only apply to the parts of the

dependency tree that is required to build the target SourceColloction.

In this case, ’R’ will only be calculated for the sources with DEC < 11.

Loading Catalog Data

The catalog data of a SourceCollection can be accessed by loading it into a TableConverter
object or by sending it over SAMP.

Load the catalog data into a TableConverter.

scnew.load_data()

Interface with the catalog data.

print scnew.data.attribute_order

[’SLID’, ’SID’, ’R’, ’iC’]

print scnew.data.attributes[’R’]

{’length’: 1, ’ucd’: ’’, ’null’: ’’, ’name’: ’R’, ’format’: ’float64’}

print scnew.data.data[’R’]

[562.54038472 1905.82573128 397.30116968 ..., 12.93537333

Or send the catalog data over Samp.

from astro.services.samp.Samp import Samp

s = Samp()

s.broadcast(scnew)

282

22.10 HOW-TO: SourceCollection Analysis Tools

Highlight or select and broadcast some sources in Topcat or Aladin.

Retrieve the SLIDs/SIDs or the row in the TableConverter.

s.highlightedSource(scnew)

(1575051L, 812L)

s.selectedSources(scnew)

[(1575051L, 843L), (1575051L, 847L), (1575051L, 848L)]

s.highlighted(scnew)

812

Pulling More Samples

An important feature of the SourceCollections is that only the parts of a dependency tree are
processed that are required to build the final target SourceCollection. This is demonstrated
with the following example.

Continue with ’slw’ from before.

Pull attributes for a subset of the sources.

scnew1 = slw.derive(query=’ "DEC" < 11 ’, attributes=[’R’])

scnew1.is_made()

Should return True because this part of the SourceCollection has already

been processed in the previous example, if not, make it:

scnew1.make()

Pull attributes for a smaller subset of the sources

scnew2 = slw.derive(query=’ "DEC" < 10 ’, attributes=[’R’])

scnew2.is_made()

True, because this has already been processed.

Pull data for a larger subset of the sources

scnew3 = slw.derive(query=’ "DEC" < 12 ’, attributes=[’R’])

scnew3.is_made()

False, because this part of the SourceCollection

has not been processed completely yet.

Storing Catalog Data

New catalog data is created in the examples above. Storing the attribute values prevents them
to be calculated again.

Continue with the datasets from above.

Commit the SourceCollection that need to be saved. This will recursively

commit the dependency tree as well.

slnew2.commit()

Store the source data that has been calculated. This will store the catalog data

in the most optimal way. Although slnew2 only represents a subset of the

sources, all the calculated attributes are stored: The ’R’ value for the sources

in scnew1 will be stored as well.

slnew2.store_data()

283

22.10 HOW-TO: SourceCollection Analysis Tools

The demo session ends here.

22.10.3 Pushing SourceCollections

The derive() function above creates a hierarchy of SourceCollections. This section shows how
this hierarchy can be created manually.

It is preferable to use the data pulling functions and let the information system determine
what needs to be created automatically. This is less work and facilitates reuse.

Nonetheless, not all SourceCollections can be created through pulling data, therefore it is
useful to know how to create them manually.

Import

First import all relevant classes.

astro.main classes

from astro.main.SourceList import SourceList

Virtual base SourceCollection

from astro.main.sourcecollection.SourceCollection \

import SourceCollection

All derived operator SourceCollections

from astro.main.sourcecollection.SourceListWrapper \

import SourceListWrapper

from astro.main.sourcecollection.FilterSources \

import FilterSources

from astro.main.sourcecollection.SelectSources \

import SelectSources

from astro.main.sourcecollection.SelectAttributes \

import SelectAttributes

from astro.main.sourcecollection.ConcatenateAttributes \

import ConcatenateAttributes

from astro.main.sourcecollection.AttributeCalculator \

import AttributeCalculator, AttributeCalculatorDefinition

Bootstrap

Start with a new SourceCollection.

Fetch a SourceList

sl = (SourceList.SLID == 1575051)[0]

Create a SourceCollection from the SourceList

slw = SourceListWrapper()

slw.set_sourcelist(sl)

Calculate Attributes

An AttributeCalculator SourceCollection is used for the derivation of new source attributes from
existing attributes. The calculation that is performed by an AttributeCalculator SourceCollec-
tion is given by an AttributeCalculatorDefinition object. The creation of AttributeCalculator
SourceCollections in a pushing way requires some handwork:

284

22.10 HOW-TO: SourceCollection Analysis Tools

Find all AttributeCalculatorDefinition objects that can be used to

calculate comoving distances.

acdsR = AttributeCalculatorDefinition.get_acds_by_attribute(’R’)

Pick the first one.

acdR = acdsR[0]

acdR.name

’Comoving Distance Calculator’

See which attributes are required by the ACD.

acdR.input_attribute_names

[’redshift’, ’RA’, ’DEC’, ’HTM’]

Which are al available in ’slw’:

[a in slw.get_attribute_names() for a in acdR.input_attribute_names]

[True, True, True, True]

The required attributes have to be selected with a SelectAttributes:

sa1 = SelectAttributes()

sa1.parent_collection = slw

sa1.selected_attributes = [’redshift’, ’RA’, ’DEC’, ’HTM’]

And the AttributeCalculator can be initialized. The ’AC’ property of an ACD

object is class derived from the AttributeCalculator class which used this

definition.

ac1 = acdR.AC()

ac1.parent_collection = sa1

Similarly for the inverse concentration:

acdsiC = AttributeCalculatorDefinition.get_acds_by_attribute(’iC’)

acdiC = acdsiC[0]

all([a in slw.get_attribute_names() for a in acdiC.input_attribute_names])

sa2 = SelectAttributes()

sa2.parent_collection = slw

sa2.selected_attributes = [a for a in acdiC.input_attribute_names]

ac2 = acdiC.AC()

ac2.parent_collection = sa2

Selecting Sources

Selecting sources is either done with a FilterSources SourceCollection or with a SelectSources
SourceCollection.

A FilterSources represents a subset of the parent SourceCollection

by evaluation of a selection criterion.

fs = FilterSources()

fs.parent_collection = slw

fs.set_query(’ "DEC" < 11 ’)

285

22.10 HOW-TO: SourceCollection Analysis Tools

Alternatively, a SelectSources SourceCollection can be used to select

a subset that is explicitly listed by another SourceCollection.

First create a SourceCollection with only source identifiers.

sa3 = SelectAttributes()

sa3.parent_collection = fs

Use this to specify the selected sources of a SelectSources SourceCollection

ss = SelectSources()

ss.parent_collection = slw

ss.selected_sources = fs

Combining All Attributes

A ConcatenateAttributes SourceCollection is used to combine the attributes fro the Attribute-
Calculators for the sources in the FilterSources.

First select no attributes from the FilterSources

sa3 = SelectAttributes()

sa3.parent_collection = fs

Select the comoving distance

sa4 = SelectAttributes()

sa4.parent_collection = ac1

sa4.selected_attributes = [’R’]

Select the inverse concentration

sa5 = SelectAttributes()

sa5.parent_collection = ac2

sa5.selected_attributes = [’iC’]

Combine all the attributes

ca = ConcatenateAttributes()

ca.parent_collections = [sa3, sa4, sa5]

And we’re done

scnew = ca

scnew.make()

scnew.load_data()

Other Operators

SourceCollection classes not yet shown in this HOW-TO are

• ConcatenateSources, to combine the source of different SourceCollections.

• RenameAttributes, to rename the attributes of the parent SourceCollection.

• RelabelSources, to give sources of the parent SourceCollection a new SLID-SID combination
by specifying an AssociateList.

from astro.main.AssociateList import AssociateList

from astro.main.sourcecollection.SourceCollection \

import SourceCollection

from astro.main.sourcecollection.RelabelSources \

import RelabelSources

from astro.main.sourcecollection.ConcatenateSources \

286

22.10 HOW-TO: SourceCollection Analysis Tools

import ConcatenateSources

from astro.main.sourcecollection.RenameAttributes \

import RenameAttributes

Fetch a SourceCollection and AssociateList

sc = (SourceCollection.SCID == 100161)[0]

al = (AssociateList.ALID == 472781)[0]

Create a RelabelSources

rs = RelabelSources()

rs.parent_collection = sc

rs.associatelist = al

’rs’ and ’sc’ now represent ’different’ sources, which

can be concatenated. (This is not really useful though.)

cs = ConcatenateSources()

cs.parent_collections = [sc, rs]

And the attributes can be renamed.

ra = RenameAttributes()

ra.parent_collection = cs

ra.attributes_old = [’MAG_ISO’, ’MAGERR_ISO’]

ra.attributes_new = [’MAG_B’, ’MAGERR_B’]

22.10.4 The SourceCollectionTree in the Background

The automatic creation of new SourceCollections is managed by non-persistent SourceCollection-
Tree objects. For example, the derive() function, but also the is made, make and load data

functions use a SourceCollectionTree. It is instructive to discuss the SourceCollectionTree class,
even though it is not often required to interface with one directly.

Derive

The derive() function above uses a SourceCollectionTree to pull SourceCollections. This ex-
ample shows what happens inside this function.

from astro.main.sourcecollection.SourceCollection \

import SourceCollection

from astro.main.sourcecollection.SourceCollectionTree \

import SourceCollectionTree

Same start as above.

slw = (SourceCollection.SCID == 100511)[0]

query = ’ "DEC" < 11 ’

attributes = [’R’, ’iC’]

Create a SourceCollectionTree from the SourceCollection. The SCT traverses

the dependency tree and keeps the progenitors of the given SC in memory.

A Pass SC is created with the given SC as parent, which is used as the end

node of the tree. Later functions of the SCT will replace SCs in the tree,

but never this end node.

287

22.10 HOW-TO: SourceCollection Analysis Tools

sct = SourceCollectionTree(slw)

Apply the selection criterion. There are two things that can happen:

1) The SCT discovers an existing SC that represents the requested sources

and will create a SelectSources SC to select the requested sources.

2) The SCT cannot find suitable SCs and creates a new FilterSources SC with

the end node as parent and the given selection criterion as query. The

query is not evaluated; the exact composition of sources is unknown.

In both cases, the created SC is placed between the Pass node at the end of

the tree and its parent.

sct.apply_filter(query=query)

Select the attributes. For every attribute the SCT will search for existing

SCs that represent the attribute for the requested set of sources. A

hierarchy of SelectAttributes and ConcatenateAttributes SCs is created that

provides the right attributes. The SCT will try to instantiate new

AttributeCalculator SCs if there are no existing SCs that contain a

requested attribute.

sct.apply_attribute_selection(attributes)

The end node of the tree now represents the requested catalog. This is

a Pass SC, so its parent is returned by the .derive() function.

scnew = sct.sourcecollection.parent_collection

Visualizing a SourceCollectionTree

The dependency tree of a SourceCollection can be visualized with a SourceCollectionTree (figure
22.1).

sct = SourceCollectionTree(scnew)

sct.make_dot_graph(’howtotree1’)

Making Catalog Data

The functions of the SourceCollection class that handle the catalog data, is made, make and
load data, can be called either with optimization or without. With optimization (optimize=True
parameter, the default) a SourceCollectionTree is created and the respective function of this ob-
ject is called to perform the required action in the optimal way.

Continuing with ’scnew’ from earlier

Calling is_made without optimization will return True because scnew is a

ConcatenateAttributes SC, which does not have to be processed.

scnew.is_made(optimize=False)

Calling is_made with optimization is equal to the following:

Create a SourceCollectionTree

sct = SourceCollectionTree(scnew)

Optimize the tree for loading catalog data, by placing the selection of

sources and attribute early in the tree.

sct.optimize_for_load()

288

22.10 HOW-TO: SourceCollection Analysis Tools

-118 SelectAttributes a

R

-167 ConcatenateAttributes b

R
iC

-117 AttributeCalculator a

R
transverse

-103 SelectAttributes b

-200 SelectAttributes a

SDSS_petroR50_u
SDSS_petroR90_i
SDSS_petroR90_z
SDSS_petroR90_g
SDSS_petroR90_u

...

-162 AttributeCalculator a

iC
C

-102 FilterSources b

A
redshiftOrigin

SDSS_petroMagErr_g
SDSS_modelMag_i

SDSS_petroMagErr_i
...

-101 SourceListWrapper a

A
redshiftOrigin

SDSS_petroMagErr_g
SDSS_modelMag_i

SDSS_petroMagErr_i
...

-129 SelectAttributes a

RA
redshift

DEC
HTM

-163 SelectAttributes a

iC

Figure 22.1: Dependency tree generated by the SourceCollectionTree.

Now the entire optimized tree can be checked.

sct.is_made()

This will recursively call ’is_made(optimize=False)’ on the SCs in the

optimized tree.

Similarly, calling ’scnew.make()’ is identical to:

sct = SourceCollectionTree(scnew)

sct.optimize_for_load()

sct.make()

This will recursively call ’make(optimize=False)’ on the SCs in the

optimized tree that are not yet made.

Finally, ’scnew.load_data()’ is identical to:

sct = SourceCollectionTree(scnew)

sct.optimize_for_load()

sct.load_data()

This will load the catalog data of the end node of the tree in the

most optimal way. It will not necessarily load the catalog data

for all the other SCs in the tree.

Store Catalog Data

Storing catalog data with store data() in an optimized way works differently from the functions
above. In practice, all the attributes of the AttributeCalculators in the dependency tree of the
SourceCollection will be stored. No catalog data will be stored as part of the SourceCollection
itself, unless it is an AttributeCalculator too.

Store the catalog data in an optimized way.

289

22.10 HOW-TO: SourceCollection Analysis Tools

-762 SelectAttributes b

-814 SelectSources b

A
redshiftOrigin

SDSS_petroMagErr_g
SDSS_modelMag_i

SDSS_petroMagErr_i
...

-761 FilterSources b

DEC

-755 SelectAttributes a

DEC

-786 AttributeCalculator b

R
transverse

-784 SelectAttributes b

R

-780 ConcatenateAttributes b

R
iC

-815 SelectAttributes b

SDSS_petroR50_u
SDSS_petroR90_i
SDSS_petroR90_z
SDSS_petroR90_g
SDSS_petroR90_u

...

-803 AttributeCalculator b

iC
C

-812 SelectAttributes b

RA
redshift

DEC
HTM

-746 External a

A
redshiftOrigin

SDSS_petroMagErr_g
SDSS_modelMag_i

SDSS_petroMagErr_i
...

-801 SelectAttributes b

iC

Figure 22.2: Optimized dependency tree of figure 22.1, generated by the SourceCollectionTree.
The exact shape of the tree will differ depending on what part of the SourceCollections has
already been processed.

slnew.store_data()

This is equivalent to

sct = SourceCollectionTree(slnew)

sct.store_data()

Finding SourceCollections

There are several moments when the SourceCollectionTree will search for existing SourceCol-
lections in order to fulfill a data pulling request. The SourceCollectionTree will create a list
of all SourceCollections that could be used for a particular purpose. This list is subsequently

290

22.10 HOW-TO: SourceCollection Analysis Tools

ranked according to a key function and the SourceCollection with the highest rank is selected.
Any SourceCollection with a positive key value would be suitable. The key functions class
property of the SourceCollectionTree is a dictionary that holds these key functions. The keys
of the dictionary are:

• find selection: Used to rank SourceCollections that represent the sources selected by a
given selection criterion.

• find attribute: Used to rank SourceCollections that provide a given attribute for a
specific set of sources.

• find attribute new calculators: Used to rank new AttributeCalculator SourceCollec-
tions that provide a given attribute.

• find sources: Used to rank SourceCollections that represent the source identifiers of a
given SourceCollection.

The selection process can be influenced by overloading these functions:

Start with a SourceCollection.

slw = (SourceCollection.SCID == 100511)[0]

Create an AttributeCalculator to calculate ’R’ without lamdba.

acd = AttributeCalculatorDefinition.get_acds_by_attribute(’R’)[0]

ac2 = acd.AC()

ac2.parent_collection = slw

ac2.set_process_parameter(’omega_m’, 1.0)

ac2.set_process_parameter(’omega_l’, 0.0)

Create an SCT and manually ensure that the relevant SCs are tracked.

sct = SourceCollectionTree(slw)

sct.track_children_auto(cache=True)

sct.track_tree(ac2)

Search for the comoving distance. An AC with the wrong omega_m is selected.

sc1=sct.find_attribute(’R’)

print "#sc1 omega_m", sc1.get_process_parameter(’omega_m’)

#sc1 omega_m 0.3

Define a new key function to find the correct AC.

from astro.main.sourcecollection.SourceCollectionTree \

import key_find_attribute

def mykey(scd):

First retrieve the default ranking.

tkey = key_find_attribute(scd)

The ’scd’ is a dictionary, the key ’sc’ points to the actual SC.

sc = scd[’sc’]

Reduce the key value of SCs that are not an AttributeCalculator

if not isinstance(sc, AttributeCalculator):

tkey -= 10**9

and reduce the key value of the ACs that use another omega_m.

elif sc.get_process_parameter(’omega_m’) != 1.0:

tkey -= 10**9

291

22.10 HOW-TO: SourceCollection Analysis Tools

return tkey

Set the new key function.

SourceCollectionTree.key_functions[’find_attribute’] = mykey

Search for the comoving distance again, the preferred AC is found.

sc2=sct.find_attribute(’R’)

print "#sc2 omega_m", sc2.get_process_parameter(’omega_m’)

#sc2 omega_m 1.0

22.10.5 AttributeCalculatorDefinitions

The calculation that is performed by an AttributeCalculator SourceCollection is described by an
AttributeCalculatorDefinition object. These objects can be created by any scientist and shared
with others.

The code of an AttributeCalculatorDefinition is stored in a file on the dataserver. This
(python) file contains a new AttributeCalculator class that is derived from the one in code
base. The create from file() method of the AttributeCalculatorDefinition class can be used
to create a new definition from this class. Auxiliary files can be used by wrapping everything
in a tarball.

The procedure for this is too long to to list in this document, see demo 17 for an example.

cd $AWEPIPE/astro/experimental/SourceCollection/demos/demo17

22.10.6 SAMP Interaction and Query Driven Visualization

A design goal of the SourceCollection classes was to be able to use them interactively over SAMP.
New SAMP messages are designed to to allow query driven visualization in a more declarative
way than is possible with other information systems.

The SAMP interaction is described in the HOW-TOon SAMP (section 23.8) The Query
Driven Visualization is described in the HOW-TOon Query Driven Visualization (section 23.9).

292

Chapter 23

Visualization

23.1 HOW-TO Inspect

This HOW-TO deals primarily with image inspection methods. Other inspection routines are
described in their relevent sections (see, e.g., sections 18.4 and 19.4.2). These and other in-
spection routines may eventually be linked from this HOW-TO formally, but they will never be
described in any detail here.

23.1.1 Image Inspect Plot

Image inspection takes place primarily a MatPlotLib (PyLab) window and is illustrated in figure
23.1. The plot contains a representation of the image with a title containing the filename of the
frame being inspected. There are also pixel coordinate indicators for convenience. As this plot
is within a Pylab window, all the familiar manupulation routines are available (e.g., panning,
zooming, etc.) In addition to these, there are some single-key commands to create new plots
that illustrate specific details around the cursor position. The next section gives details on these.

0 500 1000 1500 2000

X [pixel]

0

1000

2000

3000

4000

Y
 [

p
ix

e
l]

Inspection Plot of:

Sci-PHERAUDEAU-WFI-----#843-ccd54---Sci-53404.5266354.fits

Figure 23.1: A typical image inspection window without the PyLab controls.

293

23.1 HOW-TO Inspect Visualization

23.1.2 Image Inspect Method

Image inspection can be called from any BaseFrame-derived frame, and is called by executing
the frame’s inspect() method:

awe> frame = BaseFrame(pathname=’filename.fits’)

awe> frame.inspect()

There are also a large number of options to control how the plot looks and even what is plotted.
A summary of the options is given below:

pixels: optional list or array representing the image to be inspected (can be MxN for greyscale,
or MxNx3 for RGB)

zone: tuple of (x0, y0, x1, y1) representing the image coordinates of the two oposing corners of
the sub image to consider

kappa: the factor by which the dynamic range is increased in units of sigma (0 gives full range)

iterations: number of iterations in the kappa-sigma range clipping

cmap: PyLab color map instance

vmin: lower display range in native units (e.g. ADU)

vmax: upper display range in native units (e.g. ADU)

interpolation: type of interpolation the PyLab viewer uses (nearest, bilinear, etc.)

width: width of the PyLab figure window (in inches)

ratio: ratio by which to scale the figure height (default: x dim/y dim)

viewer: external viewer to use in case the image is too large

force viewer: always use the viewer

subplot size: width and height in pixels of region of interest

contour levels: number of contour levels for the contour plot of the region of interest

num bins: number of bins in the histogram plot

extension: extension of the filetype to save plot to (png, ps, or eps) None disables saving

compare: compare this frame to its previous version using difference imaging (current-previous),
pixels is ignored

level: depth of query for previous version (0 goes as deep as possible) when compare is True

other: a second of the same type of Frame object to replace previous when compare is True (if
color is True, other can be a list of two images)

clip: kappa-sigma clip each image prior to subtraction when compare is True

color: use color combining (RGB) instead of differencing when compare is True (kappa, vmin/vmax
only honored when clip is True), this image is R, other is B if single, other is [G, B] if it
is a list (EXPERIMENTAL)

294

23.1 HOW-TO Inspect Visualization

Also, there are a number of commands that work on an area around the current cursor position.
A summary of these commands are given below:

q closes the most recent plot window when pressed in the main window

SPACE displays the X and Y coordinate (FITS standard unit indexed) and the count level

a performs aperture photometry on brightest feature in the region of interest (NOT YET
IMPLEMENTED)

c displays a contour plot of the region of interest (see contour levels)

h displays a histogram of the pixel values of the region of interest (see num bins)

r displays a radial plot of the brightest feature in the region of interest

w displays a wireframe plot of the region of interest

p displays profile plots in both X and Y dimensions versus intensity (count level)

Please see the inspect docstring for more details and current details on both of these:

awe> help(frame.inspect)

23.1.3 Image Display Method

A display method is available for all frames:

awe> frame.display()

This will open up the frame in skycat, by default.

295

23.2 HOW-TO: Photometric Association Catalog Visualization

23.2 HOW-TO View the Contents of a Photometric Asso-
ciation Catalog

The first processing step in the photometric pipeline always consists of extracting source catalogs
from the standard field data, and associating the results with a standard star catalog. These
particular ‘association’ catalogs are represented in the system by PhotSrcCatalog objects. To
view the content of a PhotSrcCatalog object, simply invoke its inspect method:

awe> photcat.inspect()

which will result in an output to screen that looks like the one shown in Figure 23.2. The
inspect plot shows the magnitudes of the individual standard stars as known to the standard
star catalog on the x-axis, and their associated raw zeropoints on the y-axis.

13 14 15 16 17 18

24.2

24.4

24.6

24.8

25

Stetson
SDSS3
AW2S

median : 24.60
mean : 24.60
stdev : 0.04

Number of stars : 94
Frame : name longer than 58 characters !
Date : 2003-02-16 06:14:43.00
Airmass : 1.17

M (SloanR)

M
 - m

 (
S
lo

a
n
R

)

PhotSrcCatalog

Figure 23.2: The result of invoking the inspect method of a PhotSrcCatalog object.

296

23.3 HOW-TO: Mosaicing with Multi-extension FITS Visualization

23.3 HOW-TO View Processing Results as a mosaic (MEF
file)

It is sometimes useful to look at the results of a processing step not chip-by-chip, but at all
chips simultanesouly. One such processing result could be the overall illumination correction in
FITS-format (see Fig. 23.3).

To facilitate this, a little tool has been created that can merge the separate results for every
chip back into a Multi-Extentsion FITS (MEF) file1. This tool can be found in CVS under
$AWEPIPE/astro/util/Image.py. Given below is an example of how to merge the BiasFrames
for a given day back into an MEF file using this tool:

Example 1.

awe> from astro.main.BiasFrame import BiasFrame

awe> from astro.util.Image import Image

awe> biases = []

awe> for i in range(8):

... bias = BiasFrame.select(instrument=’WFI’, date=’2000-04-28’, chip=’ccd5%s’ % i)

... bias.retrieve()

... biases.append(bias)

awe> len(biases)

8

awe> MEF = Image(’output_MEF.fits’)

awe> MEF.frames = biases

awe> MEF.make()

The frames used MUST first exist on disk in your local directory (cf. retrieve() method) and be a
consistent set for the instrument (e.g., one frame for each of the 8 chips of the WFI instrument).
The output MEF with the name “output MEF.fits” can then be viewed in eg. skycat. Note that
the possibility of viewing a complete MEF file depends on the viewer you use. Be aware, that for
instruments with larges numbers of chips, the memory requirements are correspondingly larger.
For OmegaCAM, a 32 CCD instrument, the output file will be greater than 1GB on disk.

In the next example, extended syntax is shown in addition to optimal command-lines for
different viewers. In this case, if frames are used, they will be retrieved by default unless the
retrieve option is explicitly set to False.

Example 2.

awe> # normally imported automatically

awe> from astro.util.Image import Image

awe>

awe> # using instantiated frames

awe> img = Image(’output.fits’, frames=list_of_frames)

awe> # img.frames can also be set directly

awe>

awe> # using filenames

awe> img = Image(’output.fits’, filenames=list_of_filenames)

awe> # img.filenames can also be set directly

awe>

awe> img.make()

awe> # view with skycat allowing greater zoom range

1The RawFrames were made from a MEF associated with their RawFitsData object.

297

23.3 HOW-TO: Mosaicing with Multi-extension FITS Visualization

awe> os.system(’skycat -min_scale -20 output.fits’)

awe> # you must select "Display as one Image"

awe>

awe> # view with ds9 in mosaic image mode

awe> os.system(’ds9 -mosaicimage wcs output.fits’)

awe> # you can select Zoom -> Zoom to Fit Frame and

awe> # Scale -> Scope -> Global to scale like skycat

All the descriptions above assume a non-RawFrame type is used. If a RawFrame type is used
(i.e., with trim regions still intact), the frame type option MUST be set to ’raw’ for a proper
chip-to-chip alignment. Using RawFrame types is generally not done as the RawFitsData is
already available as a multi-extension FITS image.

298

23.3 HOW-TO: Mosaicing with Multi-extension FITS Visualization

Figure 23.3: The eight illumination correction frames derived for the R filter (#844) of the
Wide-Field Imager combined into one multi-extension FITS file.

299

23.4 HOW-TO: Image Services Visualization

23.4 HOW-TO: Image Services

This HOW-TO shows how to view FITS images in multiple formats from within the DBView
web-service and from the awe-prompt using catalogs (SourceLists) for the source specification.

23.4.1 Visualizing and Navigating the Database with DBviewer

To visualize the data in table-views and tree-views, the DBviewer in this Astro-WISE portal
offers HTML controls to enter data, send forms and instructions to the the server interacting
with the database. Narrow the search by entering conditions to SQL-queries, set context to
focus the search on projects by filling in input-fields of forms. Bookmark results, and query-
forms as well for repeated searches. Use the Oracle-SQL as shown as basis to modify or build
into new SQL-queries. Navigate by links between tableviews, treeviews of a single object and
its dependencies,and back from the tree to a row in the table to search for similar objects. Refer
to DBviewer’s own help-functions for more information.

23.4.2 Visualizing FITS Images

Directly From Dbview

In DBview, controls are present to view whole FITS images via the web-browser after be-
ing processed on-demand into png format by the Astro-WISE image-server. Large images are
binned down to a manageable size. Simple controls allow inverting colors and basic adjustment
of contrast and size. For SourceList data, overplotting of positions on these images is being
developed.

Exporting FITS Images to VO Applets and Image Browsers

Next to providing downloaded FITS data to resident programs, the DB viewer supports features
to interact with VO-table-aware astronomical programs imported as web-applets. This can be
a useful feature for clients without suitable software installed or as a way to be sure to have the
latest version available.

The Aladin Sky Atlas java-applet will read downloaded FITS image data or VO-XML source
data. For some science-tables, there is an option to load FITS-data directly from links without
exporting to local disk. The applet can access a large number external catalogs and do a number
of operations, including interactive plotting.

The graphical table viewer-applet TOPCAT reads downloaded tabular data from the DB-
viewer in VO-XML format. TOPCAT has statistical and interactive (regression, 3-D) plotting
abilities, and can access a few catalogs. The program needs a one-time configuration step of the
java webstart manager on the client’s machine.

NOTE: Refer to DBviewer’s own help-functions for more information on downloading
and interaction with external programs, see VO work-bench for additional web-client
software.

FITS images from any table of the database can be loaded via the clients machine into astro-
nomical Image Browsers. In the Dbviewer, activate the HTML-links to FITS files to download
via the web browser dialog menu. NB: FITS-images may be large (> 500 Mb), and in
a compressed format.

Alternatively, FITS file downloads may be done from the awe-prompt rather than from the
web-interface, using the object-method retrieve(), for example:

300

http://aladin.u-strasbg.fr/
http://andromeda.star.bris.ac.uk/~mbt/topcat/
http://www2.astrogrid.org/desktop/

23.4 HOW-TO: Image Services Visualization

awe> bias=BiasFrame.filename==’2000-04-21cal541_ccd57.fits’

awe> bias.retrieve()

The FITS file is saved in the current working directory of the AWE session.

FITS Viewing Programs

• FV software tool for viewing and editing any FITS format image or table

• SAOImage DS9 astronomical image and data visualization application

• SkyCat astronomical image and catalog browser

23.4.3 Visualizing FITS Cut-out Images

Working from the awe-prompt, SourceList and AssociateList objects can export FITS filenames
and positional data. These are sent to the image-server’s cut-out service via an image-client
script to provide either sub-image FITS files, or an HTML page and table with links to PNG
representations of the sub-images. In addition, the HTML page enables access to the original
FITS images and the sub-image FITS files, and downloading in FITS format. Magnified PNG
representations can be viewed in private windows to be moved around the screen and juxtaposed
for comparison. For full control over the image-client, the user can add to the data extra
parameters to specify size of sub-images (per item or per series), designate pixel coordinates,
add FITS headers, or determine the name of the output file. For more info on how to use the
image-client see the code examples below.

23.4.4 awe-prompt: Python Code Examples to Access the Cut-out Ser-
vices of Image-server

Importing the interface to the image-server:

awe> from astro.services.imageview import imgclient

Dedicated SourceList or AssociateList object methods

Object-Methods sourcelist.sources.make image dict(sids, mode=’sky’) or al.associates.make image dict(aids,
mode=’sky’) return dictionaries to get cut-out FITS images from the image server.

• sids/aids may contain one or a list of SID/AID indexes.

• mode can specify sky (default) or grid coordinates.

Example to obtain cutouts of SourceList SID number 1..10 for SLID #54052:

awe> from astro.main.SourceList import SourceList

instantiate a sourcelist object by any query

awe> sourcelist = (SourceList.SLID == 54052)[0]

make the dictionary for a given list of SIDs

awe> imgdict=sourcelist.sources.make_image_dict([1,2,3,4,5,6,7,8,9,10],

... mode=’grid’)

Send the dictionary to the image-server with an optional instruction for size:

301

http://heasarc.gsfc.nasa.gov/ftools/fv/
http://hea-www.harvard.edu/RD/ds9/
http://archive.eso.org/skycat/

23.4 HOW-TO: Image Services Visualization

have dictionary checked

awe> ic = imgclient.imgclient(imgdict, wide_high=[150, 150])

receive zipped cut-out fitsfiles or:

awe> ic.getzipfile()

receive an HTML-page with image-links to png representations

awe> ic.getimg()

obtain the name of the zipfile that has been retrieved with .getzipfile()

awe> print ic.zipfilename

Example to obtain cutouts of Associatelist ALID #7854:

awe> from astro.main.AssociateList import AssociateList

select or make an AssociateList object by any query

awe> AL = (AssociateList.ALID == 7854)[0]

check the number of associated Sourcelists

awe> print len(AL.sourcelists)

2

make the dictionary for a given list of AIDs

awe> imgdict = AL.associates.make_image_dict([1,2],mode=’grid’)

awe> print imgdict

{’Sci-EVALENTYN-WFI-------#844---Coadd---Sci-53874.5477624.fits’:

[{’PIX_Y’: 61.8842964172363, ’PIX_X’: 3229.7326660156305},

{’PIX_Y’: 50.037860870361293, ’PIX_X’: 9802.1259765625}],

’Sci-EVALENTYN-WFI-------#844---Coadd---Sci-53876.4051544.fits’:

[{’PIX_Y’: 94.668701171875, ’PIX_X’: 3188.1870117187505},

{’PIX_Y’: 83.101295471191392, ’PIX_X’: 9760.25}]}

Send to image-server as shown above for SourceLists. When requested as HTML image-table,
cutouts from images will be arranged column-wise. Current limits of of this representation is 16
x 60 columns.

Generating dictionaries with data and control parameters for cut-out services

To construct a dictionary for the image-server without the help of a function, the following calls
and data-structures are available to program data input and output. Invoke the image-client
and -services in the usual way:

awe> from astro.services.imageview import imgclient

check dictionary and convert into url

awe> x=imgclient.imgclient(dictionary,wide_high=[100,100])

retrieve zipfile of FITS-image cut-out files or

awe> x.getzipfile()

retrieve HTML-pages showing cut-outs and original images

awe> x.getimg()

obtain the name of the zipfile that has been retrieved with .getzipfile()

awe> print x.zipfilename

The user-dictionary should contain filename-data items:

{filename1: [pdata], filename2: [pdata], etc}

The [pdata] list may contain simple lists with [RA,DEC] (and optionally width, height data)
or dictionaries with additional parameters. The wide high parameter is optional to set generic
width and height for all sub-images. Special dictionary-keys are:

302

23.4 HOW-TO: Image Services Visualization

• PIX X, PIX Y instead of RA,DEC to enter pixel-coordinates

• width, height individual sub-FITS image dimensions in pixels (see wide high parameter
above)

• FTAG for a user-defined tag added to the output-filenames

• Additional items to be placed into the FITS-headers.

Examples of [pdata]

Lists with optional height and width parameters per individual sub-image:

[[11.5557568095, -29.3887976732],

[11.4245138174, -29.3883174776, 200, 200],

[11.5253142382, -29.3874586034, 300, 300]]

Dictionaries specifying position, size and additional items:

[{’RA’: 11.5557568095, ’DEC’: -29.3887976732, ’extra1’: 123, ’extra2’: 321},

{’RA’: 11.4245138174, ’DEC’: -29.3883174776, ’width’: 200, ’height’: 200},

{’RA’: 11.5253142382, ’DEC’: -29.3874586034, ’width’: 300, ’height’: 300,

’extra1’: 123, ’extra2’: 321, ’extra3’: 567, ’extra4’: 8910}]

NOTE: Numeric values in [pdata] can also be in string format (e.g. 200 == ’200’
== ”200”).

303

23.5 HOW-TO: PSF Information Visualization

23.5 HOW-TO Obtain PSF Information of Science Images

A simple recipe is available to make several plots of SExtractor parameters relevant to the PSF.
The recipe is $AWEPIPE/astro/filerecipes/PSF Anistropy.py and is used as follows:

--

CATEGORY : Health check

PURPOSE : Detect PSF Anisotropy

FULFILLS : Requirement 554 (Category III)

--

This recipe makes 5 plots of SExtractor parameters:

1) Bars of length FWHM_IMAGE (times a scale factor) and angle w.r.t.

x-axis Theta. Average FWHM_IMAGE and THETA are evaluated per area

in a grid of Xpos/Ypos.

2) MAG_ISO vs. FLUX_RADIUS (half-light radius)

3) FWHM_IMAGE vs. THETA (position angle)

4) FWHM_IMAGE vs. Xpos-CRPIX1

5) FWHM_IMAGE vs. Ypos-CRPIX2

--

Mandatory inputs :

-l : list of input split raw or processed science images

Configuration parameters (min - [default] - max) :

-s : switch to not run SExtractor (if catalogs already exist)

-d : SExtractor detection threshold

range: 0.0 - [10.0] - 100.0

-f : maximum FLAG of sources

range: 0 - [0] - 255

-m : maximum FLUX_MAX of sources

range: 0 - [60000] - 70000

-r : minimum FLUX_RADIUS of sources

range: 0.0 - [0.0] - 50.0

-rm : maximum FLUX_RADIUS of sources

range: 0.0 - [50.0] - 50.0

Switches :

-in : interactive mode (if omitted a postscript file is created)

Example of use :

awe PSF_Anisotropy.py -l image12345_?.fits [-s] [-d 5.0] [-f 1]

304

23.5 HOW-TO: PSF Information Visualization

[-m 50000] [-r 2.0] [-rm 5.0] [-in]

--

Note that the recipe can be used on a single coadded image by giving it as input.
Below is an example of an output plot

305

23.5 HOW-TO: PSF Information Visualization

Figure 23.4: Example output plot of PSF Anistropy

306

23.6 HOW-TO: ObsViewer Visualization

23.6 HOW-TO Visualize observational pointings with
ObsViewer

ObsViewer can query the database for RawScienceFrames or ReducedScienceFrames for a given
rectangular region of the sky, wavelength range and range in exposure time. It can output the
results in a figure and ascii files.

NOTE1: EXPERIMENTAL VERSION. Bug reports and other feedback welcome:
Gijs Verdoes Kleijn (verdoes@astro.rug.nl)

NOTE2: ONLY WFI OBSERVATIONAL POINTINGS ARE QUERIED.

EXAMPLE1 of use at the awe-prompt:

1. awe> from astro.experimental.ObsViewer import ObsViewer

2. awe> o=ObsViewer()

3. awe> o.query database(rastart=174, raend=178, decstart=-5, decend=-5,

... central lambdastart=4000.0, central lambdaend=5000.0,

... expomin=0.0, expomax=200.0,raw=’yes’)

4. awe> o.preview(newplot=1,plotcolor=’b’,plotsize=20)

5. awe> o.plot(plotfov=1,fillfov=1,newplot=1,plotcolor=’b’,plotsize=20,sec per dot=1.0)

The command lines have the following effects:

1. IMPORTS MODULE INTO AWE ENVIRONMENT.

2. MAKES A CLASS INSTANTIATION.

3. QUERIES THE DATABASE.
Input parameters:

• rastart/end: (degrees) start and end right ascension of rectangular region in the sky.

• decstart/end: (degrees) start and end declination of rectangular region in the sky.

• central lambdastart/end: (Angstrom) start and end of wavelength region in which
the central wavelength of the exposure filter has to be.

• expomin/max: (sec) minimum/maximum exposure time for exposure.

• raw: query for raw images (raw=’yes’) or reduced images (raw=’no’).

Result:
a query which can be used by o.preview and o.plot.

4. PLOTS AND SAVES A FIGURE CONTAINING ONLY THE POINTING CENTERS
OF THE QUERY RESULTS.
Input parameters:

• newplot: make a new plot (newplot=1) or overplot on an existing one (newplot=0)?

• plotcolor: color of plotting symbol: color=’r’ means red, and b:blue, g:green, c:cyan,
m:magenta, y:yellow, k:black, w:white.

• plotsize: size of the plotting symbol to plot.

307

23.6 HOW-TO: ObsViewer Visualization

Output:
a figure (png format) named ObsViewer ra <rastart> <raend> dec <decstart> <decend>-
lambda <lambdastart> <lambdaend> expo <expomin> <expomax> preview.png (see
Figure 23.5).

NOTE: the tool buttons on the bottom of the graphical display window can be
used to zoom in on parts of the figure.

5. PLOTS AND SAVES A FIGURE VISUALIZING THE QUERY RESULT AND WRITES
AN OUTPUT FILE WITH THE RESULTS.
Input parameters:

• plotfov: plot the field of view (FOV) around the pointing centers (0=no, 1=yes)?

• fillfov: fill the FOV with random poisson points (to emphasize overlapping exposures)
(0=no, 1=yes)?

• sec per dot: the number seconds exposure time per dot plot by fillfov. For example,
sec per dot=10.0 plots a dot for each ten seconds of exposure time.

• plotcolor: color of plotting symbol: color=ŕḿeans red, and b:blue, g:green, c:cyan,
m:magenta, y:yellow, k:black, w:white.

• plotsize: size of the plotting symbol to plot.

Outputs:
A graphical display window with the result.
A figure (png format) named ObsViewer ra <rastart> <raend> dec <decstart> <decend>-
lambda <lambdastart> <lambdaend> expo <expomin> <expomax>.png (see Figure 23.6).
A text file (ascii format) named ObsViewer ra <rastart> <raend> dec <decstart> <decend>-
lambda <lambdastart> <lambdaend> expo <expomin> <expomax>.txt.

NOTE: the tool buttons on the bottom of the graphical display window can be
used to zoom in on parts of the figure.

EXAMPLE2:

1. awe> from astro.experimental.ObsViewer import ObsViewer

2. awe> o=ObsViewer()

3. awe> o.query database(rastart=170, raend=180, decstart=-20, decend=-20,

... central lambdastart=4000.0, central lambdaend=5000.0,

... expomin=0.0, expomax=200.0,raw=’yes’)

4. awe> o.plot(plotfov=1,fillfov=1,newplot=1,plotcolor=’b’,plotsize=20,sec per dot=1.0)

5. awe> o.query database(rastart=170, raend=180, decstart=-20, decend=-20,

... central lambdastart=5000.0, central lambdaend=6000.0,

... expomin=0.0, expomax=200.0,raw=’yes’)

6. awe> o.plot(plotfov=1,fillfov=1,newplot=0,plotcolor=’g’,plotsize=20,sec per dot=1.0)

The command lines have the following effects:

1. -.4: similar to steps in example 1.

5. Now the query is made for frames with a central lambda different from step 3

6. The result from the query in step 5 is overplotted in green on the existing plot from step
4 (see Figure 23.7).

308

23.6 HOW-TO: ObsViewer Visualization

174174.5175175.5176176.5177177.5178

RA (deg)

-4

-2

0

2

4

D
E
C

 (
d
e
g
)

Centers of observed pointings

Figure 23.5: Example output figure from awe> o.preview(). The circles indicate the centers
of the pointings.

174174.5175175.5176176.5177177.5178

RA (deg)

-4

-2

0

2

4

D
E
C

 (
d
e
g
)

Observed pointings

Figure 23.6: Example output figure from awe> o.plot(plotfov=1,fillfov=1). The rectan-
gles represent the FOV of the exposure to scale. The random dots (by setting fillfov=1) reflect
the exposure time as explained in example 1.

309

23.6 HOW-TO: ObsViewer Visualization

174174.5175175.5176176.5177177.5178

RA (deg)

-4

-2

0

2

4

D
E
C

 (
d
e
g
)

Observed pointings

Figure 23.7: Example output figure from two queries as in example 2. The rectangles represent
the FOV of the exposure to scale. The random dots (by setting fillfov=1) reflect the exposure
time as explained in example 1.

310

23.7 HOW-TO: Trend analysis Visualization

23.7 HOW-TO perform a trend analysis and to find outliers

23.7.1 Summary

This HOW-TO shows how one can do a simple database trend analysis from the awe-prompt.
In general to get to a result you need to do the following steps:

• Which quantities do you want to do a trendanalysis on? Determine which classes and
attributes of objects in AWE are needed to get the desired information for those quantities.

• Construct the database query/queries required to get the desired information.

• Make a plot of the desired information to graphically detect outliers.

• Refine the constraints in the query to encompass only outliers.

• Retrieve the outlying objects and inspect them.

23.7.2 Examples

Question 1: Make a plot of the bias level of all raw biases of a CCD as a function of modified
julian date of observation.
Answer 1:

awe> q = (RawBiasFrame.chip.name == ’ccd50’)

awe> biases = list(q)

awe> x = [b.MJD_OBS for b in biases]

awe> y = [b.imstat.median for b in biases]

awe> pylab.scatter(x,y,s=0.5)

This results in the plot in figure 23.7.2 (zoomed, labels added).

Question 2: Look for raw biases for ccd50 (WFI) in 2004 for which the level of the trim section
differs significantly from the level of the overscan.
Answer 2:

awe> q = (RawBiasFrame.filename.like(’WFI.2004*_1.fits’))

awe> len(q)

419

awe> biases = list(q)

awe> x = [b.MJD_OBS for b in biases]

awe> y = [b.imstat.median-b.overscan_x_stat.median for b in biases]

awe> pylab.scatter(x,y,s=0.5)

This produces a plot as in figure 23.7.2.You can see that there seems to be one case where the
difference is 5 ADU. This image will be interesting to look at. We can select it as follows:

awe> frames = [b for b in biases if b.imstat.median-b.overscan_x_stat.median > 4]

awe> len(frames)

2

awe> for f in frames: print f.filename

...

WFI.2004-10-15T15:10:02.248_1.fits

WFI.2004-10-15T15:11:52.384_1.fits

awe> for f in frames: f.retrieve()

...

311

23.7 HOW-TO: Trend analysis Visualization

Figure 23.8: Trend analysis: bias level for all raw biases of CCD against modified julian date of
observation

It turns out there are in fact two frames of this kind. The images seem to have an uncharacteristic
bright region in them; something was obviously wrong during these observations.

312

23.7 HOW-TO: Trend analysis Visualization

Figure 23.9: Trend analysis: trend of raw bias level in trim section minus the level in the
overscan X region. The difference is plotted as a function of modified julian date of observation.

313

23.8 HOW-TO: SAMP Visualization

23.8 HOW-TO use SAMP in Astro-WISE

The Simple Application Messaging Protocol (SAMP) is a protocol for astronomical applications
to collaborate. A SAMP client is available from the awe-prompt which allows interaction with
visualization software such as Topcat and Aladin. Furthermore, a set of new SAMP messages
has been designed to allow interactive query driven visualization through data pulling.

The idea behind SAMP is akin to the UNIX-philosophy that tools should do one thing,
should do that thing well and communicate with other programs for things they cannot do.
E.g.: A specific piece of software is responsible for retrieving the data from a data source,
another program computes parameters which then get visualized with a third program.

The general principle in SAMP is that there is a central HUB, to which clients connect. The
clients send messages through the HUB to other clients, which (can) respond with the result of
the requested actions. There is a lot of freedom in what messages can be send, and the protocol
is designed to be language agnostic. SAMP can be seen as the successor to PLASTIC (PLatform
of AStronomical Tool Interaction) which had a similar goal, but never became a VO standard.

23.8.1 SAMP HUB and Clients

Figure 23.10 shows a diagram of the interoperability between Astro-WISE and SAMP.

Figure 23.10: The connectivity between Astro-WISE and SAMP. On the left in red the Astro-

WISE system and on the right in blue SAMP enabled applications. The SAMP HUB in the
center is gray, because usually it is not a separate application itself but embedded in one of the
clients. The green line is the connections between Astro-WISE and SAMP.

SAMP HUB

The center of the SAMP protocol is the SAMP HUB. The principal function of the HUB is to
register connected applications and to relay messages inbetween them. The HUB itself does not
have to have any human interface at all, let alone a GUI. The HUB is often integrated in one
of the clients, e.g. Aladin and Topcat, but standalone HUBs exist as well.

Topcat

Topcat2 is a table viewer/manipulator written in java. It can read a large variety of tabular data,
from FITS and VOTable to common csv files. It is now developed by AstroGrid. Topcat has
some nice visualization options, such as 2D or 3D scatter plots and primitive density plots. The
power of the visualizations lies in the interactivity. Select points in one scatter plot, and they
become automatically highlighted in another plot which might show entirely different parameters
of the data points.

2http://andromeda.star.bris.ac.uk/~mbt/topcat/

314

http://andromeda.star.bris.ac.uk/~mbt/topcat/

23.8 HOW-TO: SAMP Visualization

Aladin

Aladin3 is an FITS image viewer developed in France by the Centre de Donn’ees astronomiques
de Strasbourgh (CDS). It can view local files, connect directly to several image repositories, by
the VO and otherwise. Furthermore it can receive images from other applications such as the
VO Desktop through SAMP. Aladinis developed in java and can load images up to 50K by 50K
pixels.

23.8.2 SAMP Astro-WISE integration

The awe-prompt includes a SAMP client as a Python module. This allows an astronomer to
combine the large scale data handling from Astro-WISE with the visualization tools from other
SAMP applications.

Example SAMP usage in AWE

A SAMP HUB needs to be started first in order to use SAMP at all, we recommend the one
in Aladin or Topcat. Besides a HUB, other SAMP enabled applications (such as Topcat or the
VO Desktop) should be started as well. Start SAMP from the awe-prompt as follows:

awe> from astro.services.samp.Samp import Samp

awe> samp = Samp()

One of the most common usages of SAMP is to broadcast the data of objects to inspect them
with other applications:

awe> sls = (SourceList.OBJECT == ’2df_V_18’) & \

.... (SourceList.creation_date > datetime.datetime(2007, 7, 1))

awe> sl = sls.min(’creation_date’)

awe> print sl

Name of SourceList : SL-HBUDDELMEIJER-0000135591

SourceList ID : 135591

Sources in list : 3226

Parameters in list : 35

awe> samp.broadcast(sl.frame)

[newton] 12:33:28 - Retrieving Sci-GSIKKEMA-WFI-------#843--...

awe> samp.broadcast(sl)

This will show the frame in Aladin with the source catalog overlaid. Topcat will have loaded
the SourceList as a table.

The visualization software can be used to to select interesting sources for further investigation
in the awe-prompt. With Aladin this is done by either hoovering over a source (highlighting it),
or by dragging a rectangle around a group of sources (selecting them). Other software such as
Topcat have similar mechanisms. The highlighted or selected sources can be requested on the
awe-prompt.

awe> samp.highlightedSource(sl)

(135591L, 1635L)

awe> samp.selectedSources(sl)

[(135591L, 1710L), (135591L, 1773L), (135591L, 1787L)]

These SIDs can now be used for further processing, e.g. with GalFit.

3http://aladin.u-strasbg.fr/aladin.gml

315

http://aladin.u-strasbg.fr/aladin.gml

23.8 HOW-TO: SAMP Visualization

awe> sids = [ids[1] for ids in samp.selectedSources(sl)]

awe> dpu.run(’GalFit’, slid=sl.SLID, sids=sids)

Communication with HUB

Connecting and registering with the HUB is done automatically when the Samp class is instan-
tiated. This can be suppressed with the register=False parameter. The following procedure
registers manually:

awe> from astro.services.samp.Samp import Samp

awe> # instantiate the class, this also starts an XML-RPC server

awe> # in the background to receive messages from the HUB

awe> samp = Samp(register=False)

awe> # read the ~/.samp file for settings of the hub

awe> settingsHub = samp.getSettingsHub()

awe> for k in settingsHub:

.... print ’%-20s %1s’%(k,settingsHub[k])

....

samp.hub.xmlrpc.url http://127.0.0.1:59102/xmlrpc

samp.secret 7ce936d9b5fea215

hub.start.date Fri Jun 19 15:16:21 CEST 2009

samp.profile.version 1.1

hub.impl org.astrogrid.samp.hub.BasicHubService

awe> # connect to the XML-RPC server provided by the HUB

awe> XmlRpcHub = samp.connect()

awe> # register us with the HUB and declare our message subscriptions

awe> infoRegistration = samp.register()

awe> for k in infoRegistration:

.... print ’%-20s %1s’%(k,infoRegistration[k])

....

samp.self-id c3

samp.private-key k:4_wavkccristijjefj

samp.hub-id hub

Information about (other) registered clients can be requested with getClients. Information
other clients can see from the Astro-WISE class is stored in metadata.

awe> clients = samp.getClients()

awe> for cid in clients:

.... print cid,clients[cid][’samp.name’]

....

c2 topcat

c1 Aladin

hub Hub

awe> for k,v in clients[’c1’].iteritems():

.... print ’%-24s %s’%(k,v)

....

aladin.version v5.926

author.email fernique@astro.u-strasbg.fr

author.name Pierre Fernique, Thomas Boch

home.page http://aladin.u-strasbg.fr/

author.affiliation CDS, Observatoire astronomique de Strasbourg

316

23.8 HOW-TO: SAMP Visualization

samp.documentation.url http://aladin.u-strasbg.fr/java/FAQ.htx

samp.icon.url http://aladin.u-strasbg.fr/aladin_large.gif

samp.description.text The Aladin sky atlas and VO Portal

samp.name Aladin

awe> for k,v in samp.metadata.iteritems():

.... print ’%-24s %s’%(k,v)

....

author.email buddel@astro.rug.nl

author.name Hugo Buddelmeijer

home.page http://www.astro-wise.org

author.affiliation Kapteyn Astronomical Institute, Groningen

samp.name Astro-WISE

samp.description.html <p>Astro-WISE</p>

samp.documentation.url http://www.astro-wise.org

samp.icon.url http://www.astro-wise.org/pics/logo-samp-astrowise.png

samp.description.text Astro-WISE.

Sending Tables and Images

Sending data is most easily achieved with one of the broadcast functions. The broadcast

functions send data to all clients (that can handle that datatype).

• broadcastSourceList(sourcelist, filename=None, tableid=None, name=None): con-
verts sourcelist to an VOTable and uses broadcastVOTable to send it.

• broadcastSourceCollection(sourcecollection, filename=None, ..): converts sour-
cecollection to an VOTable and uses broadcastVOTable to send it.

• broadcastCatalog(catalog, filename=None, tableid=None, ..): converts catalog (a
PhotSrcCatalog) to an VOTable and uses broadcastVOTable to send it.

• broadcastTableConverter(tableconverter, filename=None, tableid=None,

name=None): converts tableconverter to an VOTable and uses broadcastVOTable to send
it.

• broadcastVOTable(filename, tableid=None, name=None): Sends a VOTable using the
table.load.votable message.

• broadcastFrame(frame, filename=None): Downloads the frame (as FITS) and sends it
using broadcastImage.

• broadcastImage(filename): Broadcasts a FITS image.

• broadcast: This function accepts an object that is either a SourceList, a SourceCollection,
a Frame, a PhotSrcCatalog or a TableConverter and dispatches it to the relevant function.

The filename, tableid and name keywords are respectively the filename where the (inter-
mediate) VOTable or FITS file is saved, an identifier for the table and a name to display in the
other programs.

At the time of writing, the table.load.fits message is not fully supported in all SAMP
applications, therefore all broadcast functions send only VOTables. The (tabular) data is
converted to a ‘TABLEDATA’ votable. All broadcasted files (VOTables and fits images) are
stored locally on disk, of which the location is broadcast through SAMP.

317

23.8 HOW-TO: SAMP Visualization

Sending Interaction Messages

Interactivity between different SAMP programs for tabular data can be achieved with the
highlight function (which sends the table.highlight.row message) and the select func-
tion (which sends the table.select.rowList message). Their first argument is a ‘table key’
(see section 23.8.2), the second one SID or a list of SIDs respectively.

awe> samp.highlight(sl, 1234)

awe> samp.select(sl, range(1000,1100))

The pointAtSky function uses the coord.pointAt.sky message to let other applications
point to a certain position on the sky. E.g., Aladin will center the active image plane on the
position.

awe> samp.pointAtSky(123.0, -20)

Sending General Messages

SAMP describes 4 methods to send messages (of any type) which are mapped to similar function
names which can be used to send messages manually. This is usefull to send messages that are
not supported by the class (yet). Since the message types are agreed upon between individual
applications, any application developer (you) can create their own messages. All the above
commands use the callAll method to send their requests.

• notify(receiverid, message): Sends the message to one specific receiver, it is not
possible to reply.

• call(receiverid, message): Sends the message to one specific receiver. The receiver is
expected to reply, but the program (the awe-prompt) continues.

• callAll(message): Sends the message to all clients that have registered for this MType.
The receivers are expected to reply, but the program (the awe-prompt) continues.

• callAndWait(receiverid, message, timeout=20): Sends the message to one specific
receiver. the program (the awe-prompt) waits at most timeout seconds on the recipient to
reply.

The example below sends an Aladin script with several methods (it is assumed client ‘c1’ is
Aladin). In the case of call it is likely that only Aladin will be registered to this mtype and thus
all example will achieve the same thing. (Sending scripts through SAMP is an undocumented
feature of Aladin).

awe> message = {

.... ’samp.mtype’: ’script.aladin.send’,

.... ’samp.params’:{’script’:’zoom 16x’}

.... }

awe> samp.callAll(message)

awe> samp.call(’c1’,message)

awe> samp.callAndWait(’aladin’,message,10)

The receiverid parameter is the id of the receiver. These can be found with the getClients

method. For the Aladin hub these are just the letter c followed by a number. For convenience
all above function use the fixReceiverID which allow the name of the client (as found through
getClients) as the receiverid. For Topcat and Aladin it is also possible to use the shortcuts
topcat and aladin as receiverid.

318

23.8 HOW-TO: SAMP Visualization

The notify command does not allow replies, but it is implemented in the same way as the
call method, so replies that are send anyway are still stored. The callAndWait functionality
is mainly available for non multithreading applications. It can also be useful if it is essential to
wait for the answer, so it is implemented in the Python class as well. Some applications (such
as Aladin) do not always reply, so make sure to set a timeout.

Receiving Messages

Tables can be send to the awe-prompt with the table.load.votable message. In Topcat this
can be done by broadcasting a table or a subset. In Aladin by broadcasting the relevant plane.
The table itself is only stored if the load tables member of the SAMP instance is set to True.

For interactivity for tables, the Python class can receive the table.highlight.row and
table.select.rowList. The chosen sources are stored in the tables member, see section
23.8.2.

In Aladin highlighting a source is done by hoovering over a source, in Topcat this can be
done by setting ‘Activation Action’ to ‘Transmit Row’ and selecting a row. Selecting multiple
sources in Aladin is done by dragging a green rectangle around the sources, this is automatically
broadcast with the table.select.rowlist message. In Topcat it is possible to send subsets as
selections either when creating the subset or later from the ‘subsets’ window.

Retrieving highlighted and selected sources can be done with similarly named functions

• highlighted(tableid): Returns the latest highlighted source from table tableid as an
integer row number (SID in the case of a SourceList).

• selected(tableid): Returns the latest selected sources from table tableid as a list of
integer row numbers (SIDs in the case of a SourceList).

• highlightedSource(tableid): Returns the SLID-SID combination of the latest high-
lighted source.

• selectedSources(tableid): Returns the SLID-SID combinations of the latest selected
sources.

Storing Information

Of every table that is send through SAMP, the class records its properties in the table member.

awe> for k,v in samp.tables[sl].iteritems():

.... print "%-12s %s"%(k,v)

....

name SourceList-135591

url file://localhost/Users/users/buddel/SL-135591-2df_V_18.votable

tableid SourceList-135591

type votable

selected [1710, 1773, 1787]

highlighted 1635

The url, tableid and name are described in the table.load.votable message type. They
are respectively the location of the intermediary votable, the id to be used within SAMP and
the name to be displayed in the applications. The type denotes the type, at this moment only
votable is supported.

The highlighted key stores the id of the last source that has been highlighted with the
table.highlight.row message as an integer. The selected key stores the ids of the last set

319

23.8 HOW-TO: SAMP Visualization

of sources that have been selected through the table.select.rowList message as a list of
integers. In the case of SourceLists, the ids are the same as the SIDs.

The primary key of the tables dictionary is the SAMP table-id which is stored in the
tableid key. For Python objects (SourceList, PhotSrcCatatalog, TableConverter), the object
itself can be used as key as well. For SourceLists, the SLID (as integer) is also a key.

All messages that are send are stored in the messagesSend member, including with possible
replies. All received messages are stored in messagesReceived. The messages are stored as
a dictionary, of which the actual message is stored as an item. An example of a message in
messagesSend:

{

’messageTag’: 2,

’messageId’: {’c1’: ’c3_A_16a8_2’},

’type’: ’callAll’}

’receiverId’: ’all’,

’time’: 1245661731.7381041,

’message’: {

’samp.params’: {

’url’: ’file://localhost/[..]/SL-135591-2df_V_18.votable’,

’table-id’: ’file://localhost/[..]/SL-135591-2df_V_18.votable’,

’name’: ’SourceList-135591’

},

’samp.mtype’: ’table.load.votable’

},

’replies’: {

’c1’: {’samp.status’: ’samp.ok’, ’samp.result’: {}},

’Aladin’: {’samp.status’: ’samp.ok’, ’samp.result’: {}},

’aladin’: {’samp.status’: ’samp.ok’, ’samp.result’: {}}

},

}

messageTag is an unique identifier for our client (consecutive integers starting from 1),
messageId is the unique id of the message given to it by the HUB (it the return value for
the call methods). The type denotes how the message is send, broadcasted to all clients in
this case, receiverId denotes who got the message, everyone in this case. time is the value
returned by time.time() on sending the message (“current time in seconds since the Epoch”).
The actual message is stored with key message. The replies are stored in replies which is a
dictionary with as keys the SAMP client-id (c1), the client name (’Aladin’) and in some cases
shortcut names (’aladin’). Note that only the client-id is always unique.

23.8.3 Query Driven Visualization through SAMP

The awe-prompt SAMP client accepts several new message types to pull data and to inspect and
influence its derivation over SAMP. The paradigm of Target Processing includes data pulling
with full data lineage, which can be abstracted well. These messages could therefore easily be
used in other information systems as well and are described here in a general form, highlighting
the Astro-WISE specifics.

Within Astro-WISE, the messages are currently only applicable to SourceCollections. In the
SourceCollection HOW-TO (22.10) a set of prototype applications that use these messages are
shown.

320

23.8 HOW-TO: SAMP Visualization

23.8.4 Data Pulling Messages

There are two new messages to pull catalog data out of the information system.

• catalog.pull: Pull a catalog and send it over SAMP using one of the table.load.*

messages. This message requires the following parameters, detailed below: an identifier
of a catalog to select the sources from, a selection criterion and a list of requested at-
tributes of the sources. The awe-prompt SAMP cliet will create a dependency tree of
SourceCollections whose end node contains the requested catalog.

• catalog.derive: Perform the same action as catalog.pull, but without sending the
catalog data over SAMP.

The .derive message is useful when it is necessary to inspect or modify the derivation of the
catalog—using the messages in section 23.8.5—before visualization. These two messages require
three parameters which we should elaborate on:

• catalog-id: An identifier of the base catalog to select the sources from. For the Astro-

WISE SAMP client this has to be the SCID of a SourceCollection. This could be extended
in the future, for example by referring to an observation.

• query: A selection criterion to specify which sources of the original catalog are requested.
This should be a logical expression referencing the attributes below. For the Astro-

WISE SAMP client this should be a string that is suitable for use in a FilterSources
SourceCollection.

• attributes: A list of requested attributes (parameters) of the sources. It is not required
that the catalog corresponding to the table-id contains these attributes. The attributes
should be specified as a comma-separated list of attribute names for the Astro-WISE SAMP
client.

23.8.5 Object Messages

Several SAMP message types are defined for interaction with an information system that store
data through persistent objects. These messages allow the visualization software to gain infor-
mation about the objects and inspect or even influence its processing. Although the messages
are designed to be applicable for any object, they are currently only supported for SourceCol-
lections. The persistent object related message are:

• object.highlight: Highlight an object.

• object.info: Return information about an object, see below.

• object.change: Change the value of a property of an object such as a process parameter
or a dependency.

• object.action: Perform an action related to an object or property. Possible actions are
retrieved using the object.info message.

The object.highlight message can be send to any application, the others are supposed to be
send to the information system only.

321

23.8 HOW-TO: SAMP Visualization

SAMP object.info Data Structure

A specific SAMP map is defined as a return value for the object.info message, containing
information about the object and its properties. This is generated by the get export() function
of the Astro-WISE classes, which is currently only implemented for SourceCollections. For the
object itself it includes information about its processing status, whether the object can be
modified and what properties it has.

The properties of an object include process parameters and references to the progenitors
of the object. The returned information of a property include its name, current value and
optionally other values it can be set to. Furthermore the information system can define actions
that can be performed on the object or its properties.

23.8.6 More and future features

In the subscriptions member it is stored which SAMP message type gets mapped to which
function. By updating this dictionary before registering with the HUB, it is possible to hook
your own functions to specific types. Perhaps a better hooking mechanism would be useful.

The class can also be used standalone, then it can act as a proxy for non-interactive clients.
These clients can connect to the XML-RPC server to request which sources are highlighted by
other applications and such. There is only preliminary support for this now.

Currently, only one highlighted row and one selected row list is stored. Perhaps in the future
highlighted and selected sources will be stored per SAMP client.

23.8.7 SAMP Protocol

SAMP is a simple but extensible protocol, using a client-server model based on application
defined messages. We give a short description of the protocol to the extend that suffices how
the protocol works from the user perspective. For full details, refer to the official documentation
4 or the official wiki 5.

Clients register with the SAMP hub and register for certain types of messages. Clients can
than send messages to individual clients, or to any client that has registered for that kind of
message. If necessary, receiving clients can send a response to the sender of a message they
receive.

SAMP is in principle language agnostic and is based on abstract interfaces. That is, it
specifies which functions the HUB and the clients must have in order to send and receive
messages, but not the exact protocol that the HUB and client use to call those functions.
The rules which describe how SAMP functions are mapped to the internally used protocol is
described in a SAMP ‘Profile’. One standard profile based on XML-RPC is described in the
official documentation, and this is what is used in Astro-WISE.

SAMP datatypes

Because SAMP is language and even communication protocol agnostic, the number of datatypes
that are supported is very limited. The only three data types are

1. string — a scalar value consisting of a sequence of ASCII-characters.

2. list — an ordered array of data items.

3. map — an unordered associative array with a string as key.

4http://www.ivoa.net/Documents/latest/SAMP.html
5http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SampInfo

322

http://www.ivoa.net/Documents/latest/SAMP.html
http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SampInfo

23.8 HOW-TO: SAMP Visualization

Other scalar types have to be mapped to strings, and there is a specification to represent integers,
floats and booleans as strings. These data types can be nested to any level, e.g. it is possible
to have a map with lists as values.

SAMP messages

There is a small set of predefined message types, most (astronomically useful) message types
are defined between application developers themselves. More or less agreed upon message types
can be found on the SAMP wiki 6. SAMP message types are abbreviated to MTypes.

An MType looks syntactically like a dot-separated string such as samp.hub.event.shutdown
or table.load.votable. MTypes that start with samp. are administrative messages defined
by the protocol, others are defined by application authors. Most messages have arguments such
as the name of the file to be loaded. Messages can require the receiving end to send a return
value, but so far no widely accepted MType does this. However, clients are supposed to give a
general reply with success or failure of a requested operation even if no response is required.

SAMP administrative messages

Some important administrative messages are

• samp.hub.event.register

The hub broadcasts this message every time a client successfully registers.
Arguments:

– id (string) Public ID of newly registered client

• samp.hub.event.unregister

The hub broadcasts this message every time a client unregisters.
Arguments:

– id (string) public ID of unregistered client

• samp.hub.event.subscriptions

The hub broadcasts this message every time a client declares its subscriptions.
Arguments:

– id (string) public ID of subscribing client

– subscriptions (map) new subscriptions declared by client

SAMP application messages

The relevant application defined messages for our purposes are

• table.load.votable

Loads a table in VOTable format.
Arguments:

– url (string) URL of the VOTable document to load

– table-id (string) (OPTIONAL) identifier which may be used to refer to the loaded
table in subsequent messages

– name (string) (OPTIONAL) name which may be used to label the loaded table in
the application GUI

6http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SampMTypes

323

http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/SampMTypes

23.8 HOW-TO: SAMP Visualization

• table.load.fits

Loads a table in FITS format.
Arguments:

– url (string) URL of the FITS file to load

– table-id (string) (OPTIONAL) identifier which may be used to refer to the loaded
table in subsequent messages

– name (string) (OPTIONAL) name which may be used to label the loaded table in
the application GUI

• table.highlight.row

Highlights a single row of an identified table by row index. The table to operate on is
identified by one or both of the table-id or url arguments. At least one of these must be
supplied; if both are given they should refer to the same thing. Exactly what highlighting
means is left to the receiving application.
Arguments:

– table-id (string) identifier associated with a table by a previous message (e.g. ta-
ble.load.*)

– url (string) URL of a table

– row (SAMP int) Row index (zero-based) of the row to highlight.

• table.select.rowList

Selects a list of rows of an identified table by row index. The table to operate on is
identified by one or both of the table-id or url arguments. At least one of these must be
supplied; if both are given they should refer to the same thing. Exactly what selection
means is left to the receiving application.
Arguments:

– table-id (string) identifier associated with a table by a previous message (e.g. ta-
ble.load.*)

– url (string) URL of a table

– row-list (list of SAMP int) list of row indices (zero-based) defining which table rows
are to form the selection

• image.load.fits

Loads a 2-dimensional FITS image.
Arguments:

– url (string) URL of the FITS image to load

– image-id (string) (OPTIONAL) Identifier which may be used to refer to the loaded
image in subsequent messages

– name (string) (OPTIONAL) name which may be used to label the loaded image in
the application GUI

• coord.pointAt.sky

Directs attention (e.g. by moving a cursor or shifting the field of view) to a given point
on the celestial sphere.
Arguments:

– ra (SAMP float) right ascension in degrees

– dec (SAMP float) declination in degrees

324

23.8 HOW-TO: SAMP Visualization

23.8.8 Query Driven Visualization Message Details

We designed new SAMP messages and data structures to enable query driven visualization
through data pulling mechanisms. The object.* messages assume that the information system
uses an object oriented model for science products such as catalogs.

QDV SAMP: Message Types

The proposed messages are:

• catalog.derive: Create a catalog through data pulling. Arguments:

– catalog-id (string): Identifier of the catalog to select the sources from.

– query (string): Selection criterion for the sources.

– attributes (list of strings): Names of the attributes.

• catalog.pull: Perform the same action as catalog.derive and send the data over
SAMP. Arguments:

– catalog-id (string): Identifier of the catalog to select the sources from.

– query (string): Selection criterion for the sources.

– attributes (list of strings): Names of the attributes.

• object.highlight: Highlight an object. Arguments:

– class (string): Class of the object.

– object-id (string): Identifier of the object.

• object.info: Returns a SAMP map with information about an object as described below.
Arguments:

– class (string): Class of the object.

– object-id (string): Identifier of the object.

• object.change: Change a property of an object. Arguments:

– class (string): Class of the object.

– object-id (string): Identifier of the object.

– property-id (string): Identifier of a property of the object.

– value (string): New value of the property.

• object.action: Perform an action related to an object. Arguments:

– class (string): Class of the object.

– object-id (string): Identifier of the object.

– property-id (string): Identifier of a property of the object.

– action-id (string): Identifier of the action.

325

23.8 HOW-TO: SAMP Visualization

QDV SAMP: Data Format

SAMP data structures are defined to send information about objects between applications. The
structures are designed to be generic enough that they could be used for any information system.

Information about an object itself, e.g. the response to an object.info message, is com-
municated through a map with the following keys:

• class (string): The class of the object. A client that has knowledge about the used classes
could handle known classes in a special way.

• id (string): Identifier this object, unique in combination with the class.

• status (string): Indication the processing status of this object (see below).

• properties (list of maps): Properties of this object (see below).

• actions (list of maps): Actions that can be performed on this object (see below).

• readonly (boolean): Flag to indicate that the object cannot be modified.

Properties of an object, for example process parameters, are described with a map with the
following keys:

• name (string): Name of the property, as used in the object.

• class (string): The class that the value of the property should have, or a primitive such
as ‘int’.

• description (string): A human readable description of the property.

• value (string): The used value for the property. This is the id of the object if the property
references to a persistent class.

• options (list of maps): Possible values for the property, if applicable (see below).

• actions (list of maps): Actions that can be performed on the property (see below).

• readonly (boolean): Flag to indicate that the property cannot be modified.

An action that can be performed on an object or property is defined by a map with the following
keys:

• id (string): A unique identifier for this action.

• name (string): A human presentable name for this action.

QDV Samp: Object Status

The status value of an object refers to the processing status of the object. It can have the
following values:

• ok: The object has been processed, or can be processed while retrieving the result.

• automatic: The object has to be processed before the can be retrieved. This can be done
without user interaction.

• new: This is a non persistent object, which can be processed without user interaction.

326

23.8 HOW-TO: SAMP Visualization

• depends: This is a new object, which can be processed only after human intervention. For
example to set a process parameter that has no proper default.

• not: As it is, this object cannot be processed, e.g. because a dependency cannot be
fulfilled. The scientist might be able to solve the problem, but whether this is the case is
not clear to the information system.

• unknown: The status is unknown.

The awe-prompt SAMP client currently does not support the status property, it returns
unknown on all objects.

QDV Actions

The actions value of the dictionaries refer to actions that can be performed through the object.-
action message.

327

23.9 HOW-TO: Query Driven Visualization Visualization

23.9 HOW-TO use Query Driven Visualization in Astro-WISE

Query Driven Visualization is an extension of the request driven Target Processing to Visual-
ization. Instead of pushing data into the visualization it is pulled from within the visualization.

Query Driven Visualization for SourceCollections (secion 22.10 in Astro-WISE can be done
over SAMP (section 23.8).

A design goal of the SourceCollection classes was to be able to use them interactively over
SAMP. New SAMP messages are designed to to allow query driven visualization in a more
declarative way than is possible with other information systems. Support for these SAMP
messages can easily be implemented in a visualization tool, here we use simple standalone
programs to perform query driven visualization of catalogs. The exploration of the catalogs is
deferred to other applications, such as TOPCAT, by sending the catalogs through SAMP.

23.9.1 Bootstrapping SAMP

A SAMP HUB and the awe-prompt SAMP client should be started to perform Query Driven
Visualization. TOPCAT can be used as a SAMP HUB, which has the added benefit that
TOPCAT is a useful tool to explore the catalogs itself. TOPCAT can be started through java
webstart:

javaws http://andromeda.star.bris.ac.uk/~mbt/topcat/topcat-full.jnlp &

The awe-prompt adds command line interaction to the query driven visualization. Run the
following on the awe-prompt:

Import the SAMP module.

from astro.services.samp.Samp import Samp

Start a SAMP client.

s = Samp()

The programs below reside in the Astro-WISE code base, even though they have no depen-
dencies on Astro-WISE-code. It is assumed that the Astro-WISE code base can be found in
$AWEPIPE. Set $AWEPIPE to the value that is returned by the following command, in case it has
not been set already:

awe -c "import os; print(os.environ[’AWEPIPE’])"

23.9.2 Simple Puller

The Simple Puller (figure 23.11) is a SAMP application with a web based frontend for pulling
catalog data. This application shows the most basic way to pull catalog data over SAMP, which
can easily be added to other SAMP applications. It can be found on the CVS:

cd $AWEPIPE/astro/services/qdvsamp/simplepuller/

python simplepuller.py

Browse to http://localhost:8080 to use it.
Provide the following pieces of information:

• Starting Catalog: 100511

• Selection Criterion: “R” ¡ 300

• Attributes: absMag u, absMag g, iC

And press the ‘Pull’ button.

328

http://localhost:8080

23.9 HOW-TO: Query Driven Visualization Visualization

Figure 23.11: SAMP application for pulling catalog data.

23.9.3 Tree Explorer

The Tree Explorer is a simple program that allows exploration of the dependency tree held
by the Astro-WISE SAMP client (Figure 23.12). Highlighting a node by clicking on it sets the
highlighted sourcecollection property of the Astro-WISE client. This application shows
how a SAMP application can use the data lineage to give the user more information about the
derivation of a particular dataset. The Tree Explorer can be found in the Astro-WISE code base:

cd $AWEPIPE/astro/services/qdvsamp/treeexplorer

python treeexplorer.py

23.9.4 Object Viewer

The Object Viewer (figure 23.11) is a SAMP application with a web based frontend for view-
ing and modifying details of individual Process Targets. Currently only SourceCollections are
supported. This application shows how an application can use SAMP to influence processing
details, without requiring it to know details of Astro-WISE.

cd $AWEPIPE/astro/services/qdvsamp/objectviewer

python objectviewer.py

Browse to http://localhost:8084/objectviewer.html to use it.

329

http://localhost:8084/objectviewer.html

23.9 HOW-TO: Query Driven Visualization Visualization

Figure 23.12: SAMP application for exploring trees. Every node shows the SCID on the top
left, the operator in the top center and an identifier for the set of sources on the top right. The
attributes are shown in the rest of the box.

330

23.9 HOW-TO: Query Driven Visualization Visualization

Figure 23.13: SAMP application to view and modify details of individual Process Targets. The
highlighted SourceCollection from figure 23.12 is shown. This figure shows a prototype of the
application.

331

Chapter 24

Development

24.1 HOW-TO Define a new instrument in the Astro-WISE

System (to enable ingesting data from it)

24.1.1 Summary

Three steps are required:
(1) Check format of FITS data to be ingested.
(2) Put information about the new instrument into a template file.
(3) Send the file to Danny Boxhoorn (danny@astro.rug.nl) to discuss finishing steps.

24.1.2 Defining a New Instrument

Step (1): the data to be ingested (so-called ”RawFitsData”) should be preferentially multi-
extension FITS data. Furthermore, it is required that all data of an instrument have the same
size (i.e., same NAXIS1 and NAXIS2). If the above is not the case please contact Danny Box-
hoorn.

Step (2): requires making a new file called HeaderTranslator<instrumentname>.py in
$AWEPIPE/astro/instrument. This file gives a description of the instrument properties which
Astro-WISE can read. This is mostly done by listing which FITS header keyword from the new in-
strument corresponds to which keyword used by Astro-WISE. The file HeaderTranslatorOCAM.py
for the OmegaCAM instrument can serve as template. Additional information can be obtained
as follows. For general information read the descriptive text in HeaderTranslator.py. For general
information on chip specifications read the descriptive text in $AWEPIPE/astro/main/Chip.py.
In the HeaderTranslator the obs_type_id_keys refer to the 5 frame categories- ”Bias”, ”Dome”,
”Twilight”, ”Dark” en ”Science”- which are used during ingestion. Please see the HOW-TO on
ingestion (at §7.5 for further details. Please do not adjust the HeaderTranslator<instrument>.py
file either for a new or existing instrument in the CVS version of the code before contacting Danny
Boxhoorn.

Step (3): send the file HeaderTranslator<instrumentname>.py to Danny Boxhoorn (danny@astro.rug.nl)

Finally, see the HOW-TO section ”Ingesting” (at §7.5) for information on how to ingest data
into the Astro-WISE system for the now defined instrument.

332

Chapter 25

Frequently Asked Questions

25.1 General

25.1.1 Introductory Material

• Q: What is Astro-WISE?

A: Astro-WISE for Astronomical Wide-field Imaging System Europe, is an E.U. consor-
tium and associated information system dedicated to the handling of wide-field image
data resulting from large astronomical surveys. Please see the main page for a complete
description.

• Q: What is the Astro-WISE Environment?

A: The Astro-WISE Environment, or simply AWE, is the information system built to handle
this flood of astronomical data. Start here to learn more about it.

• Q: What language is the Astro-WISE Environment written in?

A: The Astro-WISE Environmentis written mainly in the Python programming/scripting
language. There are also Python utility modules written in C (see the HOW-TO Introduction),
but these are wrapped in Python to interface with the system.

• Q: What kind of web-services does AWE offer?

A: See the Introduction HOW-TO for a complete list of what AWE offers.

25.1.2 Getting Started

• Q: I can’t access anything but the basics in the AWE, nor can I access the database. What’s
wrong?

A: Do you have an AWE account? If not, please contact an Astro-WISE representative.

• Q: I try to access the anonymous CVS server for a checkout, but it appears to need a
password. What is it?

A: Anonymous CVS requires a special password and is not available to just anybody.
Contact an Astro-WISE representative for help. Anonymous CVS is read-only access to
the software. When ready to contribute to the code-base, you will need a full account.
Again, see an Astro-WISE representative.

333

http://www.astro-wise.org/what.shtml
http://www.astro-wise.org/what_awe.shtml
http://www.python.org/
http://www.astro-wise.org/portal/howtos/man_howto_introduction/man_howto_introduction.shtml
http://www.astro-wise.org/portal/howtos/man_howto_introduction/man_howto_introduction.shtml
http://www.astro-wise.org/contact.shtml
http://www.astro-wise.org/contact.shtml

25.1 General Frequently Asked Questions

• Q: I keep seeing references to $AWEPIPE. What is it?

A: $AWEPIPE is the environmental variable that should point to your “awe” checkout, the
code-base for AWE (e.g., ∼/awe/).

• Q: How do I start AWE?

A: There are many options, but the typical one is to simply use AWE on a properly config-
ured system:

...]$ awe

Python 2.3.5 (#4, Aug 15 2005, 11:45:46)

[GCC 3.4.3 20050227 (Red Hat 3.4.3-22.1)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

Welcome to the Astro-WISE Environment

.

.

.

awe>

You can also temporarily modify environmental variables that AWE uses so that AWE starts
with a different configuration:

...]$ env AWEPIPE=~/test-awe/ awe

or

...]$ env database_engine= awe

The first example causes AWE to use a code-base located in a specified directory (∼/test-
awe/ here) and the second disables use of the database (if you need to work offline for
some reason).

25.1.3 Documentation

• Q: I’m a new user. Where should I look for documentation?

A: The first place any new user should look for documentation is the HOW-TOs

• Q: What are docstrings?

A: Docstrings are the inline comments added to Python code that allow for an automated
documentation system called PyDoc. Docstrings are contained within triple quotes:

’’’this is a docstring’’’

"""this is also a docstring"""

this is just a comment

334

http://www.astro-wise.org/portal/aw_howtos.shtml

25.1 General Frequently Asked Questions

25.1.4 Concurrent Versions System (CVS)

• Q: What is the address of the Astro-WISE CVS server?

A: cvs.astro-wise.org

• Q: What is the proper way to fully update a code-base?

A: First, make sure you are in the top-level directory (or whatever directory you want
fully updated) and issue the following command:

...]$ cvs -q update -dPA

where:

-q suppresses excessive verboseness (option to cvs)

-d create any missing directories (option to update)

-P prune empty directories (option to update)

-A reset any “sticky” tags (option to update)

If you chose a specific tagged version, that tag becomes sticky. The last option overrides
this stickiness. See the cvs(1) man page for complete information on CVS.

• Q: I am installing the Astro-WISE system on my local machine, but when I try to install
<insert program name here>, I get the comment that some file or directory is missing.

A: are you sure that you retrieved every single sub-directory of the Astro-WISE system
during checkout? Using a simple cvs co can sometimes result in some sub-directories not
being retrieved. If you suspect that something like this might be the problem, go to the
directory where the specific sub-directory should have been located and type cvs update

-d.

• Q: How do I switch between the latest $AWEPIPE version and the AWBASE version?

A: To switch to the most recent check out use

... awe]$ cvs -q update -dPA

and to switch back to the AWBASE version, use

... awe]$ cvs -q update -r AWBASE -dP

in the ‘awe’ directory.

25.1.5 Data Preparation

• Q: I am about to go observing with an AWE-supported instrument. Is there anything special
that I should do?

A: Please look at the Observations Scheduling HOW-TO for guidelines.

• Q: I want to process the data I took on <insert favorite instrument> with AWE. What do
I need to do?

A: AWE was created specifically for OmegaCAM and will handle OmegaCAM data “out-of-
the-box”. There is also support for the instruments listed on the Supported Data Sources
page. If your instrument is not there, contact an AWE representative for verification and
have a look at the New Instrument HOW-TO to get started.

335

cvs.astro-wise.org
http://www.astro-wise.org/portal/howtos/man_howto_schedule/man_howto_schedule.shtml
http://www.astro.rug.nl/~omegacam/
http://www.test.astro-wise.org/portal/aw_datasources.shtml
http://www.astro-wise.org/contact.shtml
http://www.astro-wise.org/portal/howtos/man_howto_developers_newinstrument/man_howto_developers_newinstrument.shtml

25.1 General Frequently Asked Questions

25.1.6 Ingesting

• Q: What is data ingestion and how do I do it?

A: In order for raw data to be processed in the Astro-WISE system, it must first be ingested,
or imported into the system. Please see the Data Ingestion HOW-TO for a complete
description.

• Q: How can the data be categorized for ingestion in AWE?

A: Data in AWE is catagorized by purpose:

readnoise bias frames designated to determine the instrument read noise

bias a raw bias or zero second exposure frames

dark a frame taken to measure the dark current of the instrument

gain a specific series of frames designed to determine the gain of the instrument

dome a raw flat frame taken from a screen mounted within the dome enclosure

twilight a raw flat frame taken at twilight on the sky

science any frame taken for the purpose of science (excluding photometric calibration)

photom a science frame taken with the specific purpose of photometric calibration

• Q: After I ingested my data, all the filenames were different. What happened?

A: The filenames were converted to AWE cannonical names of the form:

<instrument>.<date_obs>.fits

or

<instrument>.<date_obs>_n.fits

The first from is for multi-extension FITS images, the second is for single-extension FITS
images where n is the extension number.

25.1.7 Dates and Times

• Q: How are observation dates defined in AWE?

A: An observation night is based on the local date at sunset and not on UTC. See the
Dates and Times HOW-TO for more information.

• Q: How are dates stored in the database?

A: In UTC only.

25.1.8 Parallel Processing

• Q: What is the parallel processing interface in AWE?

A: The DPU (Distruibuted Processing Unit) is used to run tasks on the parallel compute
cluster. It is initialized when AWE starts:

336

http://www.astro-wise.org/portal/howtos/man_howto_ingest/man_howto_ingest.shtml
http://www.test.astro-wise.org/portal/howtos/man_howto_dates/man_howto_dates.shtml

25.1 General Frequently Asked Questions

...]$ awe

.

.

.

Importing Astro-WISE packages. Please wait...

Initializing Distributed Processing Unit...

Current profile:

.

.

.

awe>

To initiallize it manually, use this method:

awe> from astro.recipes.mods.dpu import Processor

awe> my_dpu = Processor(Env[’dpu_name’])

• Q: How do I find the instruments, task identifiers, and options supported by the DPU’s
run method: dpu.run()?

A: This information is somewhat hidden. The supported instrument list can be seen by
querying the HeaderTranslatorFactory:

awe> from astro.instrument.HeaderTranslatorFactory import supported_instrument_list

awe> print supported_instrument_list

Task identifiers can be found like this:

awe> from astro.recipes.mods import Pipeline

awe> for id in Pipeline.get_available_sequence_identifiers(): print id

And the options can be printed in this way:

awe> from astro.recipes.util.ArgumentParser import ArgumentParser

awe> for opt in ArgumentParser().opts: print opt

This gives you a list of tuples of the form (short opt, long opt, definition).

25.1.9 awe-prompt

• Q: What is namespace and how can I see it?

A: Simply speaking, namespace is all modules, classes, attributes, and methods available
in the current scope (i.e., level). If the module, class, attribute, or method you need is not
visible in the current namespace, then it cannot be used. It is either loaded within the
namespace at a different scope, or it is not there at all. The builtins dir() and help()

allow you to explore the namespace.

dir() without any arguments gives the namespace of the current scope. It typically will
give Python builtins and any modules pre-loaded at startup or during the current session.
Calling dir() with a module, class, attribute, or method as the argument will give you
the namespace at that level or an arbitrary level:

337

25.1 General Frequently Asked Questions

awe> dir()

[’__builtin__’, ’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__version_

_’, ’astro’, ’atexit’, ’os’, ’pydoc’, ’readline’, ’rlcompleter’, ’sys’, ’users

tartup’]

awe> dir(os)

[’EX_CANTCREAT’, ’EX_CONFIG’, ’EX_DATAERR’, ’EX_IOERR’, ’EX_NOHOST’, ’EX_NOINP

UT’, ’EX_NOPERM’, ’EX_NOUSER’, ’EX_OK’, ’EX_OSERR’, ’EX_OSFILE’, ’EX_PROTOCOL’

.

.

.

ttyname’, ’umask’, ’uname’, ’unlink’, ’unsetenv’, ’utime’, ’wait’, ’waitpid’,

’walk’, ’write’]

awe> dir(os.write)

[’__call__’, ’__class__’, ’__cmp__’, ’__delattr__’, ’__doc__’, ’__getattribute

__’, ’__hash__’, ’__init__’, ’__module__’, ’__name__’, ’__new__’, ’__reduce__’

, ’__reduce_ex__’, ’__repr__’, ’__self__’, ’__setattr__’, ’__str__’]

help() can be used in a similar way, but it gives all the docstrings recursively for the
module, class, or method, or for the parent class of the attribute that was given as the
argument.

• Q: When importing something from the awe-prompt, I get strange error messages through
my screen. I know that the software is okay. What is the deal?

A: Make sure that you are not importing something from within the awe directory struc-
ture. Due to some strange Python things concerning packages, this can lead to completely
intractable error messages.

• Q: One of the Python recipes generates an error and I can not figure out what is wrong.
What should I do?

A: Sometimes problems arise because of old compiled Python files (*.pyc); there may be
leftovers of Python files that no longer exist. Remove all these files and try again.

• Q: What are some usefull packages and modules available at the awe-prompt?

A: See the awe-prompt HOW-TO.

25.1.10 Queries

• Q: What are queries and how do I use them?

A: Queries in AWE are queries to the database from Python with the purpose of returning
some needed information. The Queries HOW-TO containes a complete explaination of the
use of queries in AWE.

• Q: What’s the deal with the select() method?

A: The select() method is simply a convenience method to find the most recent, valid
version of a given frame. Use the Python builtin help() on a particular select method to
find out exactly how it makes this choice.

338

http://www.astro-wise.org/portal/howtos/man_howto_awe/man_howto_awe.shtml
http://www.astro-wise.org/portal/howtos/man_howto_queries/man_howto_queries.shtml

25.2 Astro-WISE Environment Frequently Asked Questions

25.1.11 Process Parameters

• Q: Which process parameters can be configured and where?

A: Generally speaking, all process parameters can be configured from the awe-prompt
prior to running a make or executing a task. The Configuration HOW-TO gives a complete
description of the various methods for process parameter configuration.

25.1.12 Context

• Q:

A:

• Q:

A:

• Q:

A:

• Q:

A:

• Q:

A:

25.2 Astro-WISE Environment

• Q: I want to run SExtractor on my images. How do I do that ?

A: There are basically three ways to run SExtractor in the system. The most direct one
would be to import ‘Sextractor’ from ‘astro/external’ and run ‘Sextractor.sex(image)’.
You can also set the SExtractor configuration through this interface, and modify the list
of output parameters. A second way to run SExtractor would be using the ‘sex’ method of
BaseFrame or children thereof. To be concrete, instantiate a ScienceFrame object and call
the ‘sex’ method. The third, and in our paradigm the most correct, way to run SExtractor,
is to invoke the ‘make’ method of a Catalog object. The frame you want to extract sources
from is given as a dependency to the Catalog object. For the configuration of SExtractor
and to modify its outputs, you need to provide the Catalog object with two additional
dependencies: a SextractorConfig object, and a list of parameters. Note that this last
way of creating a SExtractor catalog uses the first method. Also note, that the output of
running SExtractor is in LDAC fits format.

• Q:

A:

• Q:

A:

• Q:

A:

339

http://www.astro-wise.org/portal/howtos/man_howto_configure/man_howto_configure.shtml

25.3 AW Tutorials Frequently Asked Questions

25.3 AW Tutorials

• Q:

A:

• Q:

A:

• Q:

A:

25.4 Calibration

• Q:

A:

• Q:

A:

• Q:

A:

25.5 Image Pipeline

• Q:

A:

• Q:

A:

• Q:

A:

25.6 Visualization

• Q:

A:

• Q:

A:

• Q:

A:

340

25.7 Development Frequently Asked Questions

25.7 Development

• Q:

A:

• Q:

A:

• Q:

A:

341

Part III

Appendix

342

Appendix A

Installing the basic Astro-WISE

Environment

1. Checkout awe from CVS. The password required to log in can be obtained on request:

> cvs -d :pserver:anoncvs@cvs.astro-wise.org:/cvsroot login

> cvs -d :pserver:anoncvs@cvs.astro-wise.org:/cvsroot checkout -r AWBASE awe

2. Follow the instructions given in awe/INSTALL.

3. Compile the Python code. This is done automatically by step 4 below. It can be done
directly by calling the following scripts:

/path/to/awe /path/to/AWBASE/common/toolbox/compile_pipeline.py

/path/to/awe /path/to/current/common/toolbox/compile_pipeline.py

4. Let the Python code be updated automatically from CVS.

This can be done by using crontab. Example:

Add two crontab jobs to do automatic updates from CVS for the “AWBASE” and “cur-
rent” checkouts.

A list of current crontab jobs can be obtained with this Linux command:

> crontab -l

Edit the contents of the crontab configuration file and install with:

> crontab -e

Add the following lines which update the checkouts every 10 minutes (adapt as necessary):

5,15,25,35,45,55 * * * * /path/to/awe /path/to/AWBASE/common/toolbox/update_pipeline.py AWBASE

5,15,25,35,45,55 * * * * /path/to/awe /path/to/current/common/toolbox/update_pipeline.py current

The crontab file can be uninstalled by using:

> crontab -r

343

Appendix B

Installation of database software

For the moment, no special instructions except that you should read the installation instructions
for Oracle 10g.

344

Appendix C

Installation of various Astro-WISE

Servers

This part describes how to setup and configure the Astro-WISE Servers.

C.1 The Database Viewer

The database viewer accepts on the command line a host name and (after switch -p) a port
number. At the moment it can only listen on one ethernet interface and on one port number.
The default hostname is localhost and the default port number is 8879. To start it from the
command line one could type:

> awe $AWEPIPE/Services/dbview/dbview.py dbv.aoc.astro-wise.org -p 8879

You can stop the process by sending it the INT signal. It can be started automatically via the
following script:

#!/bin/sh

AWEPIPE=/home/astro-wise/awehome/opipe/current

awe=/home/astro-wise/local/bin/awe

host=dbv.aoc.astro-wise.org

port=8879

#

case $1 in

start)

p=${AWEPIPE}/Services/dbview/dbview.py

if [-f ${p}] ; then

${awe} -u ${p} -p ${port} ${host} > ${HOME}/dbview.log 2>&1 &

fi

;;

status)

pid=‘ps -def | grep awe | awk ’{if{$1=="’dbview’"&&$3=="1")print $2}’‘

if ["X${pid}" = "X"] ; then

echo "Down"

else

echo "Up (pid = ${pid})"

345

C.2 The Dataservers Installation of various Astro-WISE Servers

fi

;;

stop)

pid=‘ps -def | grep awe | awk ’{if($1=="’dbview’"&&$3=="1")print $2}’‘

if [! "X${pid}" = "X"] ; then

kill ${pid}

fi

;;

*)

echo "Usage: $0 (start|stop|status)"

;;

esac

See the last section in this chapter for a sample script to start the database viewer at system
start.

C.2 The Dataservers

The dataservers usually listen on port 8000 and can listen to any ethernet device. The exam-
ple startup script below searches for all available ethernet devices and passes them on to the
dataserver. The dataservers react on signal HUP (stop) and USR1 (rescan disk). Usually the
fully qualified domainnames of the dataservers are put in the Astro-WISE DNS and point to all
the local dataservers (like for example ds.astro.rug.astro-wise.org).
The following script will start a dataserver listening on all possible ethernet devices. It is as-
sumed that the data server directory is in a subdirectory data of a directory which starts with
the first three letters of the hostname, and the last two letters of the hostname (which is a
sequence number in Groningen).

#!/bin/sh -f

AWEPIPE=/home/astro-wise/AWEHOME/current

awe=/home/astro-wise/AWEHOME/x86_64/local/bin/awe

mp=’kgb@astro-wise.org’

log=’ds.log’

pid=’ds.pid’

dir=‘hostname | awk -F. ’{printf("%s%s\n",substr($1,1,3),substr($1,length($1)-1,2))}’‘

port=8000

if [! -d ${dir}/data] ; then

echo "Directory ${dir}/data missing"

exit 1

fi

args=‘/sbin/ifconfig | awk ’

BEGIN{e="";}

{

if (substr($0,1,3)=="eth") {

e=$1

} else {

if (e!=""&&$1=="inet"&&substr($2,1,5)=="addr:") {

printf("%s:’${port}’\n",substr($2,6,length($2)-5));

e=""

346

C.3 The Distributed Processing Server Installation of various Astro-WISE Servers

}

}

}

’‘

cd ${dir}/data

case "$1" in

start)

if [-f ${log}] ; then

if [-f ${log}.save] ; then

cat ${log} >> ${log}.save

rm -f ${log}

else

mv ${log} ${log}.save

fi

fi

${awe} -u ${AWEPIPE}/common/net/dataserver_server.py ${args} \

-p ${pid} -m ${mp} > ${log} 2>&1 &

sleep 5

while [! -e ${pid}] ; do

sleep 1

done

;;

stop)

if [-e ${pid}] ; then

kill -HUP ‘cat ${pid}‘

while [-e ${pid}] ; do

sleep 1

done

fi

;;

reload)

if [-e ${pid}] ; then

kill -USR1 ‘cat ${pid}‘

fi

;;

status)

${awe} -u ${AWEPIPE}/common/net/dataserver_server.py ${args} -status

;;

*)

echo "Usage: $0 (start|stop|status|reload)"

;;

esac

exit 0

C.3 The Distributed Processing Server

The distributed processing server can run on an openpbs managed cluster or on a unmanaged
cluster. A script to start the DPU server could look like this:

#!/bin/sh

#

347

C.3 The Distributed Processing Server Installation of various Astro-WISE Servers

dpu-server This shell script starts and stops the dpu server

#

dpu-server: 345 98 90

#

description: Astro-WISE dpu server.

#

probe: true

port=9000

host=hpcibm1.service.rug.nl

tunnel=astro-wise@omegadlt.astro.rug.nl

infofile=.‘basename $0‘.info

logfile=‘basename $0‘.log

AWEHOME=${HOME}/awehome

AWEPIPE=${AWEHOME}/opipe/current

cd ${HOME}/dpu

export AWEHOME

export AWEPIPE

case "$1" in

start)

if ["X${tunnel}" != "X" -a \

-z "‘ps -def | grep ${port}:${host}:${port} | grep ssh‘"] ; then

ssh ${tunnel} -fN -R ${port}:${host}:${port}

fi

if [! -e ${infofile}] ; then

awe -u ${AWEPIPE}/common/net/dpu_server.py hpcibm1.cluster:${port} \

${host}:${port} -pbs short,200 -ppn 2 > ${logfile} 2>&1 &

fi

;;

stop)

if [-e ${infofile}] ; then

pid=‘awk ’{if (NR == 3){print $0}}’ ${infofile}‘

kill -HUP ${pid}

while [-e ${infofile}] ; do

sleep 1

done

fi

;;

status)

if [-e ${infofile}] ; then

cat ${infofile}

else

echo Down

fi

;;

restart)

if [-e ${infofile}] ; then

pid=‘awk ’{if (NR == 3){print $0}}’ ${infofile}‘

kill -INT ${pid}

348

C.4 Sample startup script Installation of various Astro-WISE Servers

while [-e ${infofile}] ; do

sleep 1

done

awe -u ${AWEPIPE}/common/net/dpu_server.py hpcibm1.cluster:${port} \

${host}:${port} -pbs short,200 -ppn 2 > ${logfile} 2>&1 &

fi

;;

kill)

if [-e ${infofile}] ; then

pid=‘awk ’{if (NR == 3){print $0}}’ ${infofile}‘

kill -KILL ${pid}

while [-e ${infofile}] ; do

sleep 1

done

fi

;;

*)

echo $"Usage: $0 (start|status|stop)"

;;

esac

exit 0

This DPU server is running on a 200 node 2 processors per node cluster. When the DPU server
starts up it generates a unique key based on the hostname and current directory. This key is
needed for the clients to be able to get a secure connection to the DPU server. With the script
dbdpu.py in the Toolbox directory an entry in the DPU SERVER TABLE can be made.
At the moment the DPU server cannot run on an unmanaged cluster, work is still in progress.

C.4 Sample startup script

For some services it will be necessary that they are started at system startup and stopped at
system shutdown. Below is a sample script which could for example be used on a RedHat Linux
distribution to startup an Astro-WISE service.

#!/bin/sh

#

purpose: This shell script takes care of starting and stopping

an Astro-WISE service. It is assumed that there

is a script available somewhere in the searchpath of the

specified user account with same name as this script

which is capable of stopping and starting the service.

#

chkconfig: 345 98 90

description: Astro-WISE server starter/stopper

#

probe: true

#

usr=astro-wise

exe=‘basename $0‘

case "$1" in

start)

349

C.4 Sample startup script Installation of various Astro-WISE Servers

su -l ${usr} -c "${exe} start"

sleep 2

;;

stop)

su -l ${usr} -c "${exe} stop"

sleep 2

;;

status)

su -l ${usr} -c "${exe} status"

sleep 2

;;

*)

echo "Usage: $0 (start|status|stop)"

;;

esac

exit 0

Note that this is a secure script, it is NOT starting the service as root!

350

Appendix D

Adding a node to the Astro-WISE

federation

Adding a complete node to the Astro-WISE federation requires the installation of the Astro-WISE

software, a database, one or more dataservers. The database and dataservers then have to be
connected to the other nodes in the federation. Here we describe both the local requirements
(such as hardware, database layout, diskspace), the requirements for the connections between
the nodes (such as firewall settings, bandwidth) and the installation and configuration of the
components.

D.1 Firewall setup

Nodes that participate in a federation have to be accessed by the other nodes. This means that
for the database and dataservers some network ports need to be opened for all participating
nodes.
For the database host, port 1521/tcp needs to be open to

db.astro.rug.astro-wise.org

db.astro.uni-bonn.astro-wise.org

db.na.astro.astro-wise.org

db.ocam.mpe.astro-wise.org

...

For the dataserver host, port 8000/tcp needs to be open to

ds.astro.rug.astro-wise.org

ds.astro.uni-bonn.astro-wise.org

ds.na.astro.astro-wise.org

ds.ocam.mpe.astro-wise.org

...

If a cluster of dataservers is available, it is sufficient to open the necessary port for only one of
these.

D.2 Database creation and configuration

It is assumed that the most recent version of Oracle has been installed and that no database has
yet been created. The database has to be created with the following settings.

351

D.2 Database creation and configuration Adding a node to the Astro-WISE federation

• The default blocksize has to be 32k

• ASM—Automatic Storage Management—has to be used for the device. This gives maxi-
mum flexibility, performance and relialibility.

– Initially, one ASM diskgroup should be sufficient

– The first diskgroup should be called AWDISKGROUP1

– New harddisks can be added to an ASM diskgroup in a working database. Existing
harddisks can be taken off-line in a working database. In both cases the data will be
rebalanced automatically.

• The following tablespaces should be defined.

– AWLISTS, add eight datafiles, each having autoextend with 100MB to maxsize. This
allows for 1056GB of data, before additional datafiles have to be added.

– AWINDX, add four datafiles, each having autoextend with 100MB to maxsize. This
allows for 528GB of data, before additional datafiles have to be added.

– UNDOTBS1 UNDO tablespace ¡= 4GB autoextend=off

– TEMP temporary tablespace ¡= 2GB autoextend=on maxsize=2GB

– USERS, make sure that the datafile has autoextend with 100MB to maxsize.

USERS has to be the default tablespace and TEMP has to be the default temporary ta-
blespace. For certain operations, the TEMP and UNDOTBS1 may be too small. For TEMP

you can increase the maxsize. For the UNDO tablespace you should create an UNDOTBS2

tablespace which can grow indefinitely. After that you should make UNDOTBS2 the default
UNDO tablespace, perform your operation, make UNDOTBS1 the default tablespace and
drop UNDOTBS2. The reason to do that is that otherwise the UNDO tablespace can grow
very big and allow runaway transactions to run for hours before failing. 4GB corresponds
to a transaction that takes about an hour, which should be sufficient for operations on
tables of sizes up to 300GB.

• Archive logging has to be set to on. This allows for online backups to be made. A backup
of a 300GB database typically takes several hours, during which the database would not
be available if it had to be backed up off-line.

• Set the service name of the database equal to its fqdn.

ALTER SYSTEM SET SERVICE NAMES = ’db.?.astro-wise.org’ SCOPE=BOTH;

Replace the question mark appropriately for your domain. Using the fqdn of the database
host as the database service name will make it possible to connect to the database without
any client configuration. No tnsnames.ora needs to be present in that case on the client.

• Enable the usage of global names.

ALTER SYSTEM SET GLOBAL NAMES = TRUE SCOPE=BOTH; ALTER DATABASE RENAME

GLOBAL NAME TO DB.?.ASTROWISE.ORG;

If the database name contains dashes they have to be removed when renaming the GLOBAL NAME

of the database.

• Make sure that your listener runs in shared mode and execute

352

D.3 Streams configuration Adding a node to the Astro-WISE federation

ALTER SYSTEM SET DISPATCHERS = ’(PROTOCOL=TCP) (DISPATCHERS=7)’;

If each client would make a so-called “dedicated” connection, the database host would be
saturated quickly when parallel processing takes place. This starts to become noticeable
when you have only a few hundred MB left on your database host and you have one
hundred or more parallel connections. With lsnrctl services you can discover how and
how often there has been a connection to your database. Ideally, the number of established
DEDICATED REMOTE SERVER connections should be zero.

• You have to explicitly enable checking of resource limits. You do this with

ALTER SYSTEM SET RESOURCE LIMIT = TRUE;

The database default is that resource limits that are set in database profiles will not be
enforced.

• There should be ten redo logs of 2GB, where each redo log has only one member. For
typical workloads this is more than enough, but can be required for some long running
maintenance transactions.

D.3 Streams configuration

Oracle Streams is set up at a node by taking the following steps.

1. Change the STRMADMIN password and datafile for the LOGMNRTS tablespace in

common/toolbox/dbmakestrmadmin.sql

and run the script as SYS in sqlplus.

2. Make database links to other nodes as STRMADMIN, given the following name for the
database link and the fqdn of the node.

<linkname> = DB.ASTRO.RUG.ASTROWISE.ORG

<nodename> = DB.ASTRO.RUG.ASTRO-WISE.ORG

Note that a dash is not allowed in the linkname. Connect as STRMADMIN before making
the link with the following command

CREATE DATABASE LINK <linkname>

CONNECT TO STRMADMIN

IDENTIFIED BY <strmadmin password>

USING ’<nodename>’;

and repeat this for all remote nodes that one wants to connect to.

3. Create a datapump directory and grant access to it by the STRMADMIN user.

CREATE OR REPLACE DIRECTORY AWDATAPUMP AS ’/your/awdatapump/directory’;

GRANT READ, WRITE ON DIRECTORY AWDATAPUMP TO STRMADMIN;

353

D.4 Maintenance Adding a node to the Astro-WISE federation

D.4 Maintenance

D.4.1 Cleaning up deleted files and database objects

The common/toolbox/dbvacuum.py script is used to put aside files on the dataservers and delete
corresponding objects from the database, which users have deleted. The files will be moved to
the ddata directory on the dataservers from which they can be removed for all eternity.

D.4.2 Archivelog backup

The archivelog should be backed up daily using a cron job similar to

TAG=‘date +BACKUP_AW01.ARCH_%y%m%d%H%M%S‘

$ORACLE_HOME/bin/rman target / log=$HOME/Logs/$TAG.log <<EOF

backup device type disk tag ’$TAG’ archivelog all not backed up delete all input;

EOF

354

	I User's and Developer's
	Introduction
	Overview
	History
	Basic Philosophy
	Hardware
	Software

	Web Services
	Database Viewer
	Database ``Editor''
	Processing Web Interface
	Image Handling Services

	Further Websites

	Data Reduction Concepts and Walk-throughs
	Processing steps
	Ingesting raw data into the database
	Data processing
	Interactive processing
	Non-parallel processing
	Parallel processing
	The bias pipeline
	The flat-field pipeline
	The photometric pipeline
	The image pipeline

	Timestamps
	Interfaces to other programs
	SQL interface, interaction with the database
	Eclipse interface
	SWarp interface
	SExtractor interface
	LDAC interface

	A short example
	Outline
	The image pipeline
	Finding the result in the database
	Retrieving the images to check the results

	A lengthy example
	Ingesting (skip in case of demo, process on local machine)
	Image calibration files
	Photometric calibration files
	Image pipeline
	Coaddition
	Source lists

	Quality Control
	General concepts
	Timestamps

	Quality control of biases, flat-fields and fringing
	General scheme
	SubWinStat Class
	RawBiasFrame
	RawDomeFlatFrame
	RawTwilightFlatFrame
	BiasFrame (MASTER BIAS)
	DomeFlatFrame (MASTER DOME)
	TwilightFlatFrame (MASTER TWILIGHT)
	MasterFlatFrame (MASTER FLAT)
	Fringing
	NOTES (OAC)
	Quality flags

	Quality control of the astrometry
	Astrometric calibration using overlap

	Quality control of the photometry
	Catalog creation
	Atmospheric extinction
	Zeropoint
	Suggestions and comments
	The inspect methods

	Quality control of the image pipeline
	General ideas
	Comments from OAC (Mario & Roberto)

	Quality control of the PSF

	Development
	Key concepts
	Persistent classes
	Verification and quality control

	The Astro-WISE class hierarchy

	Database Tasks
	Setting up the database for general use
	Keeping database synchronized with STABLE sources
	Database Type Evolution
	Database Type Evolution
	Overview
	The SQL representation of persistent Python class
	Finding information about the SQL types, tables and views
	Adding a persistent class
	Removing a persistent class
	Adding persistent attributes to a class
	Removing presistent attributes from a class
	Renaming a persistent attribute
	Changing the type of a persistent attribute
	Moving a persistent subclass to a different parent class
	Error messages

	Persistency Interfaces
	Introduction
	Background
	Object Oriented Programming
	Persistency
	Relational Databases

	Problem specification
	Interface Specification
	Persistent classes
	Persistent Objects
	Queries
	Functionality not addressed by the interface

	II HOW-TOs
	Getting Started
	HOW-TO: Start
	Access to the AWE database
	Preparing the Astro-WISE Environment
	Starting the Astro-WISE Environment
	Access to the AWE software
	Access to the AWE dataservers

	HOW-TO Documentation
	HOW-TOs
	The Manual
	Documentation from the Code
	The Code Itself

	HOW-TO: CVS
	AWBASE and test version
	Getting access
	Using your CVS checkout
	Using CVS
	Moving the AWBASE tag

	HOW-TO: Schedule observations
	Data requirements
	Notes on specific instruments
	Standard tiling and pixelation of the sky
	Viewing observations already in the Astro-WISE system

	HOW-TO: Ingest
	Preparations for the ingest
	Ingesting data

	HOW-TO: Work with Dates and Times in AWE
	Observing nights
	Input from the user
	Time stamps
	Dates in the database
	Conversions between local time and UTC

	HOW-TO: Parallel Process
	Summary
	Viewing the queue
	Processing in AWE
	Using your local (changed) code when processing remotely
	Options
	Logs and job identifiers
	Cancelling jobs

	HOW-TO: Use DARMA
	DARMA Header Interface
	On-demand Header Verification
	Special Keywords
	Saving and Advanced Creation
	Information

	Astro-WISE Environment
	HOW-TO: awe-prompt
	Introduction
	Key combinations
	Imported package: pylab (plotting)
	Imported package: numpy (numerical Python)
	Imported package: eclipse
	Imported packages: os, sys, glob (standard Python)
	Started: Distributed Processing Unit interface

	Images and catalogs in Astro-WISE
	Images
	Catalogs

	HOW-TO: Database Querying
	General syntax, comparison operators, AND and OR
	Using wildcards (like)
	Querying list attributes (contains)
	Ordering by attribute values (order_by)
	Ordering returning maximum, minimum (max, min)
	Querying project specific data (project_only)
	Querying user specific data (user_only)
	Querying privileges specific data (privileges_only)
	Project favourite (project_favourite)
	Related: retrieving images from the fileserver (retrieve)
	The select method, quicker queries
	More examples

	HOW-TO: Configure Parameters
	Overview
	Via awe-prompt: overall user interface to configure parameters
	Via Target Processor: overall user interface to configure parameters

	HOW-TO: Context
	Astro-WISE Context
	Using Context
	Publishing of data objects
	Deletion

	AWE Tutorials
	Tutorial Introduction
	Astro-WISE basics
	Setting up your environment
	At the awe-prompt: Looking Around
	The power of querying
	More Advanced Queries
	System Calls from the awe-prompt
	Understanding Python errors/exceptions/backtrace

	Calibrating data
	Database projects and privileges
	Processing science frames
	Inspect the results: ReducedScienceFrame

	Astrometric calibration
	Find ReducedScienceFrames to run astrometry on
	Derive astrometric calibration
	Visually inspect astrometry

	Photometric Pipeline
	Deriving zeropoint and extinction
	Standard Star Catalog operations

	SourceList and AssociateList Exercises
	Data Mining Exercises
	Investigating Twilight Behavior from RawTwilightFlatFrames
	Bias level for OmegaCAM

	Galaxy surface brightness analysis
	Selecting your source
	GalPhot: Isophotal analysis: GalPhot
	GalFit: 2D Parametric fits to a galaxy surface brightness distribution

	Interoperability between Astro-WISE and Virtual Observatory software
	SAMP

	Where to go next after this tutorial
	Manual, HOW-TO's and other documentation
	Web-services
	Source code
	Links

	Calibration Pipeline: overview
	The atomic tasks and their context
	The bias and flatfield pipelines
	The photometric pipeline

	Examples of running the atomic tasks with the DPU

	Calibration: Read noise
	HOW-TO: Readnoise
	What is the read noise?
	Querying
	Deriving the read noise

	Calibration: Bias
	HOW-TO: Bias
	Bias correction using a bias image
	Bias correction using pre- or overscan regions
	AWE: combining both methods
	Syntax, examples

	Calibration: Hot pixels
	HOW-TO: Hot-Pixels
	What is a hot pixel map?
	Making a hot pixel map

	Calibration: Cold pixels
	HOW-TO: Cold-Pixels
	What is a cold pixel map?
	Making a ColdPixelMap

	Calibration: Gain
	HOW-TO: Gain
	Definition
	Deriving the gain

	Calibration: Flat-field
	HOW-TO: Flat-field
	Flat-fielding
	Dome flat fields
	Twilight flat fields
	Night-sky ("super") flats
	Combining flats into a master flat
	Syntax, examples
	Using the master dome or master twilight directly
	Using night sky flats

	Calibration: De-fringing
	HOW-TO: De-fringing
	Creating a FringeFrame
	De-fringing science images

	Calibration: Astrometry
	HOW-TO: Astrometry
	AstrometricParametersTask Example
	Astrometric calibration - a detailed description

	HOW-TO: GAstromSourceList
	HOW-TO: GAstrom
	GAstromTask Example
	Finding your GAstrometric object
	Getting the best GAstrometric solution

	HOW-TO: QC Astrometry
	AstrometricParameters and GAstrometric inspect() methods
	Applied inspection methods
	Image inspection method
	Overlaying a calibrated catalog
	Examine the AstrometricParameters values

	HOW-TO: Troublshoot Astrometry
	Errors in LDAC
	Quality Control (QC) Values Exceeded
	Problems with the Solution

	Calibration: Photometry
	HOW-TO: Photometric Reference Catalog and Extinction Curve
	The Photometric Reference Catalog
	The standard extinction curve

	HOW-TO: Photometric Source Catalog
	Content of the Photometric Source Catalog
	Making photometric catalogs from the awe-prompt
	Configuring the photometric catalog
	Inspecting the contents of the photometric catalog
	Query methods
	Querying the database

	HOW-TO: Transformation Tables
	The data structure of a transformation table
	Using a transformation table
	Retrieving a transformation table from the database
	Inserting a transformation table into the system

	HOW-TO: Extinction and Zeropoint
	Deriving the atmospheric extinction
	Making the zeropoint from the awe-prompt

	HOW-TO: Illumination Correction
	Characterising the illumination variation
	Creating an illumination correction frame

	Calibration: Miscellaneous
	HOW-TO Set Timestamps from the awe-prompt
	HOW-TO: Subtract Sky Background
	Overview
	Configuring background subtraction

	HOW-TO: Subwindow statistics
	How to work with subwindows
	Verify
	Deriving SubWinStat yourself

	HOW-TO: Weights
	Science frames and their weight
	Weights created by SWarp
	Weights in quality control

	Image Pipeline
	HOW-TO: Image Pipeline: overview
	The atomic tasks and their context
	Astrometry in the image pipeline
	Running the image pipeline with the DPU

	HOW-TO: ReduceTask
	Making ReducedScienceFrames using the DPU
	Making a ReducedScienceFrame using the ReduceTask
	Making a ReducedScienceFrame using the basic building blocks
	Output Logs
	Viewing the results

	HOW-TO: Astrometric Solution
	HOW-TO: RegridTask
	Making RegriddedFrames using the DPU
	Making a RegriddedFrame using the RegridTask
	Making a RegriddedFrame using the basic building blocks

	HOW-TO: CoaddedRegriddedFrame
	DPU Method
	Non-DPU Method
	Coadd algorithm
	Coadd units

	SourceLists in the Astro-WISE System
	HOW-TO: Create Simple SourceLists From Science Frames
	SegmentationImage
	Using SourceList with SExtractor double-image mode
	HOW-TO: Use External SourceLists
	HOW-TO: Use SourceLists
	HOW-TO: Associate SourceLists
	Scientific Examples Using AssociateLists
	Visualizing associated sources: creating a skycat catalog
	HOW-TO: CombinedList

	Analysis Tools
	HOW-TO: Galfit
	Introduction
	Astro-WISE implementation
	Running GalFit
	Querying the database for GalFitModel results
	Configuring GalFitModel
	Description of useful methods of GalFitModel
	Caveats

	HOW-TO Use TinyTim
	Running TinyTim

	HOW-TO: Galphot
	Introduction
	Astro-WISE implementation
	First step: making a SourceList or querying existing SourceLists
	Running Galphot; using the GalPhotTask
	Configuring GalPhotModel
	Masking other sources in the field
	Using an existing model as initial values
	Using GalPhotList
	Querying for results
	Description of useful public methods of GalPhotModel

	HOW-TO: Photometric redshifts
	PhotRedConfig
	PhotRedCatalog
	The output SourceLists
	The visualization routines
	An example from users view
	Ingestion of Filters and SEDs

	HOW-TO: MDia
	Introduction
	Astro-WISE implementation
	Compiling and installing the C++ code
	Creating a ReferenceFrame
	Creating Lightcurves

	Documentation
	HOW-TO: VODIA
	Introduction
	Astro-WISE implementation
	Compiling and installing the C code
	Running VODIA
	Documentation

	HOW-TO: GalacticExtinction
	SFD extinction map: for extragalactic sources
	Arenou extinction map: inside the Galaxy

	Coordinate transformation
	HOW-TO: SourceCollection
	Overview
	An Astro-WISE Session
	Pushing SourceCollections
	The SourceCollectionTree in the Background
	AttributeCalculatorDefinitions
	SAMP Interaction and Query Driven Visualization

	Visualization
	HOW-TO Inspect
	Image Inspect Plot
	Image Inspect Method
	Image Display Method

	HOW-TO: Photometric Association Catalog
	HOW-TO: Mosaicing with Multi-extension FITS
	HOW-TO: Image Services
	Visualizing and Navigating the Database with DBviewer
	Visualizing FITS Images
	Visualizing FITS Cut-out Images
	Examples from the awe-prompt

	HOW-TO: PSF Information
	HOW-TO: ObsViewer
	HOW-TO: Trend analysis
	Summary
	Examples

	HOW-TO: SAMP
	SAMP HUB and Clients
	SAMP Astro-WISE integration
	Query Driven Visualization through SAMP
	Data Pulling Messages
	Object Messages
	More and future features
	SAMP Protocol
	Query Driven Visualization Message Details

	HOW-TO: Query Driven Visualization
	Bootstrapping SAMP
	Simple Puller
	Tree Explorer
	Object Viewer

	Development
	HOW-TO: New Instrument
	Summary
	Defining a New Instrument

	Frequently Asked Questions
	General
	Introductory Material
	Getting Started
	Documentation
	Concurrent Versions System (CVS)
	Data Preparation
	Ingesting
	Dates and Times
	Parallel Processing
	awe-prompt
	Queries
	Process Parameters
	Context

	Astro-WISE Environment
	AW Tutorials
	Calibration
	Image Pipeline
	Visualization
	Development

	III Appendix
	Installing the basic Astro-WISE Environment
	Installation of database software
	Installation of various Astro-WISE Servers
	The Database Viewer
	The Dataservers
	The Distributed Processing Server
	Sample startup script

	Adding a node to the Astro-WISE federation
	Firewall setup
	Database creation and configuration
	Streams configuration
	Maintenance
	Cleaning up deleted files and database objects
	Archivelog backup

