
A Data Lineage Model for Distributed Sub-image
Processing

Johnson Mwebaze
Makerere University and
University of Groningen
Landleven 12, 9700 AV

Groningen
The Netherlands

jmwebaze@cit.ac.ug

John McFarland
University of Groningen
Landleven 12, 9700 AV

Groningen,
The Netherlands

mcfarland@astro.rug.nl

Danny Booxhorn
University of Groningen
Landleven 12, 9700 AV

Groningen,
The Netherlands

danny@astro.rug.nl

Edwin Valentijn
University of Groningen
Landleven 12, 9700 AV

Groningen,
The Netherlands

valentine@astro.rug.nl

ABSTRACT

An important challenge facing e-Science is the develop-
ment of scalable systems and analysis techniques that al-
low client applications to locate data and services in in-
creasingly large-scale distributed environments. e-Science
Systems should achieve three main goals: (i) efficient and
selective processing of data, (ii) support network collab-
oration without clogging distribution networks; and (iii)
allow transparency of experiments through repeatability
and verifiability of experiments. Several systems have ad-
dressed limited combinations of these properties, but we
address all three in this work. We describe the architecture
and implementation of such a framework in Astro-WISE,
an astronomical approach to distributed data processing,
discovery and retrieval of datasets that achieves scalability
via dynamic linking (data lineage) maintained within the
system. We show that lineage data collected during the
processing and analysis of datasets can be reused to per-
form selective reprocessing (at sub-image level) on datasets
while the remainder of the dataset is untouched, a rather
difficult process to automate without lineage.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Distributed Systems; H.4
[Information Systems Applications]: Workflow Manage-
ment; J.2 [Physical Sciences and Engineering]: Astronomy

General Terms

Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAICSIT ’10, October 11-13, Bela Bela, South Africa
Copyright 2010 ACM 978-1-60558-950-3/10/10 ...$10.00.

Keywords

data lineage, provenance, target processing, scientific com-
puting, data reduction, subimage processing

1. INTRODUCTION

The nature of astronomical (or scientific) data processing is
changing. Datasets are doubling every year with archives
growing in size beyond petabyte scales [17]. Likewise,
the processing is increasing in complexity requiring labori-
ously sophisticated techniques and expertise in both data
reduction and analysis. Most often such processing re-
quires trying different data sets, trying different processing
techniques, tweaking parameters, verifying data quality,
repeating this data derivation and customization of the re-
sults. As a result of such analysis more data is generated
as new results are derived. It is therefore crucial for the ex-
perimenter or other users of the system to understand how
a result was derived and what data was used and how it
was selected.

Astronomical systems must also provide scalable process-
ing solutions, and allow seamless access to various dis-
tributed resources and archives to facilitate such analysis.
However, how will users retrieve and process data they are
interested in? For moving an entire dataset, a surprisingly
low tech approach is often most used. However, most
clients have neither the time nor resources to effectively
store and analyze such huge datasets. Moreover, the cost
of data transfer is not substantially cheaper today than the
price of disks to store the data. Therefore, transferring a
minimal set of data is critical. Additionally, the traditional
approach of simply moving the data to where there is an
analysis facility is inherently not scalable primarily due to
network-related and client processing constraints.

We use the above examples to motivate the need to trace
lineage and also the need to use lineage data to enable
the effective and selective reuse of data, knowledge and
experiences from previous experiments to aid both expert
and non-expert distributed users in performing scientific

209

analysis.

Data lineage (provenance) is a well-defined problem with
known solutions as surveyed in [4,7,8]. The usefulness of
provenance for each implementation is linked to the level
of granularity at which it is collected. The requirement for
this framework calls for tracing lineage on pixels. This is
because most often users are interested in a source (e.g.,
moving, variable, or extreme in some colour index) that
lies on a few pixels of an image. The approach adopted
by most observation systems is processing the entire image
or set of images (a single image may have up to a million
sources) even when the sole source of interest may exist on
only a few pixels of one or a few images. Accordingly, out
of millions of images for a survey, it is nearly impossible,
time consuming and wasteful to process the whole data
volume.

Based on these observations, we argue that instead of pro-
cessing the whole dataset (or full images), a user should
only select, retrieve and process only relevant pixels on an
image where the source exists. However, what happens
to image operations that can not be done on a sub-image
level? We claim that such a framework is possible if we can
retrieve an entire backtrace of the processing history of an
image at pixel level, and by using this lineage data we en-
able such operations that are very difficult (or impossible)
to execute at sub-image level.

The goal of this paper is twofold. Firstly, we extend our
lineage model presented in [14] to trace lineage at pixel
level and we show that it accurately locates all pixels that
were involved during processing of a result. Secondly, we
show that using lineage we are able to support sub-image
processing. We specifically focus on Astro-WISE however,
our discussion of the requirements of sub-image processing
can be applied to the general category of all observational
sciences.

To the best of our knowledge, this is the first work that
leverages lineage information to support sub-image pro-
cessing to simplify and automate the reprocessing of ob-
jects. The rest of the paper is organized as follows; In
Section 2, we briefly provide an overview of Astro-WISE.
We present our pixel lineage in Section 3.1, and in Sec-
tion 4, we detail the sub-image processing framework. We
briefly present a use case to demonstrate the effectiveness
of this framework in Section 5. We review related work
in Section 6. Section 7 concludes and an outline of future
work.

2. REVIEW OF Astro-WISE

Astro-WISE [3,18] is a distributed system for the scientific
analysis of astronomical datasets. It is distributed over a
number of sites allowing scientific communities to work
with and share data (and instruments) while using their
own resources. Astro-WISE stores all data from the raw
data to the final science-ready product as well as the soft-
ware used for the data reduction in the same system. As
a result, scientists are able to develop a new workflow or
pipeline from scratch, or to use an existing recipe. They
are also able to process and reprocess data without losing
intermediate data products in the same system using the
same environment.

F
2

F
1

F
3

F
4

F
5

X
1

X
2

X
3 X

4

X
5

X
6 X

7
X
8

X
9

X
10

P
1

P
2

Y
1

P
3

P
5

P
4

Figure 1: An example data-flow

Below, we review some terminology and introduce basic
pipeline operations in Astro-WISE that serve as the basis
for sub-image processing.

A pipeline is composed of modules which define specific
operations and connections which specify the conceptual
flow of data between modules. Pipelines are constructed
on the fly using the dependency logic that is derived from
lineage data. Each connection between modules is linked
with an output port of one module (the source) with an
input port of another module (the destination). In this
work, we shall be modifying modules, connections and
parameters, to adapt the existing data model to support
sub-image processing. Thereafter, we make these changes
on the modules as part of Astro-WISE.

Classes are associated with the various conventional images
(calibration and data) and other derived data products. For
example, in our system, bias exposures become instances
of the RawBiasFrame class. These instances of classes are
objects. Objects may have an associated data/image file.
Classes have methods and attributes. Methods perform a
task on the object while attributes are properties such as
constants or links to other objects.

3. LINEAGE IN Astro-WISE

For simplicity, we represent the object data model in Astro-
WISE as a graph shown in Fig. 1. The graph defines, three
types of nodes; rectangles represent functions F, each Fi

might have multiple inputs X and outputs Y. These are
donated by a circle in the graph . Inputs/outputs could be a
list of objects or images. Each Fi uses parameters P denoted
as� on the graph. Parameters have a type (string, float,
boolean, etc) or could be list of values, a linked list or an
object. Nodes in the graph are connected with edges that
show the flow of the dataflow.

Data lineage captured during processing, is information
about all dependencies of the input/output variables and
a complete instantiation of each function which is repre-
sented as

210

PIXEL COORDINATES

CORRECTED PIXEL COORDINATES

optional distortion correction

distortion correction

scale to physical

coordinates

coordinate computation per

agreement

INTERMEDIATE PIXEL COORDINATES

CORRECTED INTERMEDIATE

PIXEL COORDINATES

INERMEDIATE WORLD COORDINATES

WORD COORDINATES

CORRECTED PIXEL COORDINATES

optional distortion correction

distortion correction

CORRECTED INTERMEDIATE

PIXEL COORDINATES

linear transformaton: translation,

rotation skewness, scale

Figure 2: Flow chart showing a conversion of pixel coor-
dinates to world coordinates.xFrP1 ...Pns, rX1....Xns, rY1...Ynsy.
From this model, we explicitly assume that every output
depends on every input and parameters passed to the func-
tion. This is because of the black-box nature of the services
that are used for computation. When services are black
boxes, we have to assume that all outputs depend on all in-
puts. Therefore, such lineage accounts for an output prod-
uct produced during the course of a dataflow execution
by displaying a connected graph of input, intermediate,
output data and also parameters and attributes used dur-
ing the processing. This level of granularity is in-sufficient
for sub-image processing. We need to trace fine-grained
lineage to include transformations at pixel/byte level. The
problem of including such detailed lineage, is the size of
provenance data may easily outgrow the size of the data
being computed by the system. However, if we know some
of the data processing and pixel transformation steps, and
if we can provide a lazy inverse transformation, then we
have the option to compute lineage at query time as needed
rather than recording it explicitly.

3.1 Pixel Lineage

Celestial objects are identified by world coordinates. Ev-
ery pixel position in a celestial image is associated with a
world coordinate. Given a pixel position, for each image,
the corresponding sky coordinates is computed as shown
in Fig 2. Conversion from physical coordinates to world
coordinates is a multi-step process that includes linear and
nonlinear transformations that involve distortions correc-
tions (e.g Eq 1). The reader is referred to [5] and [11] for
the details. As the images go through the pipelines, the
physical coordinates change in value, position and size as
shown in Fig. 3 while the sky coordinates stay the same.
Some pixels are added together to form a composite of a
regridded image. The challenge is to determine which pix-
els, beginning from the raw images and all intermediate
images were used in the construction of the final output
regridded image. We denoteV as the set of pixel transfor-
mations algorithm.

We define F : V Ñ V as a function on the space of as-
tronomical image processing, and δ : V � V Ñ F as a
function that takes an input pixels pa and outputs pb, then
for brevity let δabppaq � pb. If there exists δba such that
δbaδab � e, where e is an identity matrix, then there exists
a 1-1 mapping between pixels of the input image to pixels
to an output image. Then it is possible to a find a map-
ping between pixels of related images or connect all pixels
from raw images intermediate to the final objects. How-
ever, we can achieve this if our sequence of operations
consists of invertible atomic operations. Specifically, sup-
pose δab � fn � � � � � f1 then each fi must have a well-defined
inverse. For example, if fi is the operation of applying a
distortion correction while converting from pixel coordi-

nates to corrected pixel coordinates, f�1
i

is the operation of
removing the distortion correction.

However, most scientific computations are treated as black
boxes, moreover distortion polynomials do not have an an-
alytic inverses implying invertibility is a very hard problem
or impossible. Therefore we relax the invertibility require-
ment and instead switch to heuristics. We restrict our initial
implementation to TAN Distorted tangential that employs
plate solution (Eq 1) for Astrometry to cater for distortions.
It is a mapping between a source detected at pixel coor-
dinates (x, y) in frame f and its normal coordinates (ζ, η)
relative to the nominal center of field f . This degree of
the polynomial p is determined by the nature of distortions
being accounted. ai j, bi j, m and c are initially unknown co-
efficients, to be determined by the least squares analysis
of the plate coordinates of the reference stars. Equation 1
like any other distortion function has been defined in one
direction and no attempt is made to find the analytic in-
verse [11].

ζpx, yq � i� j�p¸
i� j�1

ai jx
i y jmkcl ,

ηpx, yq � i� j�p¸
i� j�1

bi jx
i y jmkcl .

(1)

The relationship between input and output images to a
pipeline can be derived from lineage so far captured in the
system. What we need to find is the relationship between
the pixels in the input images to the pixels output images.
It remains to invert the pixel to world coordinate transfor-
mations. i.e Bottom-up approach in Fig. 2. Then given any
pixel location, the (x, y) coordinate, and the corresponding
image the pixel value can be obtained.

Using known methods for finding successively better ap-
proximations to the zeroes (or roots) of a real-valued func-
tion [12], we begin with a lazy conversion and use the
results iteratively to find the best approximations of the
root of Equation 1. We have implemented and tested this
technique. The results of the test are shown in Fig 4. From
the graph, panel (b) shows a positional accuracy of approx-
imately 5 orders of magnitude over panel (a), an indication,
that we can accurately find corresponding (x, y) positions
of pixel. The algorithm can be tuned to achieve any preci-
sion, but its a trade-off between performance and accuracy.
A higher precision will increase on the time the algorithm
takes to converge (to find the root). With this framework,
we can trace and link all pixels that have been processed in
the system.

211

0 10 20 30 40 50 60 70 80 90
Sources

-100

-80

-60

-40

-20

0

20

P
ix

e
l
D

if
fe

re
n
c
ie

s

Compare differencies Without Distortion Correction

min
max
avg

stdev

0 10 20 30 40 50 60 70 80 90
Sources

-0.00015

-0.00010

-0.00005

0.00000

0.00005

0.00010

0.00015

P
ix

e
l
D

if
fe

re
n
c
ie

s

Compare Differencies With Distortion Correction

min
max
avg

stdev

(a) (b)

Figure 4: Panels (a) & (b) show the results of the coordinate transformation test. The difference in pixel coordinates (x,y)
without and with (respectively) the distortions accounted for in the inverse transform (world to pixel). Blue is min/max
difference for each sourcelist, red the average and green the standard deviation. Panel (b) shows a positional accuracy
improvement of about 5 orders of magnitude over panel (a).

Figure 3: The Figure illustrates pixel transformations af-
ter applying linear shifts, rotations and distortions dur-
ing the image regridding/co-addition process. The input
grid is shown as small grey squares, whereas the out-
put grid (re-sampled image) is represented by the large
tilted/rotated ones

4. SUB-IMAGE PROCESSING

Practically, sub-image and full-image processing follow the
same standards, data quality and processing requirements.
However processing parameters, attributes and some mod-
ules might defer. This is because pipelines have been
written and designed for instruments with fixed detector
properties (e.g., image size, calibration frames, overscan
regions, etc.). All metadata and processing parameters are
based on an instruments or a detector. These variables
must be modified to process a virtual image (sub-image).

Since no metadata (processing data) exists for sub-image
processing, we use analogical reasoning to infer the neces-
sary changes and then apply them to processing. By match-
ing and retrieving existing pre-processed information (data
lineage) in the system and we know what the relationship
there is between what we want to process and what has
been processed before, we should be able to determine the

R1

R2

R4R4

R5

R6
R7

R8

R9

Figure 5: An example of a CoverageMap, Regions R1 - R9
represent processed regions which are denoted with a ‘1’
in the pixelmap object

difference between pipelines (and objects) and then modify
any new pipelines so that the new processing follows the
new user processing requirements for a particular region
on the frame.

4.1 Pipeline Matching and Building

The pipeline for sub-image processing is built using lineage
data. Likewise all input data, attributes and parameters to
be used in the sub-image pipeline are selected from the
same lineage data. However, since we are processing a
sub-image, selected lineage data to be used as input to
the sub-image pipeline might have to be modified. When
such changes occur then the part of pipeline affected by the
changes must be re-run. The rerun will take data depen-
dencies into account and only execute those parts of the
pipeline affected by the changes.

Once a user requests to process a sub-image, then all prove-
nance data needed to perform sub-image processing will
be retrieved. The basic idea behind our algorithm is to
search for a graph representation of the dataflow that was
used in earlier runs to process the full-image from which
the sub-image will be extracted. The precondition for the

212

selection is that the same dataflow was run with the cur-
rent parameters and input data. The next step is to retrieve
the provenance data and intermediate data products pro-
duced by this graph from the provenance store. Then the
retrieved data will be used as input to the sub-image pro-
cessing pipeline that needs to be rerun.

The starting point of sub-image processing is the selection
of the target, i.e. set of sky positions and a set of param-
eters. The system matches and selects the pipeline from
all candidate pipelines by pairing nodes and computing
similarity between two adjacent nodes. From the selected
pipeline, the system builds a directed graph representing
the data dependencies with the nodes representing objects
and edges representing all dependencies attached to an
object. The graph begins with the topmost node, which
is the target to be made. New edges are added starting at
this trigger and expanding outward, using the dependency
logic derived from lineage data. The dependency graph is
built and checked recursively till the last dependency (in
this case raw data from the telescope).

Each node in the graph is associated to an object. Each
object is identified with a unique ID. The unique ID is
used as a key when searching the database for provenance
information related to a particular object. Each unique ID
is also associated with a specific instantiation of a class
(module). Using this unique ID, we can query for all data
that went into the processing of this object. If a unique ID is
associated with an image, a cutout is made of the pixels of
interest from this image and used as input to the module.
The pixels extracted as a cutout are determined through
pixel lineage.

Astro-WISE then analyzes this graph to detect modules that
must be rerun, based on the processing changes required
for sub-image processing. If the requested target already
exists, (meaning has been processed using parameters and
input data as required for the sub-image) the system will
check all its dependencies up to the raw data. If all its de-
pendencies are up-to-date then the target object is returned.
If all or some dependencies are not up-todate, then these
modules responsible for these dependencies will be rerun.
If new versions exist of the classes that created the depen-
dencies, then these modules will also be run-run using the
new-versions of the classes. Fig. 6 shows a dependency that
has been analyzed indicating which objects will be made
and those that wont be reprocessed.

After assembling the pipeline and collecting all necessary
input data, the sub-image is processed Source extraction is
then run on the sub-image resulting in a new catalog of sky
positions, and/or any other user specific processing done
on the sources extracted.

4.2 Pipeline Changes

The matched and retrieved pipeline has to be modified to
support sub-image processing. This also includes modi-
fying parameters and input data. The motivation of this
work is to enable users carry out a detailed analysis or a
computation to a specific region on an image. For exam-
ple, a user may wish to improve a given result by adjusting
parameter, or might want to switch to a different algorithm
on a specific region of a frame, or may want to integrate
new features into existing pipelines for this purpose. In

any case we build on already existing data from previous
rerun to enable such changes.

We define a function ∆ as a function that takes in input, the
matched pipeline Pi and transforms it to another pipeline Ps

(pipeline for sub-image processing). Assuming∆pPiq � Ps,
its clear that ∆ is not unique for each processing. Our ulti-
mate goal is to find ∆. i.e the changes required to transform
Pi to Ps.

For each module or pipeline, we identify all tasks that are
required to be changed or modified to support this new
framework. Those tasks are then included in the system,
as a new module, attribute or parameter without changing
the overall data model. If we denote the set of all pipelines
asP, every operation performed on a pipeline, (e.g., adding
parameters, modules, etc.) can be directly expressed as a
(potentially partial) function f : P Ñ P. Then ∆ is de-
fined by such functions. Our results depend on making
these functions part of Astro-WISE. These functions are
dynamically loaded whenever a user requests to process a
sub-image. The changes made to the modules for image
analysis are specific and are beyond the scope of this paper.
We present two examples below to demonstrate the kind
of changes required for sub-image processing:

– Astrometric Parameters:A critical step for astronom-
ical processing is deriving an ‘Astrometric solution’.
This is derived by fitting distortion polynomials to
images, taking into account the objects seen. For
accurate results, several reference stars are used to
derive the final solution. For the case of sub-image
processing, such a process would fail since reference
stars on the sub-image will be very few. In such cases,
we use the astrometric solution of a full image or an-
other set of images of the same field and processed
using the same parameters as needed to process the
sub-image. The solution is then modified and fitted
to the pixels of the sub-image.

– OverScan Correction; The Overscan is a number of
rows and columns created by doing a few empty
readout cycles before the detector is read. They ap-
pear as blank regions attached to the image and serve
as an individual BIAS that comes along with every
image. A BIAS shows the electronic noise of the cam-
era and possible systematics. It represents the ac-
tual state of the camera at the time the exposure was
taken. Each image has overscan rows and columns
attached to it. During data reduction, each image
must be corrected for an overscan. The overscan cor-
rection is done by smoothing the overscan regions
and subtracting it from the regions with data. After
this correction the overscan region is trimmed off. For
the case of sub-image processing when extracting the
sub-image from the full-image the algorithm must be
aware of the overscan regions. The overscan regions
corresponding to the sub-image are also extracted
and used to perform an overscan correction on the
sub-image. The trimming operation is not done in
this case since the sub-images do not have overscan
rows and columns.

4.2.1 Parameter and Attribute Selection

213

Figure 6: A tree view is given of the target(s). This tree
view gives an overview of the target dependencies. Green
dependencies are up-to-date, red dependencies are out-
of-date and for orange dependencies indicate a newer
version exists.

Lineage in Astro-WISE is stored in a database as persistent
objects or links to other persistent objects. A query to the
database would provide all information related to the pro-
cessing history and to all locations of all stored associated
files, attributes and objects. We offer a programmatic in-
terface (in python) for querying the database for lineage
information. We implemented a query language that is a
natural extension to Python that incorporates data lineage
in the query syntax. The query language allows standard
set operators, boolean comparisons,boolean operators, and
a regular expression matching function. We also identified
basic operations that are useful for common querying tasks
over provenance store that simplify the query syntax. Some
examples are listed below;

– get_inverse_properties(obj) returns all objects that
used ob

– get_dependencies(obj) returns all attributes of obj

– get_onthefly_dependencies(obj) returns all depen-
dencies of obj

– info(obj) displays a lineage tree for obj

The example below displays a lineage tree for any object.
This particular examples shows the parameters that were
passed into a program called Swarp (Use for Co-addition)

awe> regrid = RegriddedFrame()

awe> regrid.swarpconf.info()

SwarpConfig: <astro.main.Config.SwarpConfig

object at 0x1d893ad0>

+-CELESTIAL_TYPE: NATIVE

+-CENTER: ([111.428571428571, -0.95744680851063801]

+-INTERPOLATE: N

+-OVERSAMPLING: 0

Figure 7: A web service interface for parameters selection

+-PIXEL_SCALE: 0.2

+-PROJECTION_TYPE: TAN

+-RESAMPLING_TYPE: LANCZOS3

+-SUBTRACT_BACK: N

+-object_id: ’83A31678D4D49F0AE0407D81E60E38BA’

---- some text missing -----

awe>

To change any parameter during processing, the command
below would suffice,

awe> regrid = RegriddedFrame()

awe> regrid.swarpconf.RESAMPLING_TYPE = ’NEAREST’

In addition, however, we have also defined a web interface
exemplified in Fig. 7 which shows the parameters that were
used during processing. The same interface can be used
change parameters as required for sub-image processing.

4.2.2 Dependency CutOuts

This service defines the boundingbox and provides methods
to create cutouts of a requested size from the all dependent
images (i.e. images generated or used in the processing
of an object). The boundingbox defines size of the image
cutouts. This service is implemented by the Retrieve()
method explained in section 4.4

Given any 2D-dimensional image Z with and any pointpx, yq P Z, we define a sub-image I as a set of points such

214

that tpx, yq|px, yq P Z^px0 x x1q, py0 y y1quwherepx0, y0q and px1, y1q are lower and upper coordinates of the
boundingbox. The boundingbox is a tuple (x0, y0, x1, y1). If C
represents a set of the pixel coordinates of a celestial object,
then C � I. The set of all points C is determined using the
algorithm below;

– Select object and corresponding sky coordinates

– Get size on sky

– Scale it by the factor n (pixel scale)

– Convert into pixel coordinates and compute (x0, y0, x1, y1)
for each image where the sub-image is to be extracted

4.3 Book Keeping

We describe the management of image cutouts and how
we keep track of dependencies between images, cutouts,
sub-images and processed regions on an Image.

Each file in Astro-WISE has a unique name, and this unique
name is stored in the database as part of the metadata. In
Astro-WISE, the class which represents objects that have
an associated data file is called a DataObject. Every in-
stance of class DataObject or every class which is derived
from class DataObject has an associated data file, which is
identified by the unique object identifier.

The object identifier and the object type of a DataObject are
used as reference to identify the relationship between the
data file and the DataObject. As soon as a user performs
processing on a DataObject, a new DataObject is created
and stored with a link to the parent object.

Every time we process an image a new DataObject is cre-
ated. A request to store the DataObject will also store the
associated image (if the image is not stored before) or a
link to the image. Therefore, for every cutout we process
a new DataObject is created and a store command would
want to store the cutout. Since cutouts are made from ex-
isting images, storage of the same will duplicate pixel data
in the system and will make history tracking complicated.
To solve this, the DataObject for the sub-image and im-
age from which the cutout was made remains the same.
Therefore a request to store the new DataObject will store
a link to the parent image from which the cutout was made,
rather than storing pixel data.

This was implemented by defining three attributes, sub-image,
filename and pathname. The sub-image attribute is a tu-
ple with the coordinates of the bottom left corner and top
right corner of sub-image, the filename attribute refers the
name of image-file and the pathname attribute signifies two
things: the filename of the sub-image, and that the file is
local on the processing node. If a DataObject has an at-
tribute sub-image, then pathname refers to the name of the
sub-image and filename attribute refers to the image from
which the cutout was made otherwise both the filename
and pathname will refer to the same image-file.

4.4 Retrieve()

If theDataObjecthas thesub-imageattribute set, theretrieve
method implements arbitrary cutout coordinate specifica-

tion algorithm in addition to file renaming. The retrieve
method uses bounding box coordinates, specified by the
sub-image attribute, and the name of the file and imple-
ments the image cutouts algorithm and retrieval of the
cutouts.

For example, if a user wants to retrieve a file associated
with DataObject (data_obj). He can use the retrieve
method from the DataObject class to retrieve the file (i.e.,
data_obj.retrieve()). TheDataObjectretrievemethod
in turn calls the corresponding retrieve method from a
StorageObject (this class defines a retrieve and a store
method).

If the DataObject has the attribute sub-image set, the re-
trieve method will return a cutout of the data file attached
to the DataObject specified with the filename attribute.
The same method renames the retrieved cutout and the
new name is referred to with the pathname attribute.

All image data is stored on the distributed data-servers.
Clients access the data-servers using the standard HTTP
protocol. Network bandwidth is a relatively scarce re-
source in distributed processing. We conserve our band-
width by taking advantage of the fact that, requests for
image cutouts are sent to the data-servers and only cutouts
are delivered to the processing node.

This framework improves the performance of the applica-
tion. Rather than loading the file into memory and extract-
ing the sub-image, the image server reads a consecutive
byte stream of the headers and requested pixel data from
the disk and sends this data to the client machine for pro-
cessing. This is made possible through our pixel lineage
embedded into the system.

4.5 Smart Processing

The basic idea behind Astro-WISE is to process only un-
processed data. We want to minimize the processing tasks
by guiding the user to useful and processed information.
With this framework, users can now focus on processing
regions that have objects/sources of their specific interests,
rather than processing the full frame and discarding what
does not interest them. If another user would like to process
a region that has been processed before, the system should
indicate that such a region has been processed before and
returns the result.

From section 4.3, we indicated that when cutouts are made,
these cutouts are not stored, but rather than a link to the
DataObject where cutout was made is stored. This implies
that all sub-images processed from the same frame will
have the same dependency. Therefore a query to check if
an object is processed might produce false results. Since
the lineage of the processed sub-image (or probably the
processed full frame) point to the same DataObject. To
solve the problem of finding which regions (sub-images)
have been processed, we introduce the idea of a Coverage-
Map as presented in the next section.

4.5.1 Coverage-Map

The Coverage-Map is based on the observation that all
DataObjects linked to the sub-image refer to the same raw

215

frame. For example, if two or more sub-images were pro-
cessed from the same raw frame, the dependency of both
images will refer to the same raw science frame. Once a
query is constructed to check if a sub-image is processed,
it will fail or pass with wrong results.

A Coverage-Map as a way of representing which regions on
an image have been processed. Each pixel is assigned a
value of 1 (good/processed) or 0 (bad/unprocessed). Fig. 5
represents an example of a Coverage-Map, with regions
R1 � R9 in the Fig 5 representing processed regions in a
frame. The Coverage-Map is implemented as a pixel-map
in the system. The pixel-map has the same dimensionality
as the image being processed. If a user requests to pro-
cess a region (sub-image) on a frame, the coverage-map is
checked to establish if that region has been processed fully
or partially as follows:

Given a binary 2D image (coverage map in our case) with
a regions R in tR1,R2,Rku, where Ri represents all pro-
cessed regions in R. if Ri is a set of points px, yq over R,
given an arbitrary region R1, we find if any points px, yq
in R1 that do (not) exist in any Ri. This is implemented
as shown in algorithm 1. If the region has been processed
before then a link to the processed frame is returned, else
a False is returned implying that the region or part of the
region has not been processed before.

Data: CoverageMap, RawImage, mathcalR1
Result: Booloen, True or Flase, if True, link to

Proccessedframe
begin

if RawImage has CoverageMap then
R�Ý tR1,R2,,Rku
for R1 P R do

if R1 � Ri then
return Link

end
else if R1 � Ri then

return False
end
else if R1 � Ri then

return False
end
else if Ri � R1 then

return Link
end
else if R1 XRi then

return False
end
else if R1 � Ri then

return False
end
else

Continue
end

end

end

end
Algorithm 1: Checking for processed regions in the Cover-
ageMap

4.5.2 Update

A User might decide to process an image by sub-images.
This will create several new FileOjects and DataObjects all

DBObject

+object_id

FileObject

+ref_object_id

+__init__()

DataObject

+storage

+subimage:turple

+pathname:str

+filename:str

+retrieve()

+store()

+update()

CoverageMap

+ref_object_id

+update()

+is_processed()

1

*

1

1

Figure 8: Class diagram to support storage of multiple
processed subimages to the same FileObject

linked to the same RawFrame Object even if all the objects
share the same input data sets, parameters and methods.
(A FileObject contains information of a file, such as file
size, creation date, hash value, and URI, etc.) This is inef-
ficient, not only does it complicate data management but
also complicates history tracking.

In such cases, we store all pixel data in the same FileOject.
Fig. 8 shows a UML class diagram that shows the relation-
ship between the FileObject and DataObject. For example,
for all sub-images processed from the same RawFrame,
only one FileObject is created and populated with pixel
data that has been processed. (e.g Fig 5. The other regions
that have not been processed are masked as invalid. If an-
other region from the same RawFrame is processed, using
different parameters, then a new FileOject is created and
updated/stored accordingly.

Intuitively, full-images can be split up into sub-images and
these sub-images processed in parallel way on different re-
sources. After the competition of each process, another pro-
cess combines the processed sub-images in to final mosaic.
The advantages of such a method are obviously enormous.

4.6 MyDB and Context

Every user in Astro-WISE is provided with a database
called MyDB. Within the isolated MyDB environment, users
are provided with full read, write and execute privileges.
Here users can create, add and delete DataObjects. How-
ever, all the processing machinery goes throughout the sys-
tem. Results of an exploratory nature are stored in MyDB,
where further analytical queries may be performed by the
user before they can be published or viewed by other users.
MyDB allows an entire explore/analyze workflow to be
completed before transferring the final results to the pub-
lic and also allows a personalized user query/processing
history.

Context, on the other hand, allows you to filter from the
ocean of data objects in Astro-WISE the subset of data ob-
jects that you want to be currently visible to you and your
processes. The philosophy here is to increase efficiency in
survey processing by sharing useful public data (such as

216

calibration data). The philosophy of Context is to allow
users to select which data they want to see in their data
access scope in addition to public data from Astro-WISE
projects. In other words, by configuring your Astro-WISE
Context, you define the logical subspaces in the ensemble
of data objects in Astro-WISE in which you access data and
in which you create data. So with Context and MyBD, we
are able to manage, any amount of public and useful data
available in Astro-WISE.

Figure 9: Density-Color of the galaxies processed from
the image in Fig. 10. In this case we are interested in
Blue galaxies (low V-I) in medium to high density re-
gions which are possibly interacting with their environ-
ment. We only take the addresses of the blue galaxies
and reprocess them using the sub-image pipeline

Figure 10: Science frame from which the sources of fig-
ure 9 are extracted. Sources highlighted in green are the
selected blue galaxies of Fig. 9. To analyze these sources
in higher detail, only their sub-images have to be pro-
cessed instead of the entire image

Figure 11: A plot showing the time it takes to process
sub-images of different sizes

5. USE CASE: ANALYZING TRANSITION-
ING GALAXIES

We demonstrate the use of provenance using a use-case of
analyzing transitioning galaxies. These are galaxies that
fall into galaxy clusters that interact with their environ-
ment. Initially a full image is processed and an initial pho-
tometric catalog of the sources on the image is extracted.
The density of galaxies around each source is calculated us-
ing the galaxy position. The magnitudes and densities of
galaxies that undergo a transitional phase can be identified
(the blue galaxies in Fig. 9). Out of hundreds of galaxies
that were observed in this processing only transitioning
(blue) galaxies will then be further analyzed by extracting
cutouts from the raw images where these galaxies lie and
reprocessing only these cutouts to estimate more complex
and time consuming parameters such as quantifications of
the internal structure of the galaxy. To identify the images
required for this task and the position of the galaxy in all
images, we work backwards from the galaxy through all
the dependencies. The other inputs (any other sub-images,
calibration objects, processing parameters, etc) to the sub-
image pipeline are also selected from the initial lineage
recorded during the initial processing of the full image. By
performing selective processing we save hours/days/weeks
of computational time.

5.0.1 File Retrievals

One common characteristic of all dataflow programming
frameworks is the requirement of locally staged data for
processing. A computation can not start before all required
inputs are available locally at the processing node because
data has to be transfered from archives to processing nodes.
This is one of the performance bottlenecks in such systems.
In this framework cutouts are requested from storage nodes
and only the cutouts are sent over the networks.

In this test, we estimate how much time is required to
download 24 sub-images from a data Service to local PC
compared to downloading the 24 full images on a network
connection with an estimated bandwidth of 1Gbit/s. We
did four parallel downloads to a local PC of 24 (sub)images
for a total of 96 images. Below are the results;

Sub-images

Downloaded: 24 files, 544K in 0.4s (1.22 MB/s)

217

Downloaded: 24 files, 544K in 0.4s (1.21 MB/s)

Downloaded: 24 files, 544K in 0.4s (1.22 MB/s)

Downloaded: 24 files, 544K in 0.7s (737 KB/s)

Full-images

Downloaded: 24 files, 384M in 22s (17.7 MB/s)

Downloaded: 24 files, 384M in 21s (17.9 MB/s)

Downloaded: 24 files, 384M in 23s (17.1 MB/s)

Downloaded: 24 files, 384M in 23s (16.6 MB/s)

The time in seconds is the total time that the actual transfer
took, from the first byte to the last byte of each file. We
notice a significant difference when transferring sub-image
compared to full-images. We tried out the same test on
a link of an estimated bandwidth of 6Mbit/s. In that case
we only downloaded one group of 24 files sequentially to
prevent very long wait times.

Subimages

Downloaded: 24 files, 544K in 1.3s (423 KB/s)

Full images

Downloaded: 24 files, 384M in 11m 16s (582 KB/s)

As you notice downloading the sub-images on a 6Mbit/s
takes almost the same amount required as on a 1Gbit/s.
However, the results for Full images are shocking and
might render the system unusable on such links. With
this framwork even users at remote locations using low
bandwidth links carry out image processing just like any
other person processing data locally.

6. RELATED WORK

Most of the popular astronomical software languages and
packages (ITT Interactive Data Language1, European South-
ern Observatory Munich Image Data Analysis System2 [13],
Image Reduction and Analysis Facility [10]) assume a stan-
dalone approach to work with the data. In the case of
all these packages, the storage and access of the raw and
processed data is a responsibility of the user. However,
the astronomical data processing community (or the scien-
tific community in general) is becoming very sophisticated.
Data reduction and analysis has become complex [19], data
rates have kept pace with advances in processing power
(doubling roughly every two years), and the dimensional-
ity of data is increasing [17]. As a result, several scalability
issues have arisen which range from ensuring good per-
formance, to handling large amounts of data, to capturing
provenance, and to providing interfaces to interact with a
large number of archives. Distributed or grid systems [21]
have been developed to address performance and dataset
concerns. Such systems like [3], provide a scalable infras-
tructure for running image pipelines in a distributed way.

Provenance-aware scientific workflow systems [9] have
been considered as the paradigm for representing and man-
aging complex distributed scientific computations. Sys-
tems such as those surveyed in [8] and [4] have enabled sci-
entists to carry out complex scientific computations while
capturing provenance. Despite these developments, little

1http://www.ittvis.com/ProductServices/IDL.aspx
2http://www.eso.org/sci/data-
processing/software/esomidas

or no support exists in current systems to trace lineage and
pixel level and most models do not allow end-users to use
lineage data in scientifically meaningful way in particular
to improve scientific processes. Our lineage model intro-
duced in this paper does capture lineage at the finest detail
(e.g., a pixel transformation process). This lineage captured
is then used for various scientific processes but most specif-
ically as introduced in this paper, this lineage at pixel level
has been used for sub-image processing.

While tracing lineage at pixel level is missing out in most
workflow systems, the level of granularity at which lineage
is collected is linked to the particular needs of provenance
requirements. Different provenance models are in use to-
day and also several workflow management systems do
exploit provenance information for different purposes. The
use of lineage we describe in this paper is analogous to how
other authors have used lineage to solve some use-cases.
For example in [2], [16] and [20] provenance has been used
for results verification and to prove robustness of methods,
in Kepler [1] provenance has been used to enable smart
“reruns” and process simplification of previously executed
workflows and in [15] and [6], provenance has been used
for interactive design of workflows.

We could not find anywhere in literature where sub-image
processing has been done and therefore we have no com-
parative analysis to evaluate if there could be advantages
or disadvantages of our approach against any other ap-
proach. However, we show that in this current data deluge
sub-image processing as compared to full-image supports
research in distributed communities by transferring and
processing a minimal set of data as required for process-
ing.

7. DISCUSSION AND CONCLUSIONS

We have described a new framework that leverages data
lineage and provenance to aid in selective retrieval and
processing of data. We argue that sub-image processing is a
powerful methodology that will provide efficient solutions
for what are otherwise manual, time-consuming tasks.

This methodology provides scalable and easy-to-use prim-
itives for reprocessing of data. With this kind of process-
ing, even users at remote research centres could comfort-
ably run and process data, without limitations of huge data
transfers and limitations of resources on local clients. We
have proposed efficient algorithms and intuitive interfaces
for realizing these primitives in an astronomical system.

However our approach is not foolproof, and there are cases
where it may fail to produce the results a user expects. For
example, if a user applies the methodology to a processing
that involves neighboring pixels to determine a result of a
pixel (e.g., derivation of astronomical parameters solution)
the pipelines is likely to fail. However, when such a pro-
cessing fails, or produces poor results, the user can initially
process the full image and extract all parameters/needed
to aid in processing of other sub-images derived from the
same image. The effect shall be slower performance for the
start, which improves significantly while processing other
sub-images.

There are many avenues for future work. Although we
reduced the domain from a full frame to a sub-image, we

218

intend to further transform scientific systems to process
pixels rather than images. We are currently investigating
how we can use databases to aid in such processing. By
loading data into a database and then performing all pro-
cessing inside the database, then accurate lineage can be
captured and traced.

8. REFERENCES

[1] I. Altintas, B. Ludaescher, S. Klasky, and M. A. Vouk.
Introduction to scientific workflow management and
the kepler system. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 205,
New York, NY, USA, 2006. ACM.

[2] E. W. Anderson, J. P. Ahrens, K. Heitmann, S. Habib,
and C. T. Silva. Provenance in comparative analysis:
A study in cosmology. Computing in Science and
Engg., 10(3):30–37, 2008.

[3] K. G. Begeman, A. N. Belikov, D. R. Boxhoorn,
F. Dijkstra, E. A. Valentijn, W.-J. Vriend, and Z. Zhao.
Merging grid technologies. Journal of Grid Computing,
8:199– 221, 2010.

[4] R. Bose and J. Frew. Lineage retrieval for scientific
data processing: a survey. ACM Comput. Surv.,
37(1):1–28, 2005.

[5] M. R. Calabretta and E. W. Greisen. Representations
of celestial coordinates in fits. A&A,
395(3):1077–1122, dec 2002.

[6] T. Ellkvist, D. Koop, E. W. Anderson, J. Freire, and
C. Silva. Using provenance to support real-time
collaborative design of workflows. Provenance and
Annotation of Data and Processes: Second International
Provenance and Annotation Workshop, IPAW 2008, Salt
Lake City, UT, USA, June 17-18, 2008. Revised Selected
Papers, pages 266–279, 2008.

[7] J. Freire, D. Koop, and L. Moreau, editors. Provenance
and Annotation of Data and Processes: Second
International Provenance and Annotation Workshop.
Springer-Verlag, Berlin, Heidelberg, 2008.

[8] J. Freire, D. Koop, E. Santos, and C. T. Silva.
Provenance for computational tasks: A survey.
Computing in Science and Engineering, 10(3):11–21,
2008.

[9] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,
D. Gannon, C. Goble, M. Livny, L. Moreau, and
J. Myers. Examining the challenges of scientific
workflows. Computer, 40(12):24–32, 2007.

[10] P. Greenfield. Reaching for the stars with python.
Computing in Science and Engg., 9(3):38–40, 2007.

[11] E. W. Greisen, M. R. Calabretta, F. G. Valdes, and S. L.
Allen. Representations of spectral coordinates in fits.
A&A, 446(2):747–771, feb 2006.

[12] K. Jaan. Numerical Methods in Engineering with Python.
Cambridge University Press, 2005.

[13] B. K, editor. Information Handling in Astronomy -
Historical Vistas. Springer-Verlag, 2002.

[14] J. Mwebaze, D. Boxhoorn, and E. Valentijn.
Astro-wise: Tracing and using lineage for scientific
data processing. Network-Based Information Systems,
International Conference on, pages 475–480, 2009.

[15] C. Scheidegger, H. Vo, D. Koop, J. Freire, and C. Silva.
Querying and creating visualizations by analogy.
Visualization and Computer Graphics, IEEE Transactions
on, 13(6):1560 –1567, nov.-dec. 2007.

[16] Y. Simmhan, B. Plale, and D. Gannon. Karma2:
Provenance management for data-driven workflows.
Int. J. Web Service Res., 5(2):1–22, 2008.

[17] A. S. Szalay. The sloan digital sky survey and
beyond. SIGMOD Rec., 37(2):61–66, 2008.

[18] E. A. Valentijn, J. McFarland, J. Snigula, K. Begeman,
D. Boxhoorn, R. Renegelink, E. Helmich,
P. Heraudeau, G. V. Kleijn, R. Vermeij, W.-J. Vriend,
and M. J. Tempelaar. Astro-wise: Chaining to the
universe. In Astronomical Data Analysis Software and
Systems XVI, ASP Conference Series, volume 376, 2007.

[19] F. Wang, J. Luo, H. Deng, B. Liang, and K. Ji. C-swf:
A lightweight scientific workflow system for
astronomical data processing. Computer Science and
Engineering, International Workshop on, 2:64–67, 2009.

[20] S. Wong, S. Miles, W. Fang, P. Groth, and L. Moreau.
Provenance-based validation of e-science
experiments. The Semantic Web –ISWC 2005, 2005///.

[21] J. Yu and R. Buyya. A taxonomy of scientific
workflow systems for grid computing. SIGMOD Rec.,
34(3):44–49, 2005.

219

