WINGS WIde-field Nearby Galaxy-cluster Survey

Survey and Pipelines Overview

From exoplanets to galaxy clusters: science with Astro-WISE

Benchmark for higher redshift studies

Average galaxy properties in nearby clusters

Photometry, mass, structure, morphology, stellar populations, star formation histories, scaling relations (e.g. FP and Kormendy), color-magnitude relation.

Global properties of nearby clusters

Photometry, structure, kinematics, morphological fractions, scaling laws, sub-structures, luminosity functions.

Cosmic variance of galaxy properties in nearby clusters

Relation between environment and galaxy properties, zero point for higher redshift studies.

Lorentz center

From exoplanets to galaxy clusters: science with Astro-WISE

People involved:

Padova Observatory (Italy) Daniela Bettoni Antonio Cava Giovanni Fasano Jacopo Fritz Bianca Poggianti

Padova University (Italy) Mauro D'Onofrio Tiziano Valentinuzzi

Instituto de Astrofísica de Andalucía (Spain) Mariano Moles Jesús Varela

Vatican Observatory (Italy/USA) Alessandro Omizzolo

Copenhagen Observatory Per Kjeergard

School of Physics, University of New South Wales (Australia) Warrik Couch David Woods

Observatories of the Carnegie Institution of Washington, USA Alan Dressler

<u>Lorentz</u> center

From exoplanets to galaxy clusters: science with Astro-WISE

Collaborations:

Study of Substructures in WINGS clusters INAF - Trieste Observatory (Italy)

Andrea Biviano Massimo Ramella Armando Pisani

Study of Current Star Formation in WINGS' clusters Instituto de Astrofísica de Andalucía (Spain) Jorge Iglesias Daniel Reverte Payá José Manuel Vílchez

Bidimensional analysis of WINGS galaxies Instituto de Astrofísica de Canarias (Spain) José Alfonso López Aguirre Rubén Sánchez Jansenn

From exoplanets to galaxy clusters: science with Astro-WISE

Wide Field B/V imaging of 77 WINGS clusters

Stringent observational requirements: large field of view 1.6-2.6Mpc, photometric dept V_T~23.0 (μ_v ~25.5), high spatial resolution ~1kpc...

PRODUCTS: detailed photometry, surface photometry and morphological study

From exoplanets to galaxy clusters: science with Astro-WISE

The cluster sample

center

Fig. 1. All-Sky Aitoff map of the cluster sample (equatorial coordinates). Lines delimiting the region $|b| \le 20$ are drawn.

X-Ray selection (ROSAT):

ROSAT Brightest Cluster Sample (Ebeling et al. 1998)

Extended Brightest Cluster Sample (2000)

X-ray brightest Abell-type Cluster Sample (Ebeling et al. 1996)

From exoplanets to galaxy clusters: science with Astro-WISE

The cluster sample

Lorentz center

Number of clusters	77	
Galactic Latitude Limits	b >20°	
Redshift range	0.040 - 0.069	
log(L _x [0.1-2.4 keV])	43.48 - 45.05 [erg/s]	
Number of Fields		
INT	46	
ESO	31	
Mean Seeing		
INT	1.22" ±0.20"	
ESO	1.19" ±0.37"	
Mean Field of View		
INT	0.279deg ² 3.646Mpc ² (h=0.75)	
ESO	0.287deg ² 3.358Mpc ² (h=0.75)	
Total Covered Area	otal Covered Area 21.275deg ² 267.47Mpc ² (h=0.75)	
Mean linear resolution		
INT	1.17±0.27 kpc (h=0.75)	
ESO	1.17±0.39 kpc (h=0.75)	

From exoplanets to galaxy clusters: science with Astro-WISE

WINGS-SPE

Multifiber spectra of 55 clusters COMPLETED!

WHT 4.2m - WYFFOS: (3800-7000 Å)

2dF 400 fibres 27/9/1997

CCD 2

AAT 3.9m - 2dF: (3600-8000 Å)

CCD 1

Multifiber spectra of 100-300 galaxies in 55 WINGS clusters

- selection criteria: V<20 (-16.5); μ<22.5
- intermediate resolution: 6÷9Å
- spectral range: 3800÷8000Å

PRODUCTS: redshifts, equivalent widths and line indices of emission and absorption lines for star formation histories and metallicity estimates, search for substructures

center From exoplanets to galaxy clusters: science with Astro-WISE

UKIRT 3.8m - WFCAM: (54'X54'; pix~0.20")

Wide Field J/K Imaging of 33 WINGS clusters

High quality UKIRT-WFCAM photometry

PRODUCTS: properties of cluster galaxies as a function of stellar mass, NIR structural parameters of galaxies, broad-band SED.

Lorentz center

From exoplanets to galaxy clusters: science with Astro-WISE

WINGS-UV U wide field photometry

ONGOING...

Lorentz

center

INT 4m - WFC: (34'X34'; pix~0".33)

BOK 2.2m - 90prime (70'X70'; pix~0".45)

LBT 8.4m - LBC: (23'X23'; pix~0".23)

Abell 2124 V-band-20m WFC-INT

Abell 2124 U-band-5m LBT-LBC

Wide Field U Imaging of 50 WINGS clusters

High quality U photometry and surface photometry... 22 clusters observed, further time allocated at LBC!

PRODUCTS: ongoing star formation studies, star formation distribution in galaxies and in clusters, large band SEDs.

From exoplanets to galaxy clusters: science with Astro-WISE

WINGS-HAL Ha imaging ONGOING...

Wide Field H_a **Imaging 60'x60' mosaics**

PRODUCTS: post star-burst events studies, star formation activity over a wide range of masses and clustercentric distance.

From exoplanets to galaxy clusters: science with Astro-WISE

After halo removal...

B, **V pip** Varela et al.

(a)

Lorentz center

(d)

Halos of big galaxies (included BCG) and halos of stars affect photometry.

T. Valentinuzzi

From exoplanets to galaxy clusters: science with Astro-WISE

(c)

B,V pipeline

Varela et al. 2008

Lorentz

center

Special care for treating large extended galaxies (including the BCG): photometry on images in which large galaxies and halos of bright stars are removed. Photometry for large galaxies GREATLY improved (up to 1mag difference) + detect 16% more objects around BCG

From exoplanets to galaxy clusters: science with Astro-WISE

B,V pipeline

Varela et al. 2008

Lorentz

center

SExtractor positions, geometrical parameters, several total and aperture magnitudes.

Photometric catalogs 90% complete at V~21.7, and 50% at V~23.2

Fig. 5. Average detection rate in each observing run computed from simulations. The stronger black line is the detection rate averaged over the 77 fields.

From exoplanets to galaxy clusters: science with Astro-WISE

B,V pipeline

Varela et al. 2008

Lorentz

center

Know problem with IRAF-ARTDATA

Better star/galaxy separation and detection on real images than simulated ones...

T. Valentinuzzi

From exoplanets to galaxy clusters: science with Astro-WISE

Valentinuzzi et al. 2008

Images already reduced and calibrated in UK at CASU. They are stacked and ready to become a mosaic...

54 Mosaics of 33 WINGS clusters generated with MONTAGE

(NASA/IPAC Infrared Science Archive)

Very simple and direct usage...

Powerful overlapping fitting...

Uses ZPN projection...

Enormous amount of disk space needed (70Gbyte)

Need of lots of memory... (4Gbyte)

Time consuming (5 hours for 64 stacked images of 1 cluster)...

... go directly to the fun ©!!!!

Sky subtraction with SExtractor

Lorentz center

Valentinuzzi et al. 2008

PSF distribution analysis...

Check if PSF has been strongly affected by some stacked image, check of systematic distortion effects on the mosaic...

Lorentz

center

Preliminary analysis of mosaics...

From exoplanets to galaxy clusters: science with Astro-WISE

Valentinuzzi et al. 2008

600

200

0

Counts 400

Mag

Lorentz center

0.1

0.2

Class.Star

From exoplanets to galaxy clusters: science with Astro-WISE

0.3

0.4

From exoplanets to galaxy clusters: science with Astro-WISE

center

Valentinuzzi et al. 2008

Lorentz center

Astrometry check with USNO_B

From exoplanets to galaxy clusters: science with Astro-WISE

From exoplanets to galaxy clusters: science with Astro-WISE

Valentinuzzi et al. 2008

Lorentz center

Check of unidentified objects ...

From exoplanets to galaxy clusters: science with Astro-WISE

Valentinuzzi et al. 2008

Result of this phase, improvement of SExtractor parameters choice, improvement of star/galaxy classification parameters choice...

	1 MONDLK 2 X_IMAGE 3 Y_IMAGE 4 ALPHA_SKY 5 DELTA_SKY 6 XPEAK_IMAGE 7 YPEAK_IMAGE 8 ALPHAPEAK_SKY 10 XWIN_IMAGE 11 YWIN_IMAGE 12 BACKGROUND 13 THRESHOLD 14 ISOAREA_IMAGE 15 KRON_RADIUS 16 A_IMAGE 18 THETA_SKY 19 FUHM_IMAGE 20 ELLIPTICITY 21 FLUX_RADIUS2 22 FLUX_RADIUS2	Numing object nomen Object position along x Object position along x Object position of barycenter (native) Declination of barycenter (native) x-coordinate of the brightest pixel Right ascension of brightest pix (native) Declination of brightest pix (native) Windowed position estimate along x Windowed position estimate along y Background at centroid position Detection threshold above background Isophotal area above Analysis threshold Kron apertures in units of A or B Profile RMS along major axis Position angle (east of north) (native) FUHM assuming a gaussian core 1 - B_IMAGE/A_IMAGE Fraction-of-light radii	;)	<pre>[pixel] [pixel] [deg] [deg] [deg] [deg] [deg] [pixel] [pixel] [count] [count] [pixel] [pixel] [pixel] [deg] [pixel] [pixel] [pixel]</pre>
	23 FLUX_RADIUS3	Fraction-of-light radii	4	[pixel]
	25 MAG_ISO	Isophotal magnitude		[mag]
	26 MAG_ISOCOR	Corrected isophotal magnitude	Emag	[mag]
	28 MAG_APER2	Fixed aperture magnitude	[mag]	
ŧ.	29 MAG_APER3	Fixed aperture magnitude	[mag]	
	30 MAG_APER4	Fixed aperture magnitude	Lmag.	
	31 MHG_HFERS	Fixed aperture magnitude	Lmag:	
	33 MAG AUTO	Kron-like elliptical aperture magnitude	Linag.	[mag]
ŧ.,	34 FLAGS	Extraction flags		
•	35 CLASS_STAR	S/G classifier output	100	
	1573 44.718	13523.479 160.3838036 -8.3829543	45	13523 160
	9363 45.192	1136.263 160.3072244 -9.0713069 144 966 160 3874522 -9 1276798	45	1100 100
	3765 63.987	9781.516 160.3837606 -8.5912593	64	9782 160
	4196 66.511	9065.133 160.3838180 -8.6311386	66	9065 160
	2658 69.655	11666.849 160.3829169 -8.4863115	70	11667 160
	8959 81.928	1833.161 160.3849648 -9.0337181	82	1833 160
	5593 83.0/1	6932.266 160.3834/94 -8.7498/26	23	6932 160
	5200 97 497	5100.845 160.3837078 -8.7951550 7430 340 460 3934099 -9 7224493	8Z 97	7430 160
	6912 88.602	4601.939 160.3838169 -8.8795949	89	4602 160
	1174 89.348	14193.562 160.3811063 -8.3456664	89	14193 160
	9744 92.383	508.130 160.3847450 -9.1074777	92	508 160
	4627 105.827	8319.449 160.3818118 -8.6726590	106	8319 160
	1078 106.729	14353.225 160.3800842 -8.3367835	107	14353 160
	41// 10/.292	9089.195 160.3815152 -8.6298103	107	9089 160
	0300 110.269	2400.202 ID0.30130I0 -0.030/103	TTO	0400 1BC

Lorentz

center

Ready to run SExtractor in final mode...

OUTPUT 3 main catalogs

4) Point sources catalog 2) Deep sources catalog 3) Unidentified sources catalog

6100.139

7430.423

4602.263

508.197

8319.341

9089.055

5480.344

14353.563

14193.477

82.492

87.125

88.276

89.295

92.365

105.716

106.704

107.157

118.149

From exoplanets to galaxy clusters: science with Astro-WISE

L1667 160 1833 16 6932 16 6100 160.3837715

7430 160.3831195

4602 160.3837944

4193 160.3811261

508 160.3847667

8319 160.3818022

4353 160.3800690

9089 160.3815317

480 160.3819162

-8.7962017

-8.7221665

-8.8795916

-8.3456976

-9.1074849

-8.6726841

-8.3367961

-8.6298211

-8.8307248

center

Cleaning the catalogs ...

From exoplanets to galaxy clusters: science with Astro-WISE

Lorentz

center

Cleaning the catalogs ...

WINGS: a WIde-field Nearby Galaxy-cluster Survey. I: Optical imaging

The cata **WINGS**

G. Fasano¹, C. Marmo^{2,3}, J. Varela¹, M. D'Onofrio⁴, B.M. Poggianti¹, M. Moles⁵, E. Pignatelli¹, D. Bettoni¹, P. Kjærgaard⁶, L. Rizzi⁷, W.J. Couch⁸, and A. Dressler⁹

A Wide-Field Multi-wavelength Survey of Cluster Galaxies in the Local Universe

WINGS II

Deep optical photometry of 77 nearby clusters *

J. Varela^{1,3}, M. D'Onofrio², C. Marmo³, G. Fasano¹, D. Bettoni¹, E. Pignatelli¹, B.M. Poggianti¹, M. Moles⁴, P. Kjærgaard⁵, W.J. Couch⁶, and A. Dressler⁷

If everything works ©: 1) Cle THANK YOU... 2) Clean Deep catalog 3) Unknown objects catalog

Lorentz center

From exoplanets to galaxy clusters: science with Astro-WISE