OmegaCAM Data Flow System - CALIBRATION PLAN

Implementation of Calibration Requirements

Issue: VERSION 1.1
Date: 29 Oct 2001
Prepared by: Valentijn, Begeman, Boxhoorn, Deul, Rengelink
Purpose of printout: FDR

Approved by: Konrad Kuijken, OmegaCAM PI.

Edwin Valentijn, NOVA programme manager.

www.astro.rug.nl/~omegacam

This document is prepared by the Odoco Document Control System.
Changes between Version 1.0–FINAL DESIGN REVIEW and Version 1.1–FINAL DESIGN REVIEW

Additions

New section on 2-3 day cycle specifications – 2.2 DFS requirements.
Specify all three levels of TSF’s, as given in VST-SPE-OCM-23100-3064, in requirements.
Detailed estimates of observing times for photometric checks – 2.2 DFS requirements, \textbf{req.}562, \textbf{req.}563, \textbf{req.}564.
Include tilt determination – \textbf{req.} 571 \textit{Camera focus/tilt}.
Reference to \textbf{req.}563 in CA – \textbf{req.}564.
OmegaCAM DID – 1.2 Applicable documents.
Once/year dark dome test – \textbf{req.}533.
Processing of calibration data follows telescope schedule – 2.2 DFS requirements, 6.1 Data reduction software requirements.

Updates

Clarify fast recipe for Technical Specifications conformance – \textbf{req.}562, \textbf{req.}563.
Erroneous references to darkcurrent check for \textbf{req.} 547 \textit{Quick detector responsivity check} removed.
Nonexistent \textbf{CalFile}– \textbf{561} removed – \textbf{req.}533.
Stars have to be observed during the night – \textbf{req.}525.
\textbf{req.} 571 \textit{Camera focus/tilt} is no longer a workhorse/\textit{doit} – 1.4 Abbreviations and Acronyms, 5.10 On site quick look analysis.
Exposure times TBC during commissioning – \textbf{req.}561.
Lamp procedure TBC. – 5.4 Detectors operational specific calibrations.
Removed reference to QCO – \textbf{seq.–} \textbf{631}.
Mention acceptance of multi-extension FITS files – \textbf{seq.–} \textbf{631}.
Target-related template parameters (only) where applicable – 4.4 Observing Templates.
Reworded sentence about DFS-pipeline – 5.10 On site quick look analysis.
Reworded sentence about modules – 6.1 Data reduction software require-
Rotator *offset* angle – 4.4 Observing Templates. Use plots for analysis – req.571.
TABLE of CONTENTS

1 INTRODUCTION ... 7
 1.4 Abbreviations and Acronyms ... 7
2 SCIENTIFIC REQUIREMENTS -see URD 10
3 INSTRUMENT CONCEPT - Summary -see URD 10
4 OBSERVING MODES and STRATEGIES - see URD 10
 4.4 Observing Templates ... 10
5 BASELINE CALIBRATION REQUIREMENTS 12
 5.2 Detector Electronics specific Calibrations 19
 5.2.1 Req.– CCD read noise - doit 19
 5.2.2 Req.– hot pixels .. 20
 5.2.3 Req.– CCD gain ... 21
 5.2.4 Req.– Electromagnetic Compatibility 22
 5.2.5 Req.– Electrical cross talk 24
 5.3 Detectors specific calibrations 25
 5.3.1 Req.– CCD Dark Current - doit 25
 5.3.2 Req.– CCD Particle Event Rate 26
 5.3.3 Req.– CCD Linearity ... 26
 5.3.4 Req.– CCD Charge Transfer Efficiency 27
 5.3.5 Req.– CCD Cold Pixels ... 28
 5.3.6 Req.– CCD Hysteresis, strong signal 29
 5.4 Detectors operational specific calibrations 31
 5.4.1 Req.– Bias - doit ... 35
 5.4.2 Req.– Flat-field - dome key bands + user bands - doit 37
 5.4.3 Req.– Flat-field - twilight 39
 5.4.4 Req.– Flat-field - night sky 40
 5.4.5 Req.– Flat-field - Fringing 42
 5.4.6 Req.– Flat-field - master flat and weight map 43
 5.4.7 Req.– Quick detector responsivity check - doit 45
 5.4.8 Req.– Illumination correction 46
 5.5 Astrometric Calibration ... 48
5.5.1 Req.– Position of Camera in focal plane 49
5.5.2 Req.– Telescope Pointing ... 50
5.5.3 Req.– Telescope and Field Rotator tracking 51
5.5.4 Req.– PSF Anisotropy ... 52
5.5.5 Req.– The astrometric solution for templates - doit 53
5.5.6 Req.– The astrometric solution for Guide CCD’s 53
5.6 Photometric Calibration ... 55
 5.6.1 Req.– Shutter Timing ... 59
 5.6.2 Req.– Photometric Calibration - monitoring 60
 5.6.3 Req.– Photometric Calibration - zeropoint key bands -doit .. 63
 5.6.4 Req.– Photometric Calibration - zeropoint user bands 66
 5.6.5 Req.– Filter band passes - user bands vs key bands 68
 5.6.6 Req.– Dependency on angle - ADC, rotator/ reproducability . 69
 5.6.7 Req.– Linearity (as a function of flux) 70
 5.6.8 Req.– Detection limit and ETC calibrations 70
 5.6.9 Req.– Secondary Standards 71
5.7 Internal alignments, optics etc....................................... 73
 5.7.1 Req.– Camera focus/tilt .. 73
 5.7.2 Req.– Ghosts - ADC ... 73
5.8 Effect of Telescope .. 74
5.9 Workhorses and End to end tests 74
5.10 On-site quick look analysis ... 75
6 DATA REDUCTION SPECIFICS- see URD and DRS 77
7.0 PREPARATORY PROGRAMMES .. 78
 7.1 Photometric Programme ... 78
 7.2 Planning Photometric programmes 84
A1 LIST of CALIBRATION REQUIREMENTS 87
A2 LIST of RAW CALIBRATION DATA 89
A3 LIST of DFS I/O CALIBRATION FILES 90
A4 LIST of DFS INPUT REFERENCE CATALOGUES 92
A5 CALIBRATION TIME TABLES ... 93
Lay-out of the sections

<table>
<thead>
<tr>
<th>URD</th>
<th>OmegaCAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.0</td>
<td>Scientific Requirements</td>
</tr>
<tr>
<td>3.0</td>
<td>Instrument Concepts</td>
</tr>
<tr>
<td>4.0</td>
<td>Observing Strategies</td>
</tr>
<tr>
<td>5.0</td>
<td>Calibration requirements</td>
</tr>
<tr>
<td>6.0</td>
<td>Data reduction</td>
</tr>
<tr>
<td>7.0</td>
<td>Preparatory Programmes</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

This document describes the implementations of the calibration procedures. The Baseline requirements for the Calibrations are given in the URD, while detailed specifications of the data reduction of both science and calibration data are given in the Data Reduction Specification document.

1.4 Abbreviations and Acronyms

Abbreviations and Acronyms used in this document

- A/D: Analog/digital
- ACS-dbase: Astronomical Calibration Source database
- ADC: Atmospheric Dispersion Corrector
- ADU: Analog to Digital Unit
- AGN: Active Galactic Nucleus
- BRD: Baseline Requirements Document
- CA: Calibration Analysis
- CAP: Calibration Analysis Procedure
- CCD: Charge Coupled Device
- CO: Calibration Observation
- CP: Commissioning Phase
- CalP: Calibration Plan
- CTE: Charge Transfer Efficiency
- CVS: Code Version System
- DFS: Data Flow System
- ESO: European Southern Observatory
- ETC: Exposure Time Calculator
- FOV: Field of View
- FWHM: Full Width at Half Maximum
- GRB: Gamma Ray Burst
- GT: Guaranteed Time
- HZSS: High Redshift Supernova Search
- ICS: Instrument Control Software
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOVA</td>
<td>Nederlandse Onderzoekschool Voor Astronomie</td>
</tr>
<tr>
<td>USM</td>
<td>Universitäts Sternwarte München</td>
</tr>
<tr>
<td>IWS</td>
<td>Instrument Workstation</td>
</tr>
<tr>
<td>ISO</td>
<td>Infrared Space Observatory</td>
</tr>
<tr>
<td>IST</td>
<td>Instrument Science Team</td>
</tr>
<tr>
<td>KBO</td>
<td>Kuiper Belt Object</td>
</tr>
<tr>
<td>MoU</td>
<td>Memorandum of Understanding</td>
</tr>
<tr>
<td>NOVA</td>
<td>(Dutch) Nederlandse Onderzoekschool Voor Astronomie</td>
</tr>
<tr>
<td>OaPd</td>
<td>Astronomical Observatory of Padua</td>
</tr>
<tr>
<td>OB</td>
<td>Observation block</td>
</tr>
<tr>
<td>OD</td>
<td>Observation Description</td>
</tr>
<tr>
<td>OPC</td>
<td>Observing Programme Committee</td>
</tr>
<tr>
<td>OT</td>
<td>Optical Transient</td>
</tr>
<tr>
<td>OT</td>
<td>Observing Template</td>
</tr>
<tr>
<td>PPP</td>
<td>Photometry Preparatory Programme</td>
</tr>
<tr>
<td>PSF</td>
<td>Point Spread Function</td>
</tr>
<tr>
<td>QC0</td>
<td>Quality Control zero</td>
</tr>
<tr>
<td>QC1</td>
<td>Quality Control one</td>
</tr>
<tr>
<td>QSO</td>
<td>Quasi-Stellar Object</td>
</tr>
<tr>
<td>RPE</td>
<td>Relative Pointing Error</td>
</tr>
<tr>
<td>RP</td>
<td>Routine Phase</td>
</tr>
<tr>
<td>RSRF</td>
<td>Relative Spectral Response Function</td>
</tr>
<tr>
<td>SCP</td>
<td>Supernova Cosmology Project</td>
</tr>
<tr>
<td>SED</td>
<td>Spectral Energy Distribution</td>
</tr>
<tr>
<td>SSO</td>
<td>Solar System Object</td>
</tr>
<tr>
<td>S/N</td>
<td>Signal/Noise</td>
</tr>
<tr>
<td>S/W</td>
<td>Software</td>
</tr>
<tr>
<td>TBC</td>
<td>To Be Confirmed</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Defined</td>
</tr>
<tr>
<td>TBW</td>
<td>To Be Written</td>
</tr>
<tr>
<td>TCS</td>
<td>Telescope Control System</td>
</tr>
<tr>
<td>TP</td>
<td>Target Package</td>
</tr>
<tr>
<td>TSF</td>
<td>Template Signature File</td>
</tr>
<tr>
<td>URD</td>
<td>User Requirement Document</td>
</tr>
<tr>
<td>VLT</td>
<td>Very Large Telescope</td>
</tr>
</tbody>
</table>
VST VLT Survey Telescope
WFI@2.2m Wide Field Imager at the ESO 2.2m telescope
2 SCIENTIFIC REQUIREMENTS - see URD

3 INSTRUMENT CONCEPT - Summary - see URD

4 OBSERVING MODES and STRATEGIES - see URD

Observing modes, observing strategies and the list of required science data observing templates are given in the URD. The CP specifies, in addition, the OTs required for calibration purposes (Section 4.4).

4.4 Observing Templates

The Observing Templates for OmegaCAM are defined in Instrument Software Functional Specifications (VST-SPE-OCM-23100-3064). The following calibration Templates are used.

- **TSF– OCM_img_cal_bias**
 Acquire N bias exposures, with opaque filter in optical path and shutter closed.

- **TSF– OCM_img_cal_readnoise**
 Bias exposures with \(N = 2 \)

- **TSF– OCM_img_cal_dark**
 Acquire N dark exposures, with opaque filter in optical path and shutter closed.

- **TSF– OCM_img_cal_skyflat**
 Acquire N sky (twilight) flats, through a given filter.

- **TSF– OCM_img_cal_domeflat**
 Acquire N dome flats. Telescope is preset to point towards the flat-field screen (without tracking), lamps must be switched on.

- **TSF– OCM_img_cal_gain**
 Domeflat exposures with \(t_{exp} = 2, 60, 50, 4, \ldots, 4, 50, 60, 2 \)
- **TSF– OCM_img_cal_cste**
 Domeflat exposures with $N = 10$

- **TSF– OCM_img_cal_quick**
 Domeflat exposure with $N = 1$ and filter=composite

- **TSF– OCM_img_cal_shutter**
 Domeflat exposures with $t_{exp} = 10, 0.1, 0.1, 10$

In addition the following science templates are used

- **TSF– OCM_img_obs_stare**

- **TSF– ICM_img_obs_monit**
 Stare observations with $N = 1$, filter=composite

- **TSF– ICM_img_obs_zpkey**
 Stare observations with $N = 1$, filter=key band

- **TSF– ICM_img_obs_zpuser**
 Stare observations with $N = 1$, filter=user band
5 BASELINE CALIBRATION REQUIREMENTS

5.0 Documentation system, Odoco

The trajectory of the data through the DFS shall be guided by the OmegaCAM documentation system, Odoco. The set-up of the specifications of the calibrations and its data reduction is done in purely requirement driven fashion. The calibration documentation system (Odoco) is a collection of files which contains a description of both the requirements on OmegaCAM calibrations, as well as detailed descriptions of the envisaged Calibration Observations (CO’s) and their analysis and data-reduction. The Odoco is meant to avoid unnecessary duplication of work for the documentation of the various stages of the project; from the definition of basic requirements, to implementations and final operation and user manuals. It should also aid the documentation of development work. The Odoco was originally developed for ISO and provided a full uplink system (IOCD). The present version, adapted for OmegaCAM, contains essentially only the part which deals with text, pseudo code, recipe’s and automatic document creation. The Odoco system is essentially a set of TeX macros, with LaTeX emulation, together with some supporting C routines. The whole present document is generated by Odoco, but particularly this section, listing the baseline calibration requirements, uses some more advanced Odoco options.

The very strict document control of the original IOCD will not be maintained, but CVS (Concurrent Versions System) will be used for local versioning control. Official versions of documents shall be filed separately.

The contents of the Odoco will be continuously evolving and fonts are chosen for optimal reading on a computer monitor screen.

In Odoco, calibrations are specified under requirement subsections (req.’s) which are labeled with 3-digit numbers. Each subsection contains a number of items: e.g. the objective of the requirement, a description of a specific Calibration Observation or a cross-reference to the use of a CO that has been defined under another requirement. Also, the end-results have been specified and the
text contains various descriptions for both Template Signature Files (TSF’s) which define the creation of the observation blocks (OB) and for the off-line data analysis. Overall priorities have been defined (essential, very important, desirable) and are specified under the item priority.

The chosen items for the descriptions of the requirements (req.’s) match well to the items needed for the recipes for DFS data reductions. In section 6.1 complete listings of both the req. items and the recipe items are given. The req.’s as listed in the Odoco will eventually evolve into the deliverable recipe’s.

The Odoco is designed to provide a comprehensive and accessible documentation system of the various activities that relate to the OmegaCAM calibrations. It serves a variety of purposes, and facilitates the extraction of text from the Odoco data base into complete documents. The Odoco can provide the following documents:

1. A listing of the Baseline OmegaCAM Calibration Requirements. Odoco contains an up-to-date listing of all the baseline requirements for the OmegaCAM calibrations, i.e. for each requirement (req.) the text under the items: Objective, When performed/frequency, Required accuracy, Priority. See section 5 of the URD.

2. Full documentation of the OmegaCAM calibration plan. A detailed description of all the OmegaCAM calibration requirements and their implementations. See Section 5 of the Calibration Plan. Summary sections (two digit sections) have been introduced for a variety of calibration activities: e.g. detector specific calibrations, photometric calibrations etc. A general overview of the OmegaCAM calibrations can be obtained by printing the summary sections of the Odoco. In order to further ease the readability of this document, both each requirement and each calibration analysis procedure text item begins with a 'one-liner' stating the overall idea.

3. A description of the Template Signature File necessary to produce observation blocks, TSF’s. When a requirement can not be fulfilled by means of data analysis of observations made for another requirement, Odoco contains a detailed description of the instrument configuration and procedures under the items Sources, observations and TSF, (TSF, Template Signature File). Note, the term selfstanding has an important meaning:
when a requirement is selfstanding, it will normally propagate as a single
dedicated calibration observation, with a single dedicated data reduction
task. Conversely, non-selfstanding requirements will have more complex de-
pendencies and often involve a data reduction of data taken for another
selfstanding requirement.

Under the item **TSF** the hierarchical structure of observation specifications
is detailed (when applicable) on different lines:
- first line: observing **Strategy**
- second line: observing **Mode**
- third line: generic/base **TSF**
- fourth line: specific/dependent == **TSF**

4. **Description of Calibration Analysis (CA).** For each requirement, a spec-
ification of the data analysis related to the requirement is given under
the item **CA**. Standard functionalities can be quoted in the optional item
Needed functionalities for CA. A detailed description of the implementa-
tion, which could include guidelines for the data analysis or pseudo code is
given under the items **CAP** (Calibration Analysis Procedure). **Inputs and Outputs** defines the various calibration tables. Thus a document listing all
the text of the items **CA**, **CAP** and **Inputs and Outputs** gives a complete
overview of the Calibration data reduction analysis.

5. **A reference document for timelining OmegaCAM Calibration obser-
vations.** The items **When performed/frequency and Estimated time
needed** can be used to design a detailed **Schedule** of calibration observa-
tions both in the commissioning phase (**CP**) and during the Routine Phase
(**RP**).

6. **A listing of the various requirements for an Astronomical Calibration Source data base, (ACS-dbase).**

7. The **recipes** belonging to the execution of requirements.

As **Odoco** can provide various documents with a different filtering of the source
of information, each printout contains a table, listing the selection criteria. Also, the status of the printout is marked (formal issue, or private workcopy).
Each printout contains this section.
On the following pages a print-out is included which is believed to be relevant for the present document.
OmegaCAM

OmegaCAM Data Flow System - CALIBRATION PLAN

Implementation of Calibration Requirements

Issue: VERSION 1.1
Date: 29 Oct 2001
Prepared by: Valentijn, Begeman, Boxhoorn, Deul, Rengelink
Purpose of printout: FDR

<table>
<thead>
<tr>
<th>Selected items from Odoco file system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary sections</td>
</tr>
<tr>
<td>Items:</td>
</tr>
<tr>
<td>Objective</td>
</tr>
<tr>
<td>Fulfilling or fulfilled by</td>
</tr>
<tr>
<td>When performed/frequency</td>
</tr>
<tr>
<td>Sources, obs., . . .</td>
</tr>
<tr>
<td>Inputs</td>
</tr>
<tr>
<td>Outputs</td>
</tr>
<tr>
<td>Required accuracy, constraints</td>
</tr>
<tr>
<td>Estimated time needed</td>
</tr>
<tr>
<td>Priority</td>
</tr>
<tr>
<td>Template Signature File</td>
</tr>
<tr>
<td>Recipe</td>
</tr>
<tr>
<td>Calibration Analysis spec’s</td>
</tr>
<tr>
<td>Needed Functionalities</td>
</tr>
<tr>
<td>CA implementation (pseudo code)</td>
</tr>
<tr>
<td>Status of Req.</td>
</tr>
<tr>
<td>FLAG</td>
</tr>
</tbody>
</table>

http://www.astro.rug.nl/~omegacam

This document is prepared by the Odoco Document Control System.
LAY-OUT of BASIC CALIBRATION REQUIREMENTS

DETECTOR RELATED

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>CalFile</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Functional Checks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.1</td>
<td>CCD read noise - doit</td>
<td>CalFile– 521</td>
</tr>
<tr>
<td>5.2.2</td>
<td>CCD hot pixels</td>
<td>CalFile– 522</td>
</tr>
<tr>
<td>5.2.3</td>
<td>CCD gain</td>
<td>CalFile– 523</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Electromagnetic compatibility</td>
<td></td>
</tr>
<tr>
<td>5.2.5</td>
<td>Electrical cross talk</td>
<td></td>
</tr>
<tr>
<td>5.3 Detectors specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.1</td>
<td>CCD Dark current - doit</td>
<td>CalFile– 531</td>
</tr>
<tr>
<td>5.3.2</td>
<td>CCD Particle event rate</td>
<td>CalFile– 532</td>
</tr>
<tr>
<td>5.3.3</td>
<td>CCD linearity</td>
<td>CalFile– 533</td>
</tr>
<tr>
<td>5.3.4</td>
<td>CCD Charge transfer efficiency</td>
<td>CalFile– 534</td>
</tr>
<tr>
<td>5.3.5</td>
<td>CCD Cold pixels</td>
<td>CalFile– 535</td>
</tr>
<tr>
<td>5.3.6</td>
<td>CCD hysteresis</td>
<td>CalFile– 536</td>
</tr>
<tr>
<td>5.4 Detectors operational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4.1</td>
<td>Bias - doit</td>
<td>CalFile– 541</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Flat field - Dome</td>
<td>CalFile– 542(L)</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Flat field - Twilight</td>
<td>CalFile– 543</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Flat field - Night sky</td>
<td>CalFile– 544</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Flat field - fringing</td>
<td>CalFile– 545</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Flat field - master flat</td>
<td>CalFile– 546(W)</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Quick detector check</td>
<td>CalFile– 547(r)</td>
</tr>
<tr>
<td>5.4.8</td>
<td>Illumination correction</td>
<td>CalFile– 548</td>
</tr>
</tbody>
</table>
LAY-OUT OF BASIC CALIBRATION REQUIREMENTS

5.5 Astrometric

- **5.5.1** Focal plane position of camera
- **5.5.2** Telescope Pointing
- **5.5.3** Telescope and rotator tracking
- **5.5.4** PSF anisotropy
- **5.5.5** The astrometric solution - *doit*
- **5.5.6** Astrometry - Guide CCD’s

5.6 Photometric

- **5.6.1** Shutter timing
- **5.6.2** Photometric monitoring
- **5.6.3** Zeropoint key bands *doit*
- **5.6.4** Zeropoint user bands
- **5.6.5** Filter band pass - user — >key
- **5.6.6** Rotation angle - ADC, rotator
- **5.6.7** Linearity
- **5.6.8** Detection limit
- **5.6.9** Secondary standards

5.7 Alignment

- **5.7.1** Camera focus/tilt
- **5.7.2** Ghosts - ADC

5.8 Telescope

5.9 End to end tests
5.1 Functional Checks

The commissioning plan [VST-PLA-OCM-23100-3100] lists a large set of acceptance tests. Most of these tests are engineering tests and need not to be repeated here. Those engineering tests which can be executed with requirements from the URD/CP contain the proper reference to the URD in the commissioning plan.

The technical operations and maintenance plan [VST-PLA-OCM-23100-3080] describes activities during Routine Phase (RP). Both the URD, CP and the DRS specifies the requirements and the activities for fulfilling these requirements during RP. The label RP always points to activities that shall be followed in the technical operations and maintenance plan.

5.2 Detector Electronics specific Calibrations

Section 5.2 contains the requirements for the characterization of the detector system on electronics level, while Section 5.3 lists more detector specific calibrations. The separation between these Sections is somewhat artificial. In Section 5.4 more daily characterizations are listed, which involve the flatfielding and de-biasing. Requirements which are foreseen to become 'workhorses' are labeled with *doit*, e.g. a quick daily evaluation of the read noise serves as a daily health check.

The CCD’s are operated at one port; electrical cross talk is not expected to significantly affect the observations. However, as a check, the absence of significant cross-talk is verified (*req.525*).

The hot pixel (*req.522*) and cold pixel (*req.535*) characterization are combined in the weight maps (*req.546*).

As the standard read-out time of the arrays is already very fast, ~ 40 sec, no extra fast read-out mode is supported in the characterization.

CCD rebinning mode and windowing mode are not supported in the calibration and data reduction procedures.
5.2.1 Req. — **CCD read noise - doit**

Objective:
Measure the CCD read noise (in ADU's) as a standard health check.

Pairs of zero-second bias exposures are used. The rms scatter of the differences between two exposures is computed and divided by $\sqrt{2}$. Monitor variations with trend analysis. This is the first order daily health check.

Fulfilling or fulfilled by:
Selfstanding

Required accuracy, constraints:
Readout noise less than $5e^-$.
Variation in readout noise w.r.t. previous readout noise less than $0.5e^-$.
These are lab values. The corresponding limits in ADU can be calculated using the e^-/ADU conversion factor from **req.**523.

When performed/frequency:
daytime- Commissioning, during all operations: daily health check.

Estimated time needed:
Observation: 5 min. Reduction: 1 min./CCD.

Inputs:
2 raw bias frames
CalFile– 521 *Readout noise* older versions

Outputs:
CalFile– 521 *Readout noise* in ADU's

TSF:
Mode– *Stare* N=2
(TSF– *OCM_img_cal_bias*, N=2)
= TSF– *OCM_img_cal_readnoise*

5.2.2 Req. — **hot pixels**

Objective:
Determine CCD bad/hot pixels.
5σ outliers in the master bias frame are bad-hot pixels. These pixels should be recorded and ignored (assigned a weight of 0) in dedithering and dejittering. For this purpose the bad/hot pixel map is used to assign a weight of zero to the affected pixels in the weight map (req. 546). The search for hot pixels would also identify traps.

Fulfilling or fulfilled by:
Additional data reduction of req. 541 *Master Bias frame* to determine cold pixels

Required accuracy, constraints:
Number of hot pixels to be determined by experience/lab values. The total number of bad pixels (hot pixels + cold pixels) is less than 80000. Difference in number of hot pixels w.r.t. the previous version, less than 100.

When performed/frequency:
daytime- Commissioning, in RP twice per week.

Estimated time needed:
Observation: None.
Reduction: < 1 min./CCD.

Inputs:
- `CalFile– 541` *Master bias*
- `CalFile– 522` *Bad/hot pixel map previous version*

Outputs:
- `CalFile– 522` *Bad/hot pixel map, number of hot pixels*

TSF:
Use master bias (req. 541)

5.2.3 Req. — CCD gain

Objective:
Determine CCD gain and variation with time
Determine the conversion factor between the signal in ADU’s supplied by the readout electronics and the detected number of photons (in units e^-/ADU) and monitor variations in time.
The gain factors are needed to convert ADU’s in raw bias-corrected frames to the number of electrons, i.e. detected photons.
Take two series of 20 dome flatfield exposures with wide range of exposure times. Derive the rms of the differences of two exposures taken with similar exposure (integration time). Exposure differences of pairs should not exceed 4%. The regression of the square of these values with the mean level yields the conversion factor in e^-/ADU (assuming noise dominated by photon shot noise). Compare with previous measurements, as a qualification (trend analysis).

Fulfilling or fulfilled by:
Selfstanding, also measures detector linearity (req.533).

Sources, observations, instrument configurations:
Dome flat field exposures on lamp, with $t_{int} = 2, 60, 50, 4, 8, 40, 30, 1, 16, 24, 24, 16, 1, 30, 40, 8, 4, 50, 60$ and 2 seconds.

Required accuracy, constraints:
Accuracy: In units of e^-/ADU, from lab values or found empirically. Trend analysis better than 1%. On-site quality check.
Quality check: Difference with previous version less than 10%.

When performed/frequency:
daytime- Commissioning, in RP once week.

Estimated time needed:
Observations: 1 hour
Reduction: 10 min./CCD.

Inputs:
CalFile– 521 Read noise
CalFile– 541 Master bias frame
CalFile– 523 Conversion factor e^-/ADU older versions.

Outputs:
CalFile– 523 conversion factor e^-/ADU

TSF:
Mode– Stare N=20
(TSF– OCM_img_cal_domeflat, $t_{exp} = 2, 60, 50, 4, 8, 40, 30, 1, 16, 24, 24, 16, 1, 30, 40, 8, 4, 50, 60, 2$ s.).
= TSF– OCM_img_cal_gain
5.2.4 Req. — Electromagnetic Compatibility

Objective:
Verify whether any external source (e.g. dome drives, control systems) is not interfering in the CCD overall detector system, leading to additional, mostly non-white noise.

Technical specifications require less than 20% effect on read-out noise, for external interference and less than 10% effect on read-noise for internal OmegaCAM interference.

If electronic interference occurs then this will put constraints on the operation of the instrument. For example, if interference occurs during movement of the telescope, one cannot read the CCDs and move the telescope at the same time.

Interference is detected by measuring the read noise (req.521) under operational conditions. This means doing bias measurements while the telescope and/or dome are moving.

Fulfilling or fulfilled by:
repetition of CCD read noise calibrations req.521.

Sources, observations, instrument configurations:
Raw bias frames obtained while the telescope/dome are moving.

Required accuracy, constraints:
Difference between read noise under operational conditions and the standard read noise measurement should be smaller than 20% for external and 10% for internal causes of interference.

When performed/frequency:
Day time; Commissioning; once a year; every time a major system change has been made; To be determined by experience

Estimated time needed:
Observations: 4 hours. Reduction: 1 min./CCD.

Inputs:
raw bias frames, obtained when telescope/dome were moving.

CalFile— 521 CCD read noise
Outputs:
OK/non-conformance flag.

TSF:
Mode– Stare N=2
TSF– OCM.img.cal.bias while telescope and/or dome are moving.

5.2.5 Req. — Electrical cross talk

Objective:
Although crosstalk is not detectable in the WFI, and only one part per CCD is used, the sharing of one FIERA by 16 CCD’s opens up the possibility of cross talk.
Observe a bright (mag 5-8) star at 16 different chips (1 FIERA serves 16 chips).

Fulfilling or fulfilled by:
Selfstanding

Sources, observations, instrument configurations:
Bright star, mag 5-8

Required accuracy, constraints:
10^{-5}

When performed/frequency:
Nighttime Commissioning.

Estimated time needed:
5 minutes

Outputs:
Conformance flag

TSF:
Mode– Stare N=1
(TSF– OCM_img_obs_stare, N=1, filter=key band)
5.3 Detectors specific calibrations

5.3.1 Req. — CCD Dark Current - doit

Objective:
Measure CCD dark current (in ADU/pixel/sec) for qualification purposes of the detector chain (qualification and trend analysis). The particle event rate will be determined on the fly. Repeating the test with the dome lights on will provide information on possible light leaks.
Three one hour exposures are taken with the shutter closed. After rejection of the cosmic ray events, the signal above the bias level is the dark signal. For the reduction of the science observations the subtraction of the sky brightness will include the dark current, and a separation of both contributions is normally not required.

Do a trend analysis.

Fulfilling or fulfilled by:
Selfstanding, also used to compute the particle event rate.

Sources, observations, instrument configurations:
Three 1 hour exposures with shutter closed. Dome lights on/off

Required accuracy, constraints:
Dark count rate should be less than 3×10^{-5}/pixel/hour excluding bad pixels. Accuracy of determining particle event rate 1 ADU/cm2/hour. Particle event rates should be identical for each chip.

When performed/frequency:
Daytime (if dome and camera are proven to be light tight enough) - Commissioning; once per week. Alternatively, one dark frame per day could be taken, followed by a trend analysis once/month.

Estimated time needed:
Observation: 3 hour. Reduction: < 1 min./CCD.

Inputs:
Lab values
CalFile– 531 Dark count rate for each CCD older versions.
CalFile– 532 Particle event rate older version.
Outputs:

- **CalFile– 531** *Dark count rate for each CCD* in ADU/pixel/hour
- **CalFile– 532** *Particle event rate* in ADU/cm\(^2\)/hour

TSF:
- **Mode– Stare** N=3
- **TSF– OCM_img_cal_dark** exposure time 1 hour each, shutter closed. Dome lamp on-off-on

5.3.2 Req. — *CCD Particle Event Rate*

Objective:

Determine CCD particle event rate by evaluating dark current measurements. Verify the absence of a local radiation source affecting the detector. The data will be inspected for significant differences of the rates on different chips, and will be screened for local effects.

Fulfilling or fulfilled by:

- Data reduction of **req. 531** *Dark current*

Required accuracy, constraints:

- better than 1 ADU/cm\(^2\)/hour

When performed/frequency:

- Commissioning and when dark current is measured.

Outputs:

- **CalFile– 532** *Particle event rate* in ADU/cm\(^2\)/hour

5.3.3 Req. — *CCD Linearity*

Objective:

Characterize the linearity of the system over the full dynamic range of the A/D converter.

Both the overall absolute linearity of the system and the pixel-to-pixel variation in linearity are of interest.

The overall linearity of the system can be obtained by measuring the counts as a function of exposure time for a series of dome flats. The data to use for this can be the same as for the measurement of the Gain (**req. 523**, q.v.)
The pixel-to-pixel variation in the linearity is obtained by dividing a flatfield with a mean exposure level of more than 30000 ADU by a flatfield with an exposure level of less than 1000 ADU. Pixels that deviate more than 5σ from the mean, in this divided image, have an anomalously high nonlinearity. This map of nonlinear pixels may be used in conjunction with the hot and cold pixel maps to produce a map of bad pixels.

In addition, during a cloudy night, once per year, the linearity will be checked by taking various exposures with a variety of exposure times on the dome screen.

Fulfilling or fulfilled by:

Use same raw data as for req. 523

Required accuracy, constraints:

better than 1% on the photometric scale

When performed/frequency:

daytime- Commissioning, in RP once per month, dark dome test once/year

Estimated time needed:

Observation: None

Inputs:

CalFile– 541 *Bias*

RawData– 523 *CCD Gain*

RawData– 533 *CCD Linearity*

Outputs:

CalFile– 533 *CCD Linearity* includes a measure of the overall nonlinearity and a map of the pixel-to-pixel variation of the linearity

TSF:

Use same raw data as for req. 523 *CCD gain*

5.3.4 Req. — *CCD Charge Transfer Efficiency*

Objective:

Characterize horizontal and vertical transfer efficiency (CTE) per single transfer (in units of the fraction of the charge actually transferred).

(taken from WFI@2.2m:) Ten flatfields are taken with 50 vertical and 50 horizontal overscan pixels and a mean exposure level of about 20000 ADU’s.
The mean is computed and corrected for the bias. Average signal levels are determined in the two overscan regions as well in the light sensitive pixels just preceding the respective overscan pixels. Any signal found in the overscan pixels was due to non-unity CTE lost from the neighbouring light-sensitive pixels. The fractional charge still remaining in the light-sensitive pixels is the CTE.

Fulfilling or fulfilled by:
- selfstanding but related to masks for **req. 541 Bias - doit**, **req. 522 hot pixels** and **req. 535 CCD Cold Pixels**.

Sources, observations, instrument configurations:
- Dome flat field- lamp.

Required accuracy, constraints:
- CTE > 0.999995 per parallel or serial shift.

When performed/frequency:
- daytime- Commissioning, in RP once half year

Estimated time needed:
- 30 min.

Inputs:
- **CalFile– 541 Bias**

Outputs:
- **CalFile– 534 charge transfer efficiency factors**

TSF:
- **Mode– Stare** N=10
- (TSF– OCM_img_cal_domeflat, N=10)
- = TSF– OCM_img_cal_cce

5.3.5 Req. — CCD Cold Pixels

Objective:
- Identify cold pixels.

From a set of 5 low-level flatfield exposures a mean image is computed. This mean image is smoothed. The smoothed mean is used to flatfield the mean image. In this flatfielded image, pixels that are smaller than the mean minus...
5σ, are taken to be cold pixels. Make sure to differentiate between hot and cold pixels.

Cold pixel maps are used, together with the hot pixel maps (req. 522), to identify pixels that should be ignored (assigned a weight of 0) in further processing.

Fulfilling or fulfilled by:
- Data reduction of master domeflat (req. 542) or twilight (req. 543) flat frames.

Sources, observations, instrument configurations:
- Use master dome- or twilight flat

Required accuracy, constraints:
- Quality Check: Number of hot pixels to be determined by experience/lab values. The total number of bad pixels (hot pixels + cold pixels) is less than 80000. Difference in number of cold pixels w.r.t. the previous version, less than 100.

When performed/frequency:
- daytime- Commissioning, in RP once per 3 months.

Estimated time needed:
- Observations: None

Inputs:
- CalFile– 535 *Cold pixel map previous version*
- CalFile– 546 *Master flatfield*

Outputs:
- CalFile– 535 *Cold pixel map*

TSF:
- Use master dome- or twilight flat (req. 546)

5.3.6 Req. — *CCD Hysteresis, strong signal*

Objective:
- Quantify the effect of CCD signal reminiscence.

Reminiscence of a strong signal (a saturated star) in subsequent observations (“ghosts”) is a potentially debilitating problem for data reduction and interpretation. The absence of this effect should be verified by observations of very bright objects and subsequent dark exposures.
If “sources” are detected in the dark frames at the pixel positions of bright sources in the first field, signal reminiscence is a problem, which can characterized by the decay time of a strong signal.

The CCD readout mechanism means to cure for reminiscence.

Sources, observations, instrument configurations:

Observe a field containing very bright objects followed by a dark exposure.

When performed/frequency:
Commissioning.

Estimated time needed:
30 minutes

Outputs:
- **CalFile**: 536 *CCD Hysteresis*, containing the signal decay time.

TSF:
- **Mode**: stare N=2
- **TSF**: OCM_img_obs_stare
5.4 Detectors operational specific calibrations

In this Section req.'s are listed which are essential related to the daily operations of the acquisition of the science data.

For all detector and photometry related calibrations each CCD is characterized independently of the others. (Only in the case of astrometric solutions, data of various chips is combined).

A set of calibration lamps together with a dome screen is used to monitor the health of the instrument and to measure the fine structure of the flatfield. The calibration lamp system contains two sets of 4 commercial 12-24V halogen lamps each. Each set is operated independently. Each set is stabilized in current supply (one unit for whole set). Lamps are switched on/off with a gradual increase/decrease of the current over a timespan of 3-5 minutes. Implementation TBC. When operated this way, the nominal lamp instabilities are expected to be of the order of 0.05%/hour for a timespan of 200 hours of lamp operations (private comm. Philips Labs). For a nominal 1-2 hour/day of operations the lamp instability is expected to be of the order 1.5-3 % per month. The lamp instabilities are expected to be strictly linear after 100 hours of operations. When operating two sets at different rates, say one set 1 hour/day the other set at say 1 hour/two weeks a full characterization of the lamp stability can be achieved at accuracies better than a few percent on a monthly basis. Also continuity after failure of one lamp can be obtained. The accuracy is better than required as also other factors, like dust on the lamps and background light will affect the effective illumination of the screen. Altogether, the system is expected to provide control over the illumination of the screen with an accuracy better than 5-10%, which will be used for a daily health check on the overall throughput/health of the detectors (req. 547 Quick detector responsivity and health check). This activity provides a deliberate redundancy with flatfield measurements on the dome screen (req. 542 Flat field – dome key bands–doit), in order to provide the necessary cross-check in the off-line calibration analysis procedures. Next to the health checks taken during the night, a standard health check using a photometric standard field (also providing the absolute photometry is specified in req. 562 Photometric Calibration – Monitoring). The system of lamps, flatfields measurements, quick checks
using the lamps and health checks on the sky on photometric standard fields is designed to support the photometric calibration of a Survey System, for many years to come. The system provides redundancy facilitating cross-checks and has a typical maintenance/update frequency once/month.

The calibration of science data can be divided in three steps.

1. Removing the effects of bias and differential gain.
2. Relating the overall gain, and hence counts $S(x, y)$ to a photometric scale.
3. Relating the x, y coordinates to an astrometric reference system.

The raw science and standard images record $S(x, y)$ counts in pixel x, y, that are related to the incident photon flux $I(x, y, \lambda)$ by:

$$S(x, y) = b(x, y) + G \int g(x, y, \lambda)I(x, y, \lambda)d\lambda,$$

with G the ADU conversion factor, $g(x, y, \lambda)$ the quantum efficiency or gain as function of position and wavelength, and $b(x, y)$ the bias offset.

The photometric and astrometric calibration (steps 2 and 3) are the subject of Sections 5.5 and 5.6, respectively. Here we list the calibration data necessary to remove the effects of bias and gain variation over the image. These calibration data include:

- **Bias** to subtract residual pattern in the bias offset.
- **Flatfields** to correct for non-uniform gain.
- **Fringe maps** to remove the fringe-patterns.
- **Weight maps** to determine the relative contribution of each pixel when image data are combined.

A first-order approximation of the bias level in an image is provided by the median of the overscan region. A more accurate determination of the bias offset takes into account the following two effects: i) the bias level grows to its asymptotic level in the first few hundred lines, and ii) the bias level depends on the total signal in a given line. Therefore, an initial bias correction—the **overscan correction**, is applied by averaging the overscan pixels for each line, and subtracting this value from that line. Also, experience with the WFI has shown the presence of residual patterns in the bias offset over the image area. Under the assumption that these patterns are also present in OmegaCAM data its characterization by means of a master bias frame is specified in req.541.
The gain, $g(x, y, \lambda)$, incorporates the wavelength-dependent pixel-to-pixel variation in transmissivity of the different lightpaths through the telescope optics, filters and detectors. The gain can be approximated with

$$g(x, y, \lambda) = g_{DQE}(\lambda)g_{ff}(x, y),$$

with $g_{ff}(x, y)$ the pixel-to-pixel variation in the gain, and $g_{DQE}(\lambda)$ the overall detector quantum efficiency (zeropoint), at $g_{ff} = 1$, which is subject to photometric calibration (Section 5.5).

The characterization of the pixel-to-pixel variation of the gain, the flatfield, is obtained by observing a spatially uniform source of illumination. A normalized version of such an image provides a measure of the relative variation of the gain over the image area, $g_{ff}(x, y)$. Note that this flatfield measures a combination in the pixel-to-pixel gain variation and the variation in transmissivity of the different light paths through the telescope optics and filters.

The ideal flatfield observation is:

i) uniformly illuminated

ii) bright, to minimize errors due to photon noise,

iii) of constant color, preferably a color that is the same as the night sky.

Several methods to determine a flatfield will be operational. However, each method suffers from different drawbacks. The various characterizations of the flat field, the dome, twilight, and night sky flats, are specified under the req.542-545, while the eventual master flatfield to be applied to science and standard field observations, is constructed from a suitable combination of the dome, twilight and night sky flat fields (req.546).

Dome flats (req.542) are obtained by observing in telescope screen park position a fixed domescreen relatively uniformly illuminated by the calibration lamp with a stabilizing power supply. The illumination is not sufficiently uniform to measure large scale variations, and the color is very different from the night sky.

Twilight flats (req.543) are based on a bright, uniform source of illumination (twilight sky), that is unfortunately not of constant brightness and color. Unfortunately the 'twilight gradient' precludes measurement of the largest scale gain variation. Also bright objects may be visible even at twilight, which provides an additional complication.
Night sky flats (req.544), obtained by combining a large number of science observations, most closely mimic the illumination properties of the science frames themselves. These are the only flatfields usable for measuring the largest scale gain variations. Unfortunately, the assumption that the illumination is uniform (except for astronomical sources of course), has proven to be invalid on WFI (e.g Manfroid et al, 2000). It remains to be seen how large this problem of ”sky concentration” will be for OmegaCAM. Computing the night sky flat is also a computationally expensive process, both because of the large numbers of frames involved, and because the need for a proper masking of bright objects in the field. Fortunately, this measurement may also be usable for the fringe correction.

The master flatfield (req.546), to be applied to science and standard field observations, is constructed from a suitable combination of the dome, twilight and night sky flat.

The approximation that the pixel-to-pixel variation in the gain is independent of wavelength is in fact incorrect. Interference effects, mainly in the filters and thinned silicon layers of the CCDs, introduce wavelength dependent gain variations that vary on small angular scales. Since most sources are continuum sources, and only the convolution \[\int g(\lambda)I(\lambda)d\lambda \] is measured, this effect can be ignored when measuring source fluxes. However, due to variable strength of several sky lines, mostly apparent at the long wavelengths, the background will exhibit so-called fringing patterns, which can change during the night. This requires an additional calibration step for bands redward of R: the construction of suitable fringed background images (req.545).

The weight map is an important auxiliary file, which is used in several image processing steps. The weight map is intimately linked to the flatfields and therefore its construction is also addressed in this section.

Whenever individual pixels are combined, either in constructing source lists necessary for photometric and astrometric calibration, or in the coaddition of different frames, the OmegaCAM-reduction pipeline uses variance weighting (weight= \(1/\sigma^2 \)). The inverse variances are recorded in weight maps.

The debiased images record \(S(x, y) \) counts in pixel \(x, y \), that are related to the photon flux \(I(x, y) \) by:
\[S(x, y) = Gg_{\text{DQE}}g_{ff}(x, y)I(x, y), \]

Since photon shot-noise is much larger than the read-out noise, the rms-noise in the raw data is given by:

\[\sigma_S(x, y) = G(g_{\text{DQE}}g_{ff}(x, y)I(x, y))^{1/2} = (GS(x, y))^{1/2}. \]

Once data has been flatfielded \(S' = S/g_{ff} \), the counts are given by:

\[S'(x, y) = Gg_{\text{DQE}}I(x, y), \]

and the rms-noise by:

\[\sigma_{S'}(x, y) = G(g_{\text{DQE}}g_{ff}(x, y)I(x, y))^{1/2}/g_{ff} = (GS'(x, y)/g_{ff})^{1/2}. \]

The photon flux \(I(x, y) \) is a sum of a uniform background \(I_{\text{back}} \) plus sources \(I_{\text{src}}(x, y) \). Since, the surface brightness of the sky is (much) larger than the surface brightness of most sources, the rms-noise is given by:

\[\sigma_{S'}(x, y) = G[I_{\text{back}}/g_{ff}(x, y)]^{1/2} = (GS'_{\text{back}}/g_{ff})^{1/2}. \]

Hence, the rms-noise in an image is the product of a factor \((GS'_{\text{back}})^{1/2}\) that is constant over one image, but will vary between images, and a factor \((g_{ff}^{-1/2})\), the inverse of the square-root of the flatfield, which varies over the image.

To aid in the construction of weight maps for each individual science image **master weights** are constructed (req.546). These master weights are equal to the master flatfield, except that pixels that are hot (req.522) or cold (req.535), as well as pixels that have a gain outside a user defined range are assigned a weight of zero. **Individual weight** images for each science image can then be produced by determining the background level \(S_{\text{back}} \), and dividing the master weight by \(GS_{\text{back}} \). These individual weights can be further improved by detecting which pixels are affected by cosmic rays or satellite tracks, and assigning those a weight of zero too.

5.4.1 Req. — Bias - doit

Objective:

Determine master bias frame.

The signal in raw scientific frames contains a component that is due to a bias current. This component shows up as an offset to the signal. The bias-offset has the following characteristics: i) the bias level grows to its
asymptotic level in the first few hundred lines, and ii) the bias level depends on the total signal in a given line. Therefore, an initial bias correction—the **overscan correction**, is applied by averaging the overscan pixels for each line, and subtracting this value from that line.

In addition, the bias offset exhibits a residual pattern, which is measured by the master bias frame. To construct the master bias a series of 10 zero-second bias exposures is overscan-corrected, and then averaged, rejecting 5σ outliers (σ = dispersion of the 10 bias exposures of individual pixels), due to particle hits during read-out. The resulting master bias frames will be used for the correction of all frames. For each master bias frame the mean value for each CCD chip will be determined and evaluated in a trend analysis.

As the readout noise dominates the rms scatter in the bias frames, while the shotnoise of the sky background dominates the rms scatter on the sky images, which is nominally much larger than the readout noise, it is sufficient to characterize the bias value at individual pixels with an accuracy of $(\text{readout noise}/\sqrt{10})$.

A comparison with a previous master bias frame will be done as an evaluation of the overall health of the instrument and the quality of the data. This will thus measure short-term variations. Long term variations can be assessed using trend analysis.

A comparison of the mean level with laboratory values will be used as an overall quality check.

Fulfilling or fulfilled by:

Selfstanding. Raw data are also used for **req. 522 Bad/hot pixels**

Calfiles used by: **req. 542 Dome flat**, **req. 543 Twilight flat** **req. 544 Night sky flat seq. 632 Trim, de-bias, flatfield**

Sources, observations, instrument configurations:

10 observations with 0 (zero) seconds exposure time.

Required accuracy, constraints:

The required accuracy per pixel in the master bias frame is “nominal read-outnoise/$\sqrt{10}$”.
For the quality check: Deviation of the mean level of master bias (bias level) from lab values < 10%.

When performed/frequency:

daytime- Commissioning, in RP initially daily. Later the frequency is to be determined by experience.

Estimated time needed:

Observation: 15 min. Reduction: < 5 min./CCD.

Inputs:

Raw data bias frames

CalFile— 541 *Master Bias frame* previous versions

Laboratory values of bias levels.

Outputs:

CalFile— 541 *Master Bias frame* to be used by seq. 632 *de-bias flat field*

TSF:

Mode— Stare N=10

TSF— OCM_img_cal_bias

5.4.2 Req. — *Flat-field - dome key bands + user bands - doit*

Objective:

Determine master dome flat frame for both *Keybands* and *Userbands*.

During the lifetime of *OmegaCAM* the dome flatfields shall be measured for the 4 keybands and the key-composite filter at least once/week. Thus at least within 3 days of the taking of science data a dome flatfield in the key passband will be available.

The sequence of dome flatfields in the keybands, acquired over periods of months to years will be used to perform a trend analysis on the long term stability of the instrument and lamp which illuminates the dome flatfield. With the exception of the effects of the unstability of the lamp, this trend analysis is redundant with that obtained from both *req. 563 photometric zeropoint* and that of *req. 562 Photometric calibration - Monitoring*. Thus, by combining the results of these *req.'s* an accurate description of the behaviour of the lamp is feasible. The prediction of the behaviour of the lamp is a result,
which will be used as an input for req. 546 *Quick detector responsivity check.*

The dome flatfields will be used on an individual CCD chip level. The relative variations of the quantum efficiency between individual CCD chips will be measured by req. 563 *Photometric Calibration - zeropoint key bands -doit.*

The redundancy between various measurements of req. 563 *Photometric Calibration - zeropoint key bands -doit* and req. 542 *Dome flats at key-bands* will be used to evaluate the relative chip-to-chip gain variations, and in due time, when advanced insight in this item is achieved, this knowledge might be used to further optimize observing scenarios.

For the userbands the dome flatfield will only be taken when during the period of week that particular passband has been used for science observations. No trend analysis will be done on the data taken in the User pass bands.

Fulfilling or fulfilled by:

Selfstanding.

Output is used by:

req. 563 *Photometric Calibration - zeropoint key bands -doit*

req. 547 *Quick detector check* through the characterization of the dome flat field lamp.

req. 546 *Master flatfield and master weight map*

Sources, observations, instrument configurations:

Domeflats with the four keyfilters and the single key composite filter. 5 observations per filter, with approximately 20000 ADU. Each science/standard observation preferably has an associated domeflat observed within 3 days. About 4 dome flats will be measured per day.

Required accuracy, constraints:

Accurately measuring pixel-to-pixel gain variations as small as 1%. Adding 5 exposures of 20,000 counts satisfies this requirement.

When performed/frequency:

Daytime, daily. For the keybands the dome flatfields will be measured at least once/week. For the Userbands the dome flatfields will be measured at least within 3 days that the Userband has been used for science observations.
When filters have been changed in the cassette the presence of dust and/or scratches might require new flat field exposures.

Estimated time needed:
Observation: 10 min. Reduction: 5 min./CCD.

Inputs:
- CalFile– 541 *Master Bias frame*

Outputs:
- CalFile– 542 *Master Domeflat frame*
- CalFile– 542L *Dome Lamp*

TSF:
- Mode– Stare N=5
- TSF– OCM_img_cal_domeflat

5.4.3 Req. — *Flat-field - twilight*

Objective:
Determine master twilightflat frame, using observations of the twilight sky. Twilightflat observations will be attempted for each passband that is observed during that night. If insufficient twilight time is available then the twilightflat observations are taken preferably in the previous or subsequent night. In addition twilightflats of the 4 keybands will be taken at least once a week.

In order to minimize the spatial gradient in the sky brightness, the observations need to be made on the solar circle, i.e. the great circle through the zenith and the sun’s position, at a zenith distance of about 20° in the solar antidiirection. Preferably, the field of view does not include stars brighter than TBD magnitude.

Fulfilling or fulfilled by:
Selfstanding

Sources, observations, instrument configurations:
Twilightflat with 5 observations per filter at ‘empty’ sky, near 20° from zenith in solar anti-direction. It may be advisable to determine a standard target list of approximately 10-20 empty fields, equally spaced in right ascension, at 20° from zenith.
Observations should approximate 20000 ADU. Exposure time should be based on skybrightness. No effects of shutter are expected.

If the tracker can be used as an exposure meter, the desired exposure level can be set directly. Alternatively one can use the Tyson and Gal formula (in template ?) for the variation of the twilight brightness with time, to keep the exposure level constant. In the latter case, a trend analysis of twilightflat can be used to calibrate this formula.

Each science/standard observation preferably has an associated twilightflat observed within 2 days. We expect a total of 10 Twilightflats to be observed during each twilight period, for a total of 4 master Twilightflats per night.

Required accuracy, constraints:
Mean levels should be approximately 20000 ADU.

When performed/frequency:
Evening and morning twilight.

An attempt will be made to observe twilightflats for all bands observed during the night. For all observed bands, twilightflats will be observed within a maximum of 2 nights. In addition, twilightflats for the keybands will be obtained at least once a week, irrespective of whether keybands were used for science observations during that week.

Estimated time needed:
Observation: in total 25 min./night. Reduction: 5 min./CCD.

Inputs:
- **CalFile– 541 Master Bias frame**

Outputs:
- **CalFile– 543 Master Twilightflat frame**

TSF:
- **Mode– Jitter** N=5
- **TSF– OCM_img_cal_skyflat**
 Use an appropriate (empty) field, exposure time determined by tracker CCD, or Tyson-Gal formula.
5.4.4 Req. — Flat-field - night sky

Objective:
Create Night Sky flat frame.

The flatfield that most closely reproduces the actual gain variation of the science and standard observation, can be obtained by averaging a large number of science and standard observations, taking care of properly masking the contaminating object. While such a night-sky flat (aka supersky) could, in principle, be superior in quality to the twilight flat, the procedure to obtain this flat can be computationally very expensive. On the other hand night-sky flats may also be suitable for fringe removal.

It remains to be seen to what extent the problem of sky concentration, i.e. nonuniform illumination due to stray light/reflection affects the quality of night-sky flat.

Because these night-sky flats can only be obtained from actual observations, we cannot guarantee their availability for bands for which only standards were obtained. It is, therefore, not clear how routine building of the skyframes should be incorporated into our photometric calibration scheme.

A minimum of 5 images in a night in a given band is required to optimally fulfill this requirement.

Fulfilling or fulfilled by:
Data reduction of raw data from science and photometric standard observations

Used by: req. 546 Master flatfield and master weight map

Sources, observations, instrument configurations:
Science and standard observations

Required accuracy, constraints:
This procedure would benefit from a prior detection and masking of bright objects. If no masks of bright objects are available, then a minimum of 15 frames should be included.

When performed/frequency:
daytime, daily
Estimated time needed:
Observation: None. Reduction: 20 min./CCD/night/filter.

Inputs:
- CalFile– 541 Master Bias frame
- CalFile– 542 Dome flat or CalFile– 543 Twilight flat

Outputs:
- CalFile– 544 Nightsky flat frame, assuming an average of three different bands observed per night.

TSF:
Raw data of science and standard star observations in jitter and dither mode is used. Avoid using multiple exposures with the same pointing in Stare mode.

5.4.5 Req. — Flat-field - Fringing

Objective:
Determine the fringe pattern of the background.
Fringing due to variable strength of several skylines, mostly apparent at the long wavelengths, requires a different approach to background subtraction. Normally, after flatfielding, the background can be expected to be flat over the entire image, and a median of the image, excluding 5σ outliers, would in principle be sufficient to subtract the background.

In images that suffer from fringing we have to deal with a background that is variable on small ($\ll 1')$ scales within the image, and can not be distinguished from sources. The image itself can, therefore, not be used to determine the background. However, given the fact that most observations are taken in jitter or dither mode, the information of several images can be combined to determine a background. This average should include enough observations to properly exclude contamination from sources, and, because the standard jitter/dither patterns only include 5 pointings, one background computation per jitter/dither is probably not sufficiently accurate. On the other hand, because the fringing pattern varies with time and telescope position, a straight mean (the supersky) over an entire nights worth of data is
also not usable. A suitable strategy to construct a fringed background image, usable for subtraction, thereby removing the fringe pattern, remains to be determined. If the fringe pattern is stable over the night, a decomposition of the night-sky flat in an additive and multiplicative term is feasible. The assumption that the high-frequency spatial component in the night-sky flat are fringes, while the lowest frequency components represent gain variations has been used with reasonable success.

Fulfilling or fulfilled by:
Data reduction of science and photometric standard observations

Sources, observations, instrument configurations:
Use science and standard data to determine background

When performed/frequency:
Commissioning and when long wave science frames are taken.

Estimated time needed:
Observation: None. Reduction: Depends on the analysis.

Inputs:
The science observations themselves are used.

Outputs:
CalFile— 545 ff-fringe

TSF:
Use same data as for night sky flat (req.544)

5.4.6 Req. — Flat-field - master flat and weight map

Objective:
Determine the master flatfield, to be used to correct for the pixel-to-pixel gain variation from the raw image data. Also use this flatfield to create a master weight map, to be used when co-adding image data.

Four different measures of the variation in the gain are available: the dome flat (req.542), the twilight flat (req.543), the night-sky flat (req.544) and the illumination correction (req.548). A suitable choice of the final master flatfield, based on a combination of one or more of these flatfields, and, optionally, the illumination correction will
A method whereby the dome flat is used to measure the pixel-to-pixel (small-scale) variation, and either the twilight or night-sky flat is used to measure the large scale variation, would provide a first-order approximation of the master flatfield. This master flatfield could then be used to flatfield the science and standard images.

Experience at FORS has shown that a suitable combination of twilight and night-sky flats provided the best determination of the gain variation. Experience with WFI indicates that some care has to be taken to address the issue of sky concentration. An optimal algorithm that takes this into account, (using the illumination correction), will be based on experiments with WFI and OmegaCAM data.

The master flatfield is proportional to the inverse variance in the flatfielded data and can therefore be used to build a master weight image. Weights of zero are assigned to hot (req.522) and cold pixels (req.535), as well as pixels that have a relative gain outside a user defined range.

The master weight maps are the basis on which individual weight maps are created (seq.– 632). These individual weight images also assign a weight of zero to cosmic-ray events and satellite tracks.

Fulfilling or fulfilled by:

Additional data reduction of flat fields obtained by req.542 543 544.

When performed/frequency:

New weight and flag images should be constructed whenever a new flatfield is constructed.

Estimated time needed:

Observation: None. Reduction: 1 min./CCD.

Inputs:

CalFile– 522 *Hot pixel map*
CalFile– 535 *Cold pixel map*
CalFile– 542 *Dome flat*
CalFile– 543 *Twilight flat*
CalFile– 544 *Night Sky flat*
CalFile– 548 *Illumination Correction*
Outputs:

CalFile– 546 Master flatfield
CalFile– 546W Master weight map

The master flatfield is used in seq. 632 Trim, debias and flatfield The master weight map is used in seq. 633 Construct individual weights

5.4.7 Req. — Quick detector responsivity check - doit

Objective:

Quickly check the overall health in terms of responsivity by observing the dome screen with the composite filter. Together with req. 521 read-noise this item forms the most important day-to-day health check. The expected lamp intensity is characterized in req. 542 Dome flat. This measurement will lead to a go/non-conformance flag and day report. The results will have to be inspected on the site, as this is a daytime health check of the instrument. Trend analysis on the raw data will be redundant with that of req. 542 dome flat.

The equivalent of this req. on the sky is provided by req. 562 Photometric Calibration - Monitoring

Fulfilling or fulfilled by:

Selfstanding

Sources, observations, instrument configurations:

dome flat with composite key filter

Required accuracy, constraints:

1%

When performed/frequency:

Commissioning, daytime, every day of operations both during CP and RP.

Estimated time needed:

Observation: 3 min/day. Reduction: 1 min./CCD.

Inputs:

CalFile– 542L Dome Lamp
CalFile– 547 Quick check older versions
5.4.8 Req. — *Illumination correction*

Objective:
Characterize the illumination correction.

The zeropoint is determined individually for each CCD in req.563. The gain variation over individual chips is characterized by the twighlight and sky flatfields (req.533 and req.534) under the assumption of an ideal flat illumination over the field of view. In practice this ideal flat illumination can be affected by stray light (sky concentration) and the flatfield has to be corrected for this.

An initial verification that this effect is indeed present will be obtained when constructing catalogues of secondary standards (req.569). In case it is found to have an amplitude over a single chip larger than 1% the effect has to be characterized by measurements of a standard field. The master flatfield (req.546) will apply this information when needed.

Fulfilling or fulfilled by:
Initial verification of effect: req. 569 *Secondary Standards.*
Subsequent measurent of effect, using standards star observations (req.563, req.564)

Sources, observations, instrument configurations:
Standard equatorial field (TBC)

Required accuracy, constraints:
better than 1% for the amplitude over a single CCD.

When performed/frequency:
Verification of effect during commissioning. Measurement, during RP, once/month
<table>
<thead>
<tr>
<th>NOVA - Kapteyn Institute</th>
<th>OmegaCAM</th>
<th>CalPlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>USM – OaPd</td>
<td>ID: VST-PLA-OCM-23100-3090</td>
<td>Issue: VERSION 1.1</td>
</tr>
<tr>
<td></td>
<td>Date: 29 Oct 2001</td>
<td>Page: 47</td>
</tr>
</tbody>
</table>

Estimated time needed:
Verification: see req.569 Measurement: Reduction 5 min/CCD.

Inputs:
- **CalFile– 546** Master flatfield, build with a uniform illumination correction
- **CalFile– 569** Secondary Standards
- **RawData– 563** Zeropoint - Keyband or **RawData– 564** Zeropoint - User-band

Outputs:
- **CalFile– 548** Illumination correction
5.5 Astrometric Calibration

The aim of the astrometric calibration is to accurately determine the projection matrix for converting pixel positions to sky coordinates. This will be done automatically in the data reduction pipeline.

For Mode– SSO N= the astrometric solution can be derived provided some observational limits, restricting the curvature of the stellar track, are met. When stellar tracks become more curved than the limits, all astrometric quality checks will have to be relaxed. All source positions will be derived using the first-order moments of the pixel distribution of the detected objects. The resulting positions, in such cases, will be the weighted averages of the stellar tracks and that of the (than not) moving targets. The exposure time limitation is defined by the curvature of the stellar tracks in the field, which should be less than 1% over the full track. Estimates for limitations on tracking for OmegaCAM are defined by requiring the curvature of the stellar tracks to be less than 0.1 FWHM of the PSF (\(<0.6")

Assuming tracking in Ra, a track length of less than 0.1 degree at any declination is allowed. For a track length of 0.2 degree only declinations between 0 and +/-20 deg or +/-70 to +/-90 deg are within the above limits. For the other modes there are no such restrictions.

The astrometric calibration can be derived using two fundamentally different methods.

The first, traditional, method is to derive the full projection matrix separately for each pointing, ignoring any detailed prior knowledge (apart from some rough initial estimates such as pointing, orientation and platescale). This method has great freedom and allows for instrument independent determination of the projection matrix. It can thus be used on a variety of instruments, but requires more input data elements to achieve an accuracy equal to that of the next method.

The second method allows for a separate determination—and use—of instrument specific characteristics of the geometry that do not change (much) among different pointings and the characteristics that do change with pointing. Fixed characteristics are, e.g., position of the chips relative to each other, the position of the rotator axis, the optical deformation at the position of the focal plane and perhaps pointing accuracy. Variable characteristics include items like...
the flexure of the telescope and its instrument. The latter items need to be
determined for each pointing separately. This method can be robust and has
less degrees of freedom facilitating accurate astrometry with a small amount
of data points. It is, however, tightly fixed to the instrumental geometry. A
geometric model must be obtained and associated parameter values must be
determined before standard astrometric reduction can be done.

Both methods will make use of an astrometric reference catalog. Current
catalogs have positional accuracies that are not extremely high on the scale of
the field of view of OmegaCAM. To achieve higher positional accuracy within
a given pointing set and to allow accurate co-addition without degrading the
PSF the astrometric solution will make use of the overlap among the pointing
set.

The methods can be applied both to the main camera CCD chips and to the
guide CCDs, as the latter can be viewed as a auxiliary CCDs of the main camera.

The requirements outlined here determine the calibration data necessary to
perform an astrometric solution using prior knowledge of instrument specific
characteristics.

The algorithm for the derivation of the astrometric solution is detailed in Section
7.3, while its use is detailed in seq.– 634.

5.5.1 Req. — Position of Camera in focal plane

Objective:

Determine the position of the chips with respect to the rotator axis of the
telescope. This is part of the static astrometric calibration of the camera. It
involves the determination of the chip position, scale, and orientation with
respect to a perfect pixel plane. This has to be done with the ADC in and out.

This procedure produces the astrometric pre-solution. In fact, the expected
pointing and other a-priori positional offsets are expected to be small; hence
the standard astrometric solution can already be obtained without a pre-
solution. However, a first inspection and verification of the pre-solution is a
task to initialize the system.
Fulfilling or fulfilled by:
Selfstanding

Sources, observations, instrument configurations:
High object density (but unconfused) areas such as open clusters. Standard areas, possibly overlapping with standard star fields. All filters and the two optical configurations ADC in and out should be exercised.

Required accuracy, constraints:
Internal precision: 0.3 pixel. External precision limited by reference catalog

When performed/frequency:
Each mechanical change of the camera. Each user supplied filter, once a year.

Estimated time needed:
Observation: 2 hours

Inputs:
CalFile— in1 Astrometrical reference catalogue, e.g. US Naval, or GSC2

Outputs:
CalFile— 551 Astrometric camera/chip solution

TSF:
Mode— dither N=5
TSF— OCM_img_obs_dither, each filter, ADC In/Out

5.5.2 Req. — Telescope Pointing

Objective:
Verify the pointing and the offsetting of the telescope for both optical configurations (ADC in and out).
The pointing model is provided independent of the OmegaCAM S/W, but a verification of both the pointing and the offsetting accuracy is required.
Perform on-site spot checks of the pointing model. The data from the Guider CCD can be used for this.
Also in the data reduction pipeline, as a standard check in the astrometric solution, the pointing error is determined.

Fulfilling or fulfilled by:
Selfstanding.
Sources, observations, instrument configurations:
Standard field

Required accuracy, constraints:
1 arc second

When performed/frequency:
Commissioning, after each change of the pointing model, and to be determined by experience.

Estimated time needed:
10 min

Inputs:
Offset Guide CCD

Outputs:
Conformance flag.

TSF:
Stare mode, dither and jitter mode. In fact all observations can be used.

5.5.3 Req. — **Telescope and Field Rotator tracking**

Objective:
Verify that the rotator performs properly and simultaneously that the telescope is tracking correctly.

Up to Zenith distances of 60 degrees and wind speed of 18 m/s with a dynamical component of 30%, the free tracking of the telescope shall be better than 0.2 arcsec rms. With closed-loop autoguiding, the rms deviation shall not exceed 0.05 arcsec.

Two methods will fulfill this requirement.

First, check at various telescope positions the global performance of the rotator plate which is driven by the pointing model. When the rotator plate is not performing optimal, the objects are elongated in a circular pattern (concentric rings) with the rotator plate axis at the center. This inspection is closely related to the determination of the point spread function.

Second, check for the tracking of the telescope to find functional dependency with telescope position. This is purely a verification. As an internal check, do this for each **OmegaCAM** observing mode. Similar to the rotator plate
inspection the point spread function is used as the measuring tool. When the telescope is not tracking correctly the shapes of stellar objects are systematically elongated. The amount of elongation may not exceed a certain value, corresponding to the basic tracking requirements given above.

These two functional checks are merged into one analysis as they essentially use the same technique for verification and because they are coupled. Non-conform tracking can cause non-conform rotation.

The offset information from the Guider CCD’s is another element in the functional check. When offsets for guide stars are becoming too large, rotator plate errors or telescope tracking errors are apparent as different patterns of offsets during an exposure time.

Fulfilling or fulfilled by:
- Data reduction standard science observations (allmost all will do).

Sources, observations, instrument configurations:
- Most observations can be used.

Required accuracy, constraints:
- First method: 1 arcsecond in the dependencies. Second method 0.1 pixel dimension or 0.1 FWHM

When performed/frequency:
- Commissioning, at each change of the pointing model, in RP to be determined by experience. In CP check once with the ADC in and out.

Estimated time needed:
- First method: 2 min, Second method: 0.01 sec.

Outputs:
- Conformance flags Source extraction files
- Source extraction calfiles (configuration, parameters files)

5.5.4 Req. — **PSF Anisotropy**

Objective:
- Determine the PSF anisotropy.
- Detailed characterization of the Point Spread Function at various positions in the focal plane shall be provided. Monitor optical defects and possible
variations in time. Do this for both optical configurations of the telescope, ADC in and out. Guide CCD recordings are used for the analysis.

Fulfilling or fulfilled by:
Data reduction of observations of high density field, such as employed in req.551.

Sources, observations, instrument configurations:
High density fields observed with **Mode– Stare N=1**.

Required accuracy, constraints:
better than 1%

When performed/frequency:
Commissioning
Each optical change to the telescope, Remount of the detector assembly. Once per three months.

Estimated time needed:
Few minutes per pointing

Inputs:
FITS header keywords storing the offsets given to the Guiding system during the exposure time.

Outputs:
CalFile– 554 *PSF anisotropy*

TSF:
Mode– Stare N=1
TSF– OCM_img_obs_stare

5.5.5 Req. — *The astrometric solution for templates - doit*

5.5.6 Req. — *The astrometric solution for Guide CCD’s*

Objective:
Perform astrometric solutions for the Guide CCD’s and hand over the solution to the Instrument S/W for locating Guide stars.
Note, the Guide CCDs can be read out separately and ’stand alone’.
Fulfilling or fulfilled by:
Selfstanding

Sources, observations, instrument configurations:
Special readout (manual command) of the Guide CCD’s into FITS files

Required accuracy, constraints:
1 arcsec rms for the accuracy with respect to the external standard;
External precision is driven by the position reference catalog. This is in the
case of the USNO-A2 catalog of the order 0.3” with possible systematic
excursions to 1”.

When performed/frequency:
Commissioning.

Inputs:
Reference position catalog (see A4)

Outputs:
CalFile– 556 Guide CCD guide star signal and offset
astrometry solutions inserted into the descriptors; handed over manually to
instrument S/W responsible
5.6 Photometric Calibration

The basic requirement for the photometric calibration of the broad-band filters is to achieve an accuracy of better than 5% on the photometric scale in ‘instrumental magnitudes’ as assigned to the units of the resultant output image of the “image pipeline”. The accuracy of the colour transformation terms of instrumental to standard systems should be better than 10% on the photometric scale.

In order to maintain this accuracy on a routine basis over years of operation, a set of requirements are specified in this section.

The descriptions of these requirements involve the following OmegaCAM specific ingredients:

- **key passbands** ($X = u', B, V$ and i' in Johnson (B,V) and Sloan (u', i') system)
- **two lens correctors** (near Zenith, the baseline, key configuration) and an **atmospheric dispersion corrector -ADC** for operations in User mode at larger Zenith angles.
- a **composite key filter** ($X = u'$, B,V and i' in each quadrant),
- a standard **polar field**, observable throughout the year,
- **8 equatorial fields**, containing both primary and secondary standard stars (Landolt fields - see section 7.1)
- a **dome lamp** and a **fixed dome screen** equipped with a stabilized current supply,
- **32 CCD’s** are operated simultaneously, with the exception of the composite filter which ‘feeds’ 8 CCDs simultaneously in one passband.
- data rates should stay within limits that allow processing and storing of the data with the currently anticipated technology.
- A **standard atmospheric extinction curve** is adopted and all atmospheric extinction in various passbands is taken as a scaling of this curve.
- The photometric monitoring employs observing **strategy – freq** which has overriding priority on the scheduling and which employs observing **mode – stare** and its associated **trend analysis**.
The prime concept of the **OmegaCAM** photometric calibration is to *continuously* maintain the photometric scale in the keybands, even when the science programme does not require the usage of these passbands during a particular night or period. This continuity is used by the data reduction (calibration and its trend analysis) and is meant to ease the maintenance of the photometric system on a routine basis.

The usage of a standard extinction curve results into a high rigidity of the pipeline processing, and provides a tool for error estimates, quality checks, recognizing non-conform data and provides a framework for successful pipeline processing of incomplete data.

We model the characterization of the photometric system in terms of a series of gains, where for each aspect of the calibration we distinguish a gain g_0 at a pre-determined fixed moment and the variation of that gain as function of time $g(t)$, the latter being mostly analyzed by a **trend analysis**.

All photometry is determined on an individual CCD chip basis ($N =$ number of chip, 1...32), apart from the atmospheric extinction which is common for all chips.

Most gains depend on passband (X), but not the variation of the atmospheric extinction, which is assumed to scale with the standard extinction curve.

In Figure 5.6 an overview is sketched of the various requirements which form the photometric calibration.

The fixed and variable gains of the various calibrations are defined as follows:

Atmospheric extinction: use scaling of standard extinction curve represented by $g_{sel.e}(X)$:
- middle of the night: $g_e(0) \times g_{sel.e}(X)$ \textbf{req.563}
- during the night: $g_e(t)$, t in hours \textbf{req.562}

Zeropoint effective DQE - \textbf{req.563}
- middle of the night: $g_{DQE}(0, N, X)$
- on different nights: $g_{DQE}(t, N, X)$, t in nights

Flat field - \textbf{req.542} and others
- for period of 7 days: $g_{ff}(week, N, X)$
different weeks: \(g_{ff}(t, N, X) \) \(t \) in weeks; every week a new \(ff \) is assigned, replacing \(g_{ff}(\text{week}, N, X) \)

For a given star observed in passband \(X \) at a given position in the field of view, at a given moment (\(t \)) the relation between the output (\(I_{\text{obs}} \) of the detectors) and the zero-airmass intensity is given by the general expression:

\[
I_{\text{obs},X} = g_e(0)g_e(t)g_{sel.e}(X)\times g_{dqe}(0, N, X)g_{dqe}(t, N, X)\times g_{ff}(\text{week}, N, X)\times I_{\text{ref},X}
\]

Colour term:

The primary standard stars have been measured with presumably the same filter passbands, but with CCD detectors which have a different relative spectral responsivity. This implies that the effective \(g_{DQE}(0, N, X) \) when observing these primary stars depends on the colour of these stars: \(g_{DQE}(0, N, X, X-x) \).

The photometric calibration involves the solution of the general equation above along a different path, with different unknowns, and different knowns.

The initialization of photometric calibration is to carefully process backwards and forwards through the basic equation. Particularly the settling of the secondary standards, which cover a larger field of view than the primary standards is tricky. On one hand the preparatory programme will provide this information, on the other hand OmegaCAM calibrations can self-calibrate the secondary standards, which has the advantage that it avoids the extra bootstrapping via another telescope and detector system.

Normalizations:

\(g_{ff}(\text{week}, N) \) unity at central pixel of each chip \(N \)
\(g_e(0) \) and \(g_e(t) \) multiplication factor of standard extinction curve represented by \(g_{sel.e}(X) \)
Monitoring the Photometric Calibration

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Applied filters</th>
<th>Field</th>
<th>1/3Night</th>
<th>1 Night</th>
<th>1 Week</th>
<th>Run</th>
<th>1 Month</th>
<th>1 Year</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.2 —Monitoring</td>
<td>$u'V$</td>
<td>Polar</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5.6.3 —Zeropoint</td>
<td>$u'BVi'$</td>
<td>Eq. 1</td>
<td>Eq. 2</td>
<td>Eq. 3</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
</tr>
<tr>
<td>5.6.4 —Zeropoint</td>
<td>$u'V$</td>
<td>Eq. 1</td>
<td>Eq. 2</td>
<td>Eq. 3</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
<td>Eq. 8</td>
</tr>
<tr>
<td>5.6.5 —User key</td>
<td>$u'BV$</td>
<td>Eq. n</td>
</tr>
<tr>
<td>5.4.2 —Flat-field</td>
<td>$u'BV$</td>
<td>Dome</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5.4.7 —Quick check</td>
<td>$u'V$</td>
<td>Dome</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig 5.6. Overview of tracking the photometric calibration at various time scales. From left to right, the figure indicates the requirement number, the requirement name, the used filters and standard fields. The stars indicate at which frequency the measurement is done. For further details, see text.
5.6.1 Req. — Shutter Timing

Objective:
Verify the actual timing of the shutter.

Exposure timing has to be accurate to \(\pm 0.2\%\) at 1 sec exposure time at any position of the focal plane (OmegaCAM Technical Specifications). The exposure timing signal is provided by PULPO. For the following considerations we assume that the PULPO timing signal is accurate to better than 0.1 msec (i.e. it is not the dominating source of inaccuracy).

The shutter mechanism consists of a pair of chasing carbon fibre blades. Their movement is controlled by the Shutter Control Unit (Shutter CU) such that it results in an identical effective exposure time all over the frame. These two movements may or may not overlap in time depending on the exposure time and the blade traveling time.

The opening blade starts moving immediately (\(\mu\)sec’s) after the falling edge of the TTL signal (provided by PULPO). This is the beginning of the exposure procedure. The closing blade starts moving immediately (\(\mu\)sec’s) after the rising edge signal was detected and ends (about 1 sec later) when the closing blade completely covers the aperture, which marks the end of the exposure procedure. Therefore, the duration of an exposure procedure is always:

\[
\text{exposure time} + \text{blade travel time (ca. } 1 \text{ sec})
\]

Two types of delays affect the effective exposure time: The delays of the start of the blade movements after the opening/closing TTL signal edge (i.e. absolute exposure time) and position dependent delays during blade movement (i.e. exposure homogeneity).

The open/close delays are up to 0.05 msecs due to signal polling of the Shutter Control Unit software. These values are well within the requirements (shutter open time error: \(\pm 0.2\%\) at 1 sec corresponding to \(\pm 2\) msecs).

Deviations from this occur only in case of a severe shutter failure which is detected by the Shutter CU and PULPO independently followed by operator actions.

Position dependent delays (requirement: 0.2% at 1 sec exposure time) will be monitored in regular intervals of 3 months.

Dome flatfields of 10 sec and 0.1 sec exposure time will be taken for both
shutter blade movement directions. Illumination level shall be such that the CCD’s are at about 60% to 80% full well for the 10 sec exposure. Exposure times will have to be evaluated during Commissioning.

Sources, observations, instrument configurations:
Dome flat field with a level of about 40,000 - 50,000 ADU’s

Required accuracy, constraints:
Timing error less than 0.2%.

When performed/frequency:
Commissioning, once per 3 month, further to determined by experience.
Daytime

Estimated time needed:
1 hour

Inputs:
CalFile– 541 Bias

TSF:
Mode– Stare N=4
(TSF– OCM_img_cal_domeflat, $N = 4, t_{exp} = 10.0, 0.1, 0.1, 10.0$)
= TSF– OCM_img_cal_shutter

5.6.2 Req. — Photometric Calibration - monitoring

Objective:
Monitor any short term variability related to the transparency of the atmosphere (atmospheric extinction) or due to instrumental instabilities (e.g. effective DQE) with a minimum sampling of at least 3 times/night. This provides a daily overall health check of the instrument and detectors. A further trend analysis has to provide information on long term stability.
The variation (r.m.s.) of the flux detected by the autoguider shall also be used as an indicator (put in the FITS header) of the sky conditions. This is to be done for each science observation.
This monitoring is done on a standard polar field, which will be repeatedly observed at the beginning, middle and end of the night with the composite key filter (u', B, V and i' band), irrespective of the passbands used for
the science observations. The observations are done in the standard configuration, with the two-lens corrector. A direct comparison of the measured intensity of the stars with reference values is used to qualify the overall conditions of instrument and atmosphere, the actual zeropoint (both unit airmass extinction and instrument DQE) being determined by req.563. The composite filter will provide simultaneous measurements of the sky brightness in these bands, thus providing an accurate spectrum with a spectral resolution R of roughly 5.

The comparison of the observed signal with the expected signal from standard stars in each of the four quadrants will lead to the determination of the product of the atmospheric extinction \((g_e(0) \times g_e(t) \times g_{st.e}(X)) \) (with \(g_{st.e}(X) \) the gain of the standard extinction curve at passband \(X \)) and the overall effective DQE \(g_{DQE} \) of the detector system including the optics. As req.563 solves both \(g_{DQE} \) and \(g_{st.e}(X) \times g_e(0) \), a comparison with these measures gives \(g_e(t) \), the variation of the overall gain during the night. The thus derived values of \(g_e(t) \) at \(t = \) beginning, middle and end of the night (could be more if the observer so wishes) provides the required monitoring. Excursions from the standard extinction curve, due to extraordinary meteorological conditions, can be traced by computing the standard deviation of observed minus standard curve values in the various bands.

The sky spectrum shall be derived on line from the data, as a quality check on the health of the instrument and the clearness of the atmosphere, as clouds or cirrus will be immediately notable in the spectral shape. A reference table containing the expected sky brightness (and thus colour) as function of lunar phase will be used in the evaluation of the data.

The repetitive measurements on the same field, with the same filter will also be used in trend analysis to monitor the overall long term stability of the instrumentation and atmosphere. The redundancy of these measurements with req. 563 zeropoint and req. 542 Flat field-dome will be used as a cross-check on the validity of the photometric system.

In addition, the repetitive nature of these observations, make them ideally suited for the health check as specified in requirement 3.7.3.4 of the Technical Specification. In order to facilitate rapid analysis at Paranal an additional fast analysis recipe is proposed, based on a predefined catalog of standard objects.
in each CCD. This recipe assumes that the pointing accuracy, achieved when guiding, is better than 6 arcsec. The recipe identifies regions of interest in each CCD for each object in the input catalog. These regions are then extracted after which a simple moment analysis of the brightest object in the region will determine total flux in ADU, position and FWHM for each object of interest, as well as the background flux in ADU.

Fulfilling or fulfilled by:
Selfstanding; a corresponding requirement on detector level is **req. 546 Quick check**

Sources, observations, instrument configurations:
The OmegaCAM polar field, key composite filter, two lens corrector; short (about 20 sec) integration **Strategy– freq**

Required accuracy, constraints:
all photometry better than 1-2% on the photometric scale; the zeropoint of the night should be determined first **req. 563**.

When performed/frequency:
beginning, middle and end of night; any moment atmospheric conditions are suspect. QC1, CA

Estimated time needed:
Observation: 3 times 4 min. (100 sec preset + 100 sec integration + 42 sec readout) totaling to 12 min/night
each night. Reduction: 5 min./CCD.

Detailed estimate of required integration time:
The secondary standard stars in the standard field have a limiting magnitude $V \sim 20$. The internal accuracy of the present task is set on 1-2% level in order to achieve an overall end-to-end accuracy of better than 5% on the photometric scale. Clearly, for the composite filter the desired exposure time will be dominated by the response in the U' band. Using the WFI2.2m ETC, corrected for the VST optics and estimated CCD spectral responsivity, we estimate a $S/N = 20$ after 100 sec integration for a $V = 20$ F0V star at airmass 2 (South Pole) with nominal 1.0 arcsec seeing. Thus, most secondary standard stars will have a S/N better than 20 in the U' band in a 100 sec
integration. This would just match to the wanted 5% overall photometric accuracy in the u' band, but would lead simultaneously to higher S/N in the other bands. We compute for a V=20 GoV star S/N = 90 in i' new moon, S/N=70 in V new moon, S/N =45 in V full moon and S/N =80 in B new moon. Thus an integration time of 100 sec for the composite filter appears reasonable, but clearly the u' band data give lower photometric accuracy, and the final value will depend on the achieved responsivity in the u' band. The final number has to be determined by experience and depends on the distribution and colours of the stars in the u' quadrant of the field of view.

Inputs:

Table with sky brightness in u’, B, V and i’ as function of lunar phase, (currently available in WFI2.2m ETC).

CalFile– 563Z Zeropoint - extinction - keybands of that night \((g_{st.e}(X) \times g_e(0))\)

CalFile– 562S Sky brightness Reference values

CalFile– 569 Standard Catalog

CalFile– 541 Master Bias Frame

CalFile– 546 Weightmap

Outputs:

CalFile– 562 Extinction - night report \((g_e(t) \times g_{st.e}(X) \times g_e(0))\) at various \(t\)

CalFile– 562u Photom-u’ Stars + Sky

CalFile– 562B Photom-B Stars + Sky

CalFile– 562V Photom-V Stars + Sky

CalFile– 562i Photom-i’ Stars + Sky

Series of output files will be used for trend analysis

TSF:

Strategy– freq
Mode– Stare \(N=1\)
\(\text{TSF– OCM_img_obs_stare, } N=1, \text{ filter=composite} \)
\(\text{TSF– OCM_img_obs_monit} \)
5.6.3 Req. — Photometric Calibration - zeropoint key bands -doit

Objective:

Determine the zeropoint of the overall detector chain, separately for each CCD chip, in all four keybands (no composite filter) and the true atmospheric extinction at midnight by measuring standard stars in the 4 key passbands in one of the eight equatorial fields and the polar field. Do this every night whatever the science programme on the telescope may be. Optionally, add one observation of another equatorial standard field with higher airmass to obtain a redundant, classical, measurement of the atmospheric extinction.

The keybands plus the two-lens corrector form the standard for this requirement, the use of the ADC is considered as User mode (see req. 5.64).

The zeropoint corresponding to the DQE of each of the 32 CCD chips will be determined on an individual chip basis \(g_{DQE}(0, N, X)\). Thus the composite filter can not be used for this. However, additional data will be acquired with the composite filter for redundancy. In case the relative gain variations of individual CCD chips appear small and well characterized by the overall flatfield (which is not really expected) then the req. might be fulfilled with only the composite filter, substantially relieving the data rate and workload.

The combination of the data of req. 5.62 Monitoring taken at the middle of the night with the present zeropoint data will be used to solve separately for the effect of the extinction and DQE at the middle of the night. A standard extinction curve will be used as a reference, for error analysis, and to support the derivation of the solutions in the pipeline processing.

As primary standards the Landolt equatorial fields will be used, possibly extended with the WFI@2.2m preparatory programme results (Section 7 of CP). For each of the 8 equatorial fields a solution for secondary standard stars will be made for a larger, one degree, field of view. The acquisition of catalogues of secondary standards is discussed in req.5.69. These secondary standards data will be used for the nightly determination of the zeropoint.

During commissioning the reproducibility of the zeropoint determination should be verified for the different observing modes Mode– jitter N=5 and Mode– dither N=5. This also serves as an end-to-end-test.

Note that the fast extraction procedure defined in req.562 can also be
adapted to these standard star observations of the equatorial fields.

Fulfilling or fulfilled by:
selfstanding, but uses data of req.562 at the middle of the night.

Sources, observations, instrument configurations:
- **Strategy– freq Mode– Stare** N=1 OmegaCAM equatorial fields; exposures in u', B, V and i' and composite. Two lens corrector.

Required accuracy, constraints:
1% on the photometric scale

When performed/frequency:
Once in the middle of each night. The linking of external (primary) to internal (secondary) standards will be done once during commissioning, and the first year of operation for each standard field; after that to be determined by experience.
It is to be determined by experience (stability of the system) whether the nightly zeropoint measurements can be relaxed as follows: in case the keyfilters are not used for science observations in a particular night, it is sufficient to only take an exposure with the composite filter.
During commissioning the **Mode– dither** N= and **Mode– jitter** N= have to be verified.

Estimated time needed:
- Observation: 12 min. each night
- Reduction: 10 min/CCD/filter.

Detailed estimate of required integration time:
The secondary standard stars in the standard fields have a limiting magnitude $V \sim 20$. The internal accuracy of the present task is set on the 2% level in order to achieve an overall end-to-end accuracy of better than 5% on the photometric scale.
Using the WFI2.2m ETC, corrected for the VST optics and CCD responsivities, for 1.0 arcsec seeing and airmass 1.2 we compute an expected $S/N = 50$ for a $V = 20$ mag G0V star, of u' band 100 sec but $S/N = 45$ for F0V B band 41 sec V band 60 sec
i’ band 84 sec

As there will be many much brighter stars (than the V=20 limiting mag for which this calculation is made) in the field of view, leading to much better S/N these integration times will be sufficient for the goals, also at other moonphases (actually checked with ETC). The u’ band observations are on the limit and should be carefully checked during Commissioning. Thus a total sequence would last including readout of 42 sec:

preset (100), u’(100+ 42), B(45 + 42) , V (60+42), i’ (84 + 42) = 657 sec

In addition, a composite filter image should be taken (100 sec) which in the long run might replace the u’, B, V, i’ sequence with monolithic filters.

Inputs:

In pipeline data reduction req. 563 reductions of a given night should preceed req. 562 Monitoring reductions.

External magnitudes:
CalFile– 569 Standard Catalog

For each night:
CalFile– 562 Extinction night report CalFile– 564E Standard extinction curve

Outputs:

CalFile– 563Z Zeropoint + extinction - keybands (always) used by seq.– 636.

TSF:

Strategy– freq
Mode– Stare N=1

(TSF– OCM_img_obs_stare, N=1, filter=key band)

= TSF– OCM_img_obs_zpkey

5.6.4 Req. — Photometric Calibration - zeropoint user bands

Objective:

Determine the zeropoint of the overall detector chain and the atmosphere by measuring standard stars in the **User passbands**.

The zeropoints of the photometric calibration in the User bands will only be
determined for the nights that the User bands are actually used for scientific observations. The measurements will be done on one of the eight equatorial fields.

The atmospheric extinction will be determined in the keybands through req. 562 monitoring on the polar field. These data are appended here (like req. 563) with a composite key exposure at the equatorial field at midnight, to settle $g_e(0, uBVi)$. The extinction curve will be used to transform measured atmospheric extinction at the keybands to the User bands.

The transformation (colour term) of the user passband to the key passbands is determined for a limited set of filters and the ADC with the keybands in req. 565.

By combining the extinction results in keybands, the passband transformation coefficients and the direct zeropoint measurements in the User bands the zeropoint corresponding to the DQE of each of the 32 CCD chips will be determined on an individual chip basis.

Trend analysis on these data is not required. The instrumental magnitudes of standard stars in each of the userbands will not be solved.

Fulfilling or fulfilled by:
Selfstanding, but uses data of req. 562 at the middle of the night.

Sources, observations, instrument configurations:
All observations done with Mode– Stare N=1. OmegaCAM equatorial fields; always one exposure in composite key filter and additional exposures in User bands.

Required accuracy, constraints:
2% on the photometric scale for broad bands and 5% for narrow band filters.

When performed/frequency:
Once in the middle of each night.

Estimated time needed:
2-3 minutes per User band
Reduction: 10 min./CCD.

Inputs:
Reference magnitudes and transformations:
CalFile – 569 Standard Catalog
CalFile – 565 User -> key
CalFile – 564E Standard extinction curve
Each night:
CalFile – 562 Extinction night report

Outputs:
CalFile – 564 Zeropoint - extinction - Userbands (always)

TSF:
Mode – Stare N=1
(TSF – OCM_img_obs_stare, N=1, filter=userband)
= TSF – OCM_img_obs_zpuser

5.6.5 Req. — Filter band passes - user bands vs key bands

Objective:
Characterize the transformation coefficients, including the colour term for the OmegaCAM user passbands to the OmegaCAM key passband. The standard keybands are calibrated in req.563 with the two lens corrector; the characterization of the ADC at the keybands and its transformation to the standard configuration is part of the present requirement.

Fulfilling or fulfilled by:
Selfstanding.

Sources, observations, instrument configurations:
OmegaCAM equatorial fields; Mode – Stare N=1; ADC for key passbands.

Required accuracy, constraints:
10% on the photometric scale (formal spec) and 2% (goal) for broad band filters

When performed/frequency:
Once commissioning

Estimated time needed:
20 min/night

Inputs:
Reference magnitudes and transformations:
CalFile– 569 Standard Catalog CalFile– 564E Standard extinction curve each night:

CalFile– 562 Extinction night report

Outputs:

CalFile– 565 User -> key

5.6.6 Req. — Dependency on angle - ADC, rotator/ reproducability

Objective:
Verify the dependency of the photometric calibration on the angle of the field rotator.
Measure dome flatfield at 12 field rotator angles.
Measure the polar field with 12 field rotator angles.
This also verifies the reproducibility and provides an end-to-end test.

Fulfilling or fulfilled by:
Selfstanding

Sources, observations, instrument configurations:
Flat field on dome with the 4 key passbands.

Required accuracy, constraints:
1% on the photometric scale

When performed/frequency:
Commissioning

Estimated time needed:
Dome: day time, one day
polar field 2 hours.

Outputs:
Flat fields - internal

TSF:
Mode— Stare N=12
TSF– OCM_img_cal_domeflat
and
Mode— Stare N=12
5.6.7 Req. — *Linearity (as a function of flux)*

Objective:
Verify the linearity (ratio of input over output) of the overall detector amplification-data reduction chain for the three different observing modes as an end-to-end test.

Compare the resultant magnitudes derived by the image pipeline by taking short and long exposures of the same standard field.

Fulfilling or fulfilled by:
Selfstanding

Sources, observations, instrument configurations:
Equatorial field in all the four key passbands; short 10 sec, 100 sec, 400 sec and 800 sec exposure. Two lens corrector.

Required accuracy, constraints:
Better than 1% on the photometric scale

When performed/frequency:
Commissioning

Estimated time needed:
Commissioning 6 hour

Outputs:
OK flag

TSF:
- Mode—Stare N=2
- TSF–OCM_img_obs_stare
- Mode—jitter N=5
- TSF–OCM_img_obs_jitter
- Mode—dither N=5
- TSF–OCM_img_obs_dither
5.6.8 Req. — Detection limit and ETC calibrations

Objective: Verify the effective detection limit/overall throughput of VST + camera and subsequently the parameter values used for the Exposure Time Calculator.

Fulfilling or fulfilled by:
Data analysis of req. 563 Zeropoint, req. 567 Linearity end-to-end-test

Required accuracy, constraints:
10% in detection limit

When performed/frequency:
Commissioning

Outputs:
Values for ETC

5.6.9 Req. — Secondary Standards

Objective:
Build catalogs of secondary photometric standards, by observing Landaolt fields, centered on each individual CCD.

A fundamental concept in the calibration of OmegaCAM data is separate photometric calibration for each CCD. To obtain this calibration with a single observation this requires photometric standards covering the entire FOV of the instrument. There are currently no catalogs of photometric standard stars satisfying this requirement. Hence, obtaining such catalogs of secondary standards for the equatorial fields and the polar field will be part of the calibration observations to be performed during operations.

Obtaining the necessary observations of secondary standards is a time-consuming operation (see below). Moreover, because these observations should cover all 8 equatorial fields (ref seq.– 563), approximately two (bright) nights each month will have to be reserved for these observations, at least in the first year of operations.

The set of observations of secondary standards will also be used to determine the illumination correction (req. 548). Note, that this constitutes a bootstrap problem, because determining accurate zeropoints of the secondary standards requires that the illumination correction is already known.
Because of this bootstrap problem, a straightforward determination of the zeropoint requires that for each CCD the zeropoint and illumination correction are determined simultaneously using primary standards. Therefore, obtaining measurements of secondary standards requires a sequence of observations that positions the primary standards in each CCD, i.e. 32 pointings per field, per filter. Techniques for reducing this observational burden are under investigation.

The order of priority of determining standards is first the key bands followed by the composite filter.

Fulfilling or fulfilled by:
Selfstanding.
Initial determination of the illumination correction is used to verify presence/absence of this effect (see req. 548).

Sources, observations, instrument configurations:
Strategy– freq Mode– Stare N=32 OmegaCAM equatorial fields and polar field.

Required accuracy, constraints:
0.02 mag in individual secondary standards stars.

When performed/frequency:
Commissioning, 2 nights of bright time, each month in the first year.

Estimated time needed:
Observation: 1.5 hours, for one field (32 pointings). Reduction: 2 hours per CCD

Inputs:
CalFile– 569E Primary Standard stars

Outputs:
CalFile– 569 Standard Catalog

TSF:
Strategy– mosaic
Mode– Stare N=32
TSF– OCM_img_obs_stare
5.7 Internal alignments, optics etc

5.7.1 Req. — *Camera focus/tilt*

Objective:
Determine and verify the camera focus.
The tilt of the detector plane with respect to the focal plane and its dependency on the orientation of the telescope shall be determined both from:

- **CalFile– 554 PSF anisotropy**
- and from the matrix of PSF's provided by the present requirement.
Verify once for each filter that they have the same optical thickness (15mm physical thickness). Do this by measuring the "filter focus offset".

Fulfilling or fulfilled by:
Selfstanding

When performed/frequency:
CP, also filter thickness only once during commissioning

Estimated time needed:
Observation: - Focus offset and tilt: 2 hours during CP - Verification filter focus offset 30 min/filter (Commissioning) Reduction: 1 min/CCD.

Outputs:
focus offset values to be transferred to INS data base

Conformance flag for optical thickness of all filters.
Conformance flag for tilt

TSF:

TSF– OCM_img_tec_focuseq

5.7.2 Req. — *Ghosts - ADC*

Objective:
Verify the absence/presence of ghosts.
For each available filter inspect the presence of ghosts by making several exposures near a very bright star at various angular distances from the field center. Do this for both correctors.
The inspection will be done in first instance visually on the RTD. Off-line the images will be fed to the standard pipeline for closer inspections.

Fulfilling or fulfilled by:
Selfstanding

Sources, observations, instrument configurations:
Very bright star at several angular distances from the field center (0.7, 1, 2, 3 degree, to be determined by experience). All available filters, or when a new filter is installed.
To be done for both correctors, to be determined by experience.

Required accuracy, constraints:

When performed/frequency:
CP

Estimated time needed:
1 hour/filter

TSF:
Mode– Stare N=1
TSF– OCM_img_obs_stare

5.8 Effect of Telescope

The various effects of the telescope on the quality of the images produced by the camera have been addressed by the following req.'s:

req. 524 Electromagnetic compatibility
req. 551 Position of camera in focal plane
req. 552 Telescope pointing
req. 553 Telescope and rotator tracking
req. 554 PSF anisotropy
req. 566 Dependency on rotation angle - field rotator, ADC
req. 572 Ghosts

This list appears rather complete and no additional requirements are specified.
5.9 Workhorses and End to end tests

WORKHORSES

The following ‘work horses’ or ‘doit’ requirements are specified:

- req. 521 CCD read noise - doit
- req. 531 CCD Dark Current - doit
- req. 541 Bias - doit
- req. 547 Quick detector responsivity check - doit
- req. 555 The astrometric solution for templates - doit
- req. 563 Photometric Calibration - zeropoint keybands - doit

The following end-to-end tests (i.e. observational data which employ many different aspects of the system and which can be used to trace reproducibility) have been specified:

- req. 566 Dependency on rotation angle - ADC, rotator/ reproducibility
- req. 567 Linearity (as a function of flux)
- req. 562 Photometric calibration - Monitoring/ Health check

5.10 On-site quick look analysis

Requirements for the Real Time Display, essentially requirements on how to perform visual health checks on the acquired data, are given in the Instrument S/W User requirement document.

Here req.’s are listed which require analysis on the site.

The first list gives the requirements for which on-site analysis is essential (listed in order of priority).

- req. 562 *Photometric calibration- Monitoring
- req. 547 *Quick detector responsivity check - doit
- req. 521 *CCD read noise - doit
req. 531 *CCD Dark Current - doit

The second list gives the requirements for which on-site analysis is desirable/most practical (listed in order of priority). On-site, these activities will output go/no-go flags.

req. 571 Camera focus/tilt
req. 552 Telescope pointing
req. 553 Telescope and rotator tracking
req. 566 Dependency on rotation angle - field rotator, ADC
req. 524 Electromagnetic compatibility
req. 551 *Position of camera in focal plane
req. 554 *PSF anisotropy
req. 572 Ghosts

In the lists above the req.'s which produce a CalFile– are marked with a *. These req.'s have also to be processed off-line at ESO HQ (e.g. DFS pipeline, DFS operations, calibration pipeline, QC1, Quality control, trendanalysis).

DFS-pipeline modules, extracted from the off-line ESO HQ version, (including those used for calibration pipeline and QC1) could fulfill these task on-site with relative limited extra effort. Such modules will run with a stripped Calfile-date base. As a desirable side effect, this creates the possibility to also quickly verify any other req.'s with extracted DFS-pipeline modules in the case of un-expected events.

The filling of the calibration database (CalFile–)should however be exclusively handled by the off-line pipeline at HQ.
6 DATA REDUCTION SPECIFICS- see URD and DRS

Baseline requirements are listed in the URD, specifications of implementations are given in the DRS.
7.0 PREPARATORY PROGRAMMES

The Consortium undertakes several preparatory programmes which support the general scientific requirements for **OmegaCAM**, but which do not form part of the deliverables as negotiated in the MoU.

In the URD, some top level statements on these programmes are given, while details etc. are presented in the calibration plan.

ESO’s enterprise of Wide-field imaging at the 2.2m telescope at La Silla (WFI@2.2m) with the $8k \times 8k$ camera will be used as a **test bed** for some applications and procedures of the **OmegaCAM** project. Unfortunately, ESO’s DFS is only implemented in a very limited way for the WFI@2.2m, which limits this exercise.

The **Preparatory photometric programme** (allocated at WFI@2.2m), meant to extend the photometric standards to a one square degree FOV, will be used to verify and finetune the calibration procedures (and requirements) for **OmegaCAM**.

The consortium prepares for a **LINUX** parallel cluster for parallel processing, particularly for the image pipeline.

Further, the consortium prepares for advanced object oriented databasing of the source lists that can be extracted from the calibrated images, following the prime objective of the VST/**OmegaCAM**: the finding and identifying of special targets for the VLT. This system should be designed as closely as possible to the DFS pipeline in order to avoid duplication of work.

7.1 Photometric Programme

Request for technical time at the ESO@2.2m telescope

UBVRI STANDARD FIELDS FOR THE PHOTOMETRIC CALIBRATION OF THE OMEGACAM IMAGES

Principal Investigator:
Giampaolo Piotto,
Dipartimento di Astronomia,
Vicolo dell’Osservatorio, 5,
I-35122 Padova, Italy.
piotto@pd.astro.it

Co-Investigators:
E. Cappellaro, Padova, I; E. Held, Padova, I; K. Kuijken, Groningen, NL; E. Valentijn, Groningen, NL; R. Bender, USM, D; D. Hamilton, USM, D; M. Arnaboldi, Napoli, I; D. Baade, ESO, ESO; P. Stetson, DAO, OTHER.

ABSTRACT
We propose to create a set of 60×60 arcmin2 equatorial standard star fields, separated by 3 hours in right ascension, plus 6 cluster fields, and one polar field, in order to enable the photometric calibration of the wide field images from the OmegaCam mounted on the VST telescope. We plan to provide UBVRI standard magnitudes with an accuracy of ~ 0.01 magnitudes in the Johnson-Cousins photometric system down to $V \sim 20$, as defined by the set of Landolt (1992) standard stars. These fields will become the basic tools for the photometric calibration of the OmegaCam data and for the routine mapping and daily maintenance of the photometric capabilities of the camera and of the photometric conditions of the sky at Paranal.

We plan to use the results of this survey not only for the fundamental definition of the photometric standards, but also for the development of the OmegaCAM procedures.

Night Request:
4 nights in April 2000 (bright time)
4 nights in July 2000 (bright time)
4 nights in October 2000 (bright time)
4 nights in January 2001 (bright time)

Justification
The VLT survey Telescope (VST) is a 2.6m telescope which will be constructed by the Napoli Observatory and managed by ESO on Cerro Paranal. The telescope's main purpose is to carry out long term surveys and to provide the selection of targets for VLT science. The telescope will be equipped with a wide field CCD mosaic camera (OmegaCam), that will be built by a Consortium of Dutch, German, and Italian institutes. According to the present schedule, the
camera should be in operation in Spring 2002. OmegaCam is a CCD mosaic camera with 16384×16384 pixels covering a field of approximately one square degree with very good sampling (0.21 arcsec/pixel). OmegaCam will be the only instrument mounted on VST for many years and it is expected to operate for at least 10 years.

In order to: 1) make good scientific use of the camera, 2) fulfill the various photometric requirements anticipated in the OmegaCam project, and in particular the routine operations and maintenance of the photometric system, and 3) monitor the photometric conditions of the sky at Paranal, it is mandatory to prepare a photometrically internally consistent and homogeneous set of appropriate 60×60 arcmin2 standard fields, which can guarantee a photometric calibration at a level of 0.01 magnitudes throughout the year in the UBVRI Johnson-Cousins system. These bands are the ones which most need a calibration to a standard system, and it is easy to predict that a wide variety of OmegaCam observations will take advantage of the corresponding broad band images.

The most widely used set of primary standard stars for CCD photometry in the Johnson-Cousins system has been provided by Landolt (1992, AJ, 104, 340), who gives magnitudes for 526 stars centered on the equator and located in a set of standard regions which cover an area typically smaller than 30×30 arcmin2 and a magnitude interval $11.5 < V < 16.0$. Here we propose to extend the set of standards provided by Landolt both in magnitude (most of the Landolt stars have magnitudes too bright to be observed with a 2.5m telescope) and in covered area. The Landolt standards are too bright, and saturate even with very short exposures when observed with a 2.5m telescope. Moreover, it is of fundamental importance to set 60×60 arcmin2 standard fields. This will make straightforward the calibration and the routine performance checking of OmegaCam (and other large field cameras) without multiple pointings.

In particular, we propose to create a set of 60×60 arcmin2 equatorial field, separated by 3 hours in right ascension, centered on the 8 fields to which Landolt dedicated most of his efforts, i.e., the Selected Areas: 92, 95, 98, 101, 104, 107, 110, 113.

For a better calibration of southern hemisphere observations, we plan to extend
the original set of Landolt standard fields to a group of star clusters including some off the equator (Fornax, Carina, NGC 2818, M5, Pal 5, NGC 7006), which we have already linked (on a much smaller region) to the Landolt system. We want to prepare also a polar field, which can be pointed to any time during the year to ensure photometric homogeneity and to help to determine the extinction coefficients at the beginning of each night.

The OmegaCAM consortium believes that the current project is a necessary step to settle and understand the problems related to the use of multi-element wide field CCDs for photometric observations (e.g. the handling of the variations in time of the relative gain of CCD chips with respect to each other is yet unclear). We intend to transport this knowledge to the OmegaCAM project. Indeed, we plan to use the results of this survey not only for the still fundamental definition of the photometric standards, but also for the development of the OmegaCAM procedures. The fact that such procedures have not crystalized yet for the 2.2m and are still subject of intense study, illustrates the need for preparations well in advance of the commissioning of OmegaCAM, after which the instrument is supposed to function on a routine basis for many years.

In view of the known differences between the present filter set and the standard UBVRI bands at the WFI@2.2, please, note that this project can be carried out only when the new set of standard UBVRI filters will be available at the WFI@2.2 camera.

Execution
We want to prepare a set of 60×60 arcmin2 equatorial standard star fields, separated by 3 hours in right ascension, plus 6 cluster fields, and one polar field, in order to enable the calibration of the wide field images from the OmegaCam. For the moment, we plan to provide UBVRI standard magnitudes in the Johnson-Cousins photometric system down to $V \sim 20$, as defined by the set of Landolt (1992) standard stars. These fields will become the basic tools for the photometric calibration of the OmegaCam data and for the routine mapping and daily maintenance of the photometric capabilities of the camera.

Telescope Justification
We need to cover 60×60 arcmin2 fields, and the WFI@2.2 camera, with its 30×30 arcmin2 field, is the only suitable instrument in the southern hemisphere.
Mode Justification
This is a typical project which would mostly benefit from service mode observations, as it can be carried out only during photometric nights. However, at the moment service observing is not available at the 2.2m.

Strategy
We intend to issue a contract for one year to a person who will be fully dedicated to the reduction and analysis of the data on a dedicated workstation. We will mainly use the software specifically written for the treatment of photometric standards by one of us (PBS). This software has been widely used and tested while performing the photometric calibration of images collected in more than 200 nights in more than 60 distinct runs. We plan to measure the magnitudes of all the stars in the covered field, and calibrate them to the Landolt system. The data will also be used to verify prototypes of the OmegaCam pipeline and this will also allow the cross-calibration of the data reduction code.

BackUp Programme
We need photometric nights. In case of not photometric weather we will perform an observing program of ours for the WFI@2.2 camera, compatible with the moon illumination.

Lunar Phase
As we need to measure bright stars we have no specific requirement on the moon phase, though, if gray time is available, the accuracy of the photometry would be improved.

Why Nights
We propose to observe $15 \times 60 \times 60 \text{ arcmin}^2$ fields equally spaced in right ascension, using 5 different filters (UBVRI). In each band, we propose the following exposure sequence for an extension of the Landolt standards from $V \sim 12$ to $V \sim 20$: $10s$ and $2 \times 300s$, in order to properly measure the magnitudes with the proposed accuracy of all the stars down to $V=20$. (Possible shutter effects will be mapped during the day with the dome flat fields.) Each sequence must be repeated 4 times to cover a $60 \times 60 \text{ arcmin}^2$ field with the $30 \times 30 \text{ arcmin}^2$ WFI@2.2 camera, for 5 filters. Presently, the overhead for each single exposure at the WFI@2.2 is 2.5 minutes. We need to repeat each short exposure twice during the night for an accurate estimate of the extinction
coefficients. The double long exposure and the short exposure repeat will allow
dithering, thus improving the photometric accuracy. And we need to repeat the
short exposure observations on each field for three nights, for a better mapping
of the extinction and to reach the proposed accuracy. This means a total
of $2.5 \times 4 \times 5 \times 2 \times 3 = 300$ minutes/field for the short exposures plus
$(5 + 5 + 2.5 + 2.5) \times 4 \times 5 = 300$ minutes/field for the long exposures. This
sums up to 10 hours of exposures per field. We propose to observe 4 fields per
run, for a total of 40 hours.

We therefore request 4 runs, 4 nights each, spread over a period of 1 year.
It must be clearly stated that only with 4 night runs the project can be properly
carried out.

Targets

Object & Right Ascension & Declination & Equinox

<table>
<thead>
<tr>
<th>Object</th>
<th>Right Ascension</th>
<th>Declination</th>
<th>Equinox</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA 104</td>
<td>12 41 04</td>
<td>-00 37 11</td>
<td>J2000</td>
</tr>
<tr>
<td>NGC 5904</td>
<td>15 16 02</td>
<td>+02 15 51</td>
<td>J2000</td>
</tr>
<tr>
<td>SA 107</td>
<td>15 37 25</td>
<td>+00 18 34</td>
<td>J2000</td>
</tr>
<tr>
<td>Polar</td>
<td>00 00 00</td>
<td>-90 00 00</td>
<td>J2000</td>
</tr>
<tr>
<td>NGC 6656</td>
<td>18 33 21</td>
<td>-23 56 44</td>
<td>J2000</td>
</tr>
<tr>
<td>SA 110</td>
<td>18 40 45</td>
<td>+00 01 51</td>
<td>J2000</td>
</tr>
<tr>
<td>NGC 7099</td>
<td>21 37 32</td>
<td>-23 24 23</td>
<td>J2000</td>
</tr>
<tr>
<td>SA 92</td>
<td>00 53 14</td>
<td>+00 46 02</td>
<td>J2000</td>
</tr>
<tr>
<td>Fornax</td>
<td>02 39 53</td>
<td>-34 30 16</td>
<td>J2000</td>
</tr>
<tr>
<td>SA 95</td>
<td>03 52 40</td>
<td>-00 05 22</td>
<td>J2000</td>
</tr>
<tr>
<td>Carina</td>
<td>06 41 36</td>
<td>-50 57 58</td>
<td>J2000</td>
</tr>
<tr>
<td>SA 98</td>
<td>06 51 27</td>
<td>-00 15 37</td>
<td>J2000</td>
</tr>
<tr>
<td>NGC 2818</td>
<td>09 16 01</td>
<td>-36 37 36</td>
<td>J2000</td>
</tr>
<tr>
<td>SA 101</td>
<td>09 54 51</td>
<td>-00 27 28</td>
<td>J2000</td>
</tr>
<tr>
<td>SA 113</td>
<td>21 40 35</td>
<td>+00 41 45</td>
<td>J2000</td>
</tr>
</tbody>
</table>
7.2 Planning Photometric programmes

B,V,R,i – Status of the preparatory program at the ESO2.2+WFI as of FDR date

The preparatory program at the ESO2.2+WFI was intended to provide suitable data for testing the photometric calibration procedures of OmegaCAM. This programme is handled by the Padua group of the consortium. Observing time was allocated in three separate runs, for a total of 12 nights (Apr 20-26, 2000; July 9-13, 2000; Feb. 3-7 2001). Of these, 6 were photometric.

The original program was intended to cover 8 \(60 \times 60\) arcmins\(^2\) standard fields in the B,V,R,i bands. Given the field size of the WFI, this requires four pointings per field. For each pointing our aim was to obtain long and short exposures, to assure the coverage with adequate S/N of a wide magnitude range.

The calibration was derived by observation of Landolt’s standard fields. Because of the small sky area covered by typical Landolt fields, a determination of the chip to chip zero point and calibration coefficient dependence required 8 separate pointings.

Because the actual observing time was \(~ 50\%\) of the allocated one, and about 40\% of the allocated time was not in photometric conditions, the program was only partly completed. We got complete observations for three fields, and partial coverage for 4 fields.

<table>
<thead>
<tr>
<th>STD FIELD</th>
<th>RA</th>
<th>DEC</th>
<th>completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA 101</td>
<td>09 55</td>
<td>-00 23</td>
<td>50%</td>
</tr>
<tr>
<td>SA 104</td>
<td>12 42</td>
<td>-00 38</td>
<td>75%</td>
</tr>
<tr>
<td>SA 107</td>
<td>15 39</td>
<td>-00 12</td>
<td>25%</td>
</tr>
<tr>
<td>SA 110</td>
<td>18 42</td>
<td>+00 14</td>
<td>100%</td>
</tr>
<tr>
<td>NGC 5904</td>
<td>15 18</td>
<td>+02 04</td>
<td>100%</td>
</tr>
<tr>
<td>SA 113</td>
<td>21 40</td>
<td>00 41</td>
<td>50%</td>
</tr>
<tr>
<td>SA 98</td>
<td>06 51</td>
<td>-00 19</td>
<td>100%</td>
</tr>
</tbody>
</table>
The first step of analysis of the data has been the computation of the individual CCD photometric constant and color term. It turns out that the main limitation to the photometric accuracy is the inhomogeneity across the mosaic area (\(\Delta\text{mag} > 0.1\)) which may be attributed by additional-light pattern cause by internal reflections off the telescope corrector (cf. Capaccioli et al. The Capodimonte Deep Field: data reduction and characterisation of the ESO wide field imager). Work is in progress to determine the best strategy to deal with this problem.

Meanwhile we are committed to complete the analysis of the available data, to highlight the problems which may be encountered in the different steps of the calibration process. For the three fields for which we could obtain complete data we will produce table of B,V,R,i magnitudes for stars in a wide range of magnitudes which can be used to monitor WFI performances and in the preliminary operation with OmegaCAM.

We are presently issuing a call for people interested in one year contract to complete the work. We expect to be able to produce the final tables with magnitudes and positions for the stars in the observed fields by June 2002.

Sloan bands- u’, g’, r’,i’

OmegaCAM will employ the standard set of Sloan bands and secondary standards in the Sloan band, covering a 1 square degree fov, are highly wanted. The WFI@2.2m does not have these filters and the preperatory programme can not provide this. In an attempt to solve this problem, the consortium, together with VISTA, has submitted a proposal for observing time at the INT wide field imager, La Palma (for the fields SA 104, SA 107, SA 110, SA 112 and SA 92).

Calibration of standard fields with OmegaCAM

As the OmegaCAM filters will be different from those available at the ESO2.2+WFI, it was agreed that the actual calibration of the 1 square degree standard field will have to be done with OmegaCAM itself (req.569).

In the User requirements and the Calibration plan we have specified such an activity **req. 569 secondary standards**. Details can be found there. The programme will last at least for a year and will require a substantial amount of observing time.
Because this activity is going to extend well after the installation and commissioning phase of OmegaCAM, it is outside the original scope of the financing obtained by the Italian funding institution. Therefore a special application will need to be presented. We are committed to submit such application, to guarantee that the resources necessary to accomplish the photometric standard calibration tasks will available.

Because of the major involvement of the Italian community in the VST + OmegaCAM project we are confident that such request will found the proper attention.
A1 LIST of CALIBRATION REQUIREMENTS

5.2.1 Req.– CCD read noise - doit ... 19
5.2.2 Req.– hot pixels .. 20
5.2.3 Req.– CCD gain .. 21
5.2.4 Req.– Electromagnetic Compatibility 22
5.2.5 Req.– Electrical cross talk .. 24
5.3.1 Req.– CCD Dark Current - doit 25
5.3.2 Req.– CCD Particle Event Rate 26
5.3.3 Req.– CCD Linearity ... 26
5.3.4 Req.– CCD Charge Transfer Efficiency 27
5.3.5 Req.– CCD Cold Pixels .. 28
5.3.6 Req.– CCD Hysteresis, strong signal 29
5.4.1 Req.– Bias - doit .. 35
5.4.2 Req.– Flat-field - dome key bands + user bands - doit 37
5.4.3 Req.– Flat-field - twilight .. 39
5.4.4 Req.– Flat-field - night sky .. 40
5.4.5 Req.– Flat-field - Fringing .. 42
5.4.6 Req.– Flat-field - master flat and weight map 43
5.4.7 Req.– Quick detector responsivity check - doit 45
5.4.8 Req.– Illumination correction .. 46
5.5.1 Req.– Position of Camera in focal plane 49
5.5.2 Req.– Telescope Pointing ... 50
5.5.3 Req.– Telescope and Field Rotator tracking 51
5.5.4 Req.– PSF Anisotropy .. 52
5.5.5 Req.– The astrometric solution for templates - doit 53
5.5.6 Req.– The astrometric solution for Guide CCD’s 53
5.6.1 Req.– Shutter Timing ... 59
5.6.2 Req.– Photometric Calibration - monitoring 60
5.6.3 Req.– Photometric Calibration - zeropoint key bands -doit .. 63
5.6.4 Req.– Photometric Calibration - zeropoint user bands 66
5.6.5 Req.– Filter band passes - user bands vs key bands 68
5.6.6 Req.– Dependency on angle - ADC, rotator/ reproducability. 69
5.6.7 Req.– Linearity (as a function of flux) 70
5.6.8 Req.– Detection limit and ETC calibrations 70
5.6.9 Req.– Secondary Standards .. 71
5.7.1 Req.– Camera focus/tilt ... 73
5.7.2 Req.– Ghosts - ADC .. 73
A2 LIST of RAW CALIBRATION DATA

<table>
<thead>
<tr>
<th>RawData</th>
<th>523</th>
<th>CCD gain</th>
<th>10Gb 0.52Tb</th>
</tr>
</thead>
<tbody>
<tr>
<td>RawData</td>
<td>531</td>
<td>Dark current</td>
<td>0.75Gb 40Gb</td>
</tr>
<tr>
<td>RawData</td>
<td>533</td>
<td>CCD Linearity</td>
<td>2Gb 24Gb</td>
</tr>
<tr>
<td>RawData</td>
<td>541</td>
<td>Raw Bias frame</td>
<td>5Gb 0.51Tb</td>
</tr>
<tr>
<td>RawData</td>
<td>542</td>
<td>Dome flat frame</td>
<td>2Gb 0.66Tb</td>
</tr>
<tr>
<td>RawData</td>
<td>543</td>
<td>Twilight flat frame</td>
<td>10Gb 3.3Tb</td>
</tr>
<tr>
<td>RawData</td>
<td>547</td>
<td>Quick check</td>
<td>0.5Gb 115Gb</td>
</tr>
<tr>
<td>RawData</td>
<td>562</td>
<td>Monitor</td>
<td>0.5Gb 0.5Tb</td>
</tr>
<tr>
<td>RawData</td>
<td>563</td>
<td>Zeropoint- Key</td>
<td>2.5Gb 0.8Tb</td>
</tr>
<tr>
<td>RawData</td>
<td>564</td>
<td>Zeropoint - User</td>
<td>2.5Gb 0.8Tb</td>
</tr>
<tr>
<td>RawData</td>
<td>565</td>
<td>User -> key</td>
<td>25Gb 25Gb</td>
</tr>
<tr>
<td>RawData</td>
<td>569</td>
<td>Secondary Standards</td>
<td>32 Gb 4Tb</td>
</tr>
</tbody>
</table>
A3 LIST of DFS I/O CALIBRATION FILES

volume per file and per year

CalFile– 521 Readout noise 2 kb, 1 Mb
CalFile– 522 bad/hot pixel map 0.25Gb 25Gb
CalFile– 523 conversion factor e⁻/ADU 2kb 1Mb
CalFile– 531 dark count rate for each CCD 2kb 1Mb
CalFile– 532 Particle event rate 2kb 1Mb
CalFile– 533 CCD Linearity 2kb 1Mb
CalFile– 534 charge transfer efficiency factors 0.2Mb 0.4Mb
CalFile– 535 cold pixel map 0.25Gb 1Gb
CalFile– 536 CCD Hysteresis 2kb 2kb
CalFile– 541 Master Bias frame 1Gb 104Gb
CalFile– 542 Master Domeflat frame 1Gb 0.330 Tb
CalFile– 542L Dome Lamp 2kb 1Mb
CalFile– 543 Master Twilightflat frame 4Gb 1.3 Tb
CalFile– 544 Nightsky flat frame 1Gb 1 Tb
CalFile– 545 ff-fringe 1Gb 0.3 Tb
CalFile– 546 Master flatfield 1Gb 0.3 Tb
CalFile– 546W Weightmap 1Gb 0.3 Tb
CalFile– 547 Quick check 1Gb 0.33 Tb
CalFile– 547r Quick check - day report 3kb 1Mb
CalFile– 548 Illumination correction 1Gb 10Gb
CalFile– 551 Astrometric camera/chip solution 2kb 0.1 Mb
CalFile– 554 PSF anisotropy 0.1Mb 1 Mb
CalFile– 556 Astrometric solution - Guide CCD 2 kb 1 Mb
CalFile– 562S Sky brightness 1 kb 1 kb
CalFile– 562 Extinction-night report 2 kb 1 Mb
CalFile– 562u Photom + Sky 10Mb 10Gb
CalFile– 562B Photom + Sky 10Mb 10Gb
CalFile– 562V Photom + Sky 10Mb 10Gb
CalFile– 562i Photom + Sky 10Mb 10Gb
CalFile– 563Z Zeropoint - key bands 4kb 1.2Mb
CalFile— 564	zeropoint - User bands	4kb 1.2Mb
CalFile— 565	User— > key	4kb 1Mb
CalFile— 569E	Primary Standard stars	1 Mb 1 Mb
CalFile— 569	Standard Catalog	1 Mb 1 Gb
A4 LIST of DFS INPUT REFERENCE CATALOGUES

CalFile– in1 US-NAVAL Observatory A2.0 6 Gbyte
CalFile– 569E Primary Standard stars - external Landolt fields 100 Mb
CalFile– 569E Primary Standard stars - external WFI@2.2 100 Mb
CalFile– 564E Standard extinction curve 0.1Mb
A5 CALIBRATION TIME TABLES

Calibration Time Table for Commissioning Phase

<table>
<thead>
<tr>
<th>Req.</th>
<th>Description</th>
<th>Frequency</th>
<th>DayTime</th>
<th>NightTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAILY HEALTH CHECKS: each day of CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.1</td>
<td>CCD read noise - do it</td>
<td>1/day</td>
<td>5 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Bias - do it</td>
<td>1/day,(1)</td>
<td>15 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.2</td>
<td>FF - dome key bands + user bands - do it</td>
<td>1/day</td>
<td>10 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.3</td>
<td>FF - twilight</td>
<td>2/day</td>
<td>25 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.4</td>
<td>FF - night sky</td>
<td>1/day</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Quick check - do it</td>
<td>1/day</td>
<td>3 m</td>
<td>0</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Photometry - monitoring</td>
<td>3/night</td>
<td>0</td>
<td>12 m</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Photometry - zeropoint key bands - do it</td>
<td>1/night</td>
<td>0</td>
<td>12 m</td>
</tr>
<tr>
<td>Total DAILY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58 m</td>
<td>24 m</td>
<td></td>
</tr>
<tr>
<td>WEEKLY CHECKS during CP</td>
<td></td>
<td>TIME NEEDED/WEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.2</td>
<td>Hot pixels</td>
<td>2/week</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5.2.3</td>
<td>CCD gain</td>
<td>1/week</td>
<td>1 h</td>
<td>0</td>
</tr>
<tr>
<td>5.3.1</td>
<td>CCD Dark Current - do it</td>
<td>1/week</td>
<td>3 h</td>
<td>0</td>
</tr>
<tr>
<td>Total WEEKLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 h</td>
<td>0 h</td>
<td></td>
</tr>
<tr>
<td>SPECIAL CHECKS DONE ONLY ONCE DURING CP</td>
<td></td>
<td>TIME NEEDED/OPERATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2.4</td>
<td>Electromagnetic Compatibility</td>
<td>1/CP</td>
<td>4 h</td>
<td>0</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Electrical cross talk</td>
<td>1/CP</td>
<td></td>
<td>4 h</td>
</tr>
<tr>
<td>5.3.3</td>
<td>CCD Linearity</td>
<td>1/CP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.3.4</td>
<td>CCD Charge Transfer Efficiency</td>
<td>1/CP</td>
<td>30 m</td>
<td>0</td>
</tr>
<tr>
<td>5.3.5</td>
<td>CCD Cold pixels</td>
<td>1/CP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.3.6</td>
<td>CCD hysteresis, strong signal</td>
<td>1/CP</td>
<td>0</td>
<td>30 m</td>
</tr>
<tr>
<td>5.4.5</td>
<td>FF - Fringing</td>
<td>1/CP,1/lingwscience</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.4.6</td>
<td>FF - master flat and weight map</td>
<td>1/new_ff</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.4.8</td>
<td>Illumination correction</td>
<td>1/CP</td>
<td>0</td>
<td>2 nights</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Position of Camera in focal plane</td>
<td>1/filtrchng,1/CP</td>
<td>0</td>
<td>2 h</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Telescope Pointing</td>
<td>1/CP,1/pntngchng,(1)</td>
<td>0</td>
<td>10 m</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Telescope and Field Rotator tracking</td>
<td>2/pntngchng</td>
<td>0</td>
<td>2 m</td>
</tr>
<tr>
<td>5.5.4</td>
<td>PSF Anisotropy</td>
<td>1/CP,1/optclchng</td>
<td>0</td>
<td>2 h/pntng</td>
</tr>
<tr>
<td>5.5.5</td>
<td>The astrometric solution for Guide CCD’s</td>
<td>1/CP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.5.6</td>
<td>The astrometric solution for Guide CCD’s</td>
<td>1/CP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Telescopic solution for guiding</td>
<td>1/Cam</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.5.8</td>
<td>Shutter Timing</td>
<td>1/CP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.5.9</td>
<td>Filter band passes - user bands vs key bands</td>
<td>1/CP</td>
<td>0</td>
<td>5 m/fltr</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Dependency on rotator angle</td>
<td>1/CP</td>
<td>1 day</td>
<td>2 h</td>
</tr>
<tr>
<td>5.6.7</td>
<td>Linearity (as a function of flux)</td>
<td>1/CP</td>
<td>0</td>
<td>6 h</td>
</tr>
<tr>
<td>5.6.8</td>
<td>Detection limit and ETC calibrations</td>
<td>1/CP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.6.9</td>
<td>Secondary Standards</td>
<td>2/CP,(2)</td>
<td>0</td>
<td>2 h</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Camera focus - do it (filter thickness)</td>
<td>1/CP</td>
<td>0</td>
<td>4 h</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Ghosts - ADC</td>
<td>1/CP</td>
<td>0</td>
<td>1 h/fltr</td>
</tr>
<tr>
<td>ROUTINE TASKS, also done in CP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6.4</td>
<td>Photometry - zeropoint user bands</td>
<td>1/night when used</td>
<td>0</td>
<td>5 m/fltr</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Photometry - zeropoint key bands - do it</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(1) To Be Determined by Experience
(2) Started in CP, continuing through first year of RP
<table>
<thead>
<tr>
<th>Req.</th>
<th>Description</th>
<th>Frequency</th>
<th>DayTime</th>
<th>NightTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1</td>
<td>CCD read noise - doit</td>
<td>1/day</td>
<td>5 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Bias - doit</td>
<td>1/day,(1)</td>
<td>15 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.2</td>
<td>FF - dome key bands + user bands - doit</td>
<td>1/day</td>
<td>10 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.3</td>
<td>FF - twilight</td>
<td>2/day</td>
<td>25 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.4</td>
<td>FF - night sky</td>
<td>1/day</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.4.5</td>
<td>FF - Fringing</td>
<td>1/new_ff</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.4.6</td>
<td>FF - master flat and weight map</td>
<td>1/day</td>
<td>3 m</td>
<td>0</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Quick check - doit</td>
<td>3/night</td>
<td>0</td>
<td>12 min</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Photometry - monitoring</td>
<td>1/night</td>
<td>0</td>
<td>12 min</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Photometry - zeropoint key bands - doit</td>
<td>1/night</td>
<td>0</td>
<td>5 m/fltr</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Photometry - zeropoint user bands</td>
<td>1/night</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total daily 58 m 24 min

<table>
<thead>
<tr>
<th>WEEKLY CHECKS</th>
<th>TIME NEEDED/WEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2 Hot pixels</td>
<td>2/week 0 0</td>
</tr>
<tr>
<td>5.2.3 CCD gain</td>
<td>1/week 1 h 0</td>
</tr>
<tr>
<td>5.3.1 CCD Dark Current - doit</td>
<td>1/week 3 h 0</td>
</tr>
<tr>
<td>5.3.2 CCD Particle Event Rate</td>
<td>1/week 0 0</td>
</tr>
<tr>
<td>5.3.3 CCD Linearity</td>
<td>1/month 0 0</td>
</tr>
</tbody>
</table>

Total weekly 4 h 0 h

<table>
<thead>
<tr>
<th>QUARTERLY - YEARLY CHECKS</th>
<th>TIME NEEDED/OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4 CCD Charge Transfer Efficiency</td>
<td>2/year 30 m 0</td>
</tr>
<tr>
<td>5.3.5 CCD Cold pixels</td>
<td>4/year 0 0</td>
</tr>
<tr>
<td>5.3.6 CCD hysteresis, strong signal</td>
<td>0 0</td>
</tr>
<tr>
<td>5.4.8 Illumination correction</td>
<td>1/year 0 0</td>
</tr>
<tr>
<td>5.5.1 Position of Camera in focal plane</td>
<td>1/ year,1/month 0 2 h</td>
</tr>
<tr>
<td>5.5.2 Telescope Pointing</td>
<td>1/year,1/month,1/pntngchng,(1) 0 10 m</td>
</tr>
<tr>
<td>5.5.3 Telescope and Field Rotator tracking</td>
<td>(1) 0 2 m</td>
</tr>
<tr>
<td>5.5.4 PSF Anisotropy</td>
<td>4/year,1/o/p/c/h/chng 0 10 m</td>
</tr>
<tr>
<td>5.2.4 Electromagnetic Compatibility</td>
<td>1/year,1/o/synchng,(1) 4 h 0</td>
</tr>
<tr>
<td>5.6.1 Shutter Timing</td>
<td>4/year,(1) 1 h 0</td>
</tr>
<tr>
<td>5.5.5 The astrometric solution for templates - doit</td>
<td>0 0</td>
</tr>
<tr>
<td>5.5.6 The astrometric solution for Guide CCD's</td>
<td>0 0</td>
</tr>
<tr>
<td>5.6.5 Filter band passes - user bands vs key bands</td>
<td>0 0</td>
</tr>
<tr>
<td>5.6.6 Dependency on angle ADC, rotator</td>
<td>0 0</td>
</tr>
<tr>
<td>5.6.7 Linearity (as a function of flux)</td>
<td>0 0</td>
</tr>
<tr>
<td>5.6.8 Detection limit and ETC calibrations</td>
<td>0 0</td>
</tr>
<tr>
<td>5.6.9 secondary standards</td>
<td>0 2 bright nights/month</td>
</tr>
</tbody>
</table>

(1) To Be Determined by Experience