UKIDSS

The UKIDSS Ultra-Deep Survey Survey operations and dedicated "pipeline"

Sébastien Foucaud & Omar Almaini

University of Nottingham

+ UKIDSS UDS Team

Talk Outline

- UKIRT Infrared Deep Sky Survey
- Ultra Deep Survey
- Dedicated data reduction
- Successes and failures
- Astrowise

The UKIRT Wide-Field CAMera

WFCAM IR detectors

- 4 Rockwell Hawaii-II devices
- HgCdTe hybrids
- J, H, K (+Y, Z)
- 2048 x 2048 18 μm pixels
- detector packaging prevents close packing

Focal Plane configuration

- 90% spacing of 4 detectors
- four exposures give filled 0.88° square (0.77 sq. °)

The UKIDSS Consortium

UKIDSS

- PI: Andy Lawrence
- Survey Scientist: Steve Warren
- Survey Heads: Almaini, Edge, Hambly, Jameson, Lucas
- + ~60 others within ESO
- + Subaru FMOS team

- 60% of all UKIRT time dedicated to UKIDSS
- 7-year programme (approved on 2yr roller)
- 5 sub-surveys
- Immediately public to ESO community
- World public 18 months after observation
- Started in spring 2005

http://www.ukidss.org

UKIDSS design

Ultra Deep Survey	UDS	JHK	K=23.0	0.77 deg ²	ExGal
Deep Extragalactic Survey	DXS	JK	K=21.0	35 deg ²	ExGal
Galactic Plane Survey	GPS	JHK	K=19.0	1800 deg ²	Gal
Galactic Clusters Survey	GCS	ZYJHK	K=18.7	1600 deg ²	Gal
Large Area Survey	LAS	YJHK	K=18.4	4000 deg ²	ExGal

UKIDSS Data Flow

UKIDSS data reduction

Irwin et al. (in prep.)

UKIDSS photometry

- calibration ~1% for all wavebands
- 2MASS globally consistent to ~1%
- many 2MASS stars in each WFCAM pointing
- 2MASS star photometry → WFCAM system using linear colour equations
- ZP* for every 2MASS star in the detector, combining to give a detector ZPdet
- stack residuals every month
- residuals binned spatially (1.2x1.2arcmin) and smoothed:
 - systematic detector offsets at the 1-2% level (catalogues/images updated for each HDU)
 additional spatial systematics at the 1% level (written to file and available from CASU)

Hodgkin et al. (in prep.)

UKIDSS catalogue matching

Hambly et al. (2008)

WFAU, Institute for Astronomy, Royal Observatory, Blackford Hill Edinburgh, EH9 3HJ, UK Tel +44 131 668 8366 (office) or +44 131 668 8100 (switchboard)

> wsa-support@roe.ac.uk 30/1/2006

http://surveys.roe.ac.uk/wsa

UKIDSS astrometry

UKIDSS photometry

The UKIDSS Ultra-Deep Survey

UKIDSS UDS

GOODS

x20

FIRES

x400

The UKIDSS Ultra-Deep Survey

World wide public (in january 2008) Depths achieved so far: (5σ, 2" apertures, AB)

<u>**DR3:</u>** K_{AB}=23.8, H_{AB}=23.4, J_{AB}=23.5 seeing : J~0.90" H~0.85" K~0.75"</u>

Almaini, Foucaud et al. (in prep.)

<u>**DR1:</u>** K_{AB}=23.6, J_{AB}=23.5</u>

seeing : J~0.90" K~0.75"

Warren et al. (2007)

EDR: K_{AB}=22.6, J_{AB}=22.6 seeing : J~0.80" K~0.70"

Dye et al. (2006); Foucaud et al. (2007)

Key goals of the Ultra-Deep Survey

- When are galaxies assembled?detailed luminosity functions from 1<z<6
- High-z galaxy mass functionModel SEDs (u,b,v,r,i',z',J,H,K + Spitzer)
- How do galaxy properties evolve with time?
- Formation of the red sequence
- Morphologies, prevalence of AGN etc.
- Large-scale structure
 - provides probe of dark matter halos
 - evolution of clustering & bias

Summary of UDS scientific results

- Detection of luminous LBGs at z>5
 McLure et al. (2006), MNRAS, 372, 357
- Study and selection of EROs
 Simpson et al. (2006), MNRAS, 373, L21
- Selection of high-z groups and clusters
 - van Breukelen at al. (2006), MNRAS, 373, L26
- Strong clustering of bright DRGs
 Foucaud et al. (2007), MNRAS, 376, L20
- Compton-thick quasars at high redshift - Martínez-Sansigre et al. (2007), MNRAS, 379, L6
- Colour selection of high-z galaxies
 - Lane et al. (2007), MNRAS, 379, L25
- K-band luminosity function to z=2
 Cirasuolo et al. (2007), MNRAS, 380, 585
- Clustering of 24µm-selected galaxies
 Magliocchetti et al. (2008), MNRAS, 383, 1131
- FIR/Radio correlation at high redshift
 - Ibar et al. (2008), accepted, astroph/0802.2694
- Space density and clustering of passive galaxies Hartley et al. (2008), submitted

Etc...

UDS at a glance

Foucaud et al. (2007) Almaini, Foucaud et al. (in prep.)

- 10 sec. exposures
- 3x3 microstepping 0.133"/pixel
- 9-point jittering
- Random shift of the field centre within 1arcmin
- K-band: seeing<0.8"
- J-band: seeing<1.0" µ₋<16 mag/arcmin²
- H-band: seeing<1.0"
- 0.77 deg²
- 02:17:48, -05:05:45

The Nottingham "pipeline"

Almaini, Foucaud et al. (in prep.)

WeightWatcher, SWarp and SExtractor are TERAPIX products http://terapix.iap.fr

UDS Quality Control

Almaini, Foucaud et al. (in prep.)

- Detailed look at individual interleaved stacks and flagging
- Conservative masking and border trimming
- Seeing rejection: in K seeing<0.9" none in J and H
- ~35% of images taken in bad weather contitions in K, and ~10% in J and H
- after QC:

in K ~25% rejected, in J and H ~5-10%

- high sky background
- data-reduction issue
- moon contamination
- guide-star lost

Confidence maps, trimming and masking

Almaini, Foucaud et al. (in prep.)

- Confidence maps from CASU: normalised inverse variance weight-map
- Weighted with the background variance of each interleave stack
- Conservative trimming of borders
- Masking of "bad" areas
- Implementation through Weightwatcher

SWarp sigma-clipped coaddition

Almaini, Foucaud et al. (in prep.)

- Using a sigma-clipping rejection method
- Typically ~25 frames coadded
- Modification of SWarp
- 3σ-rejection: no noticeable impact on stars and galaxies profiles (<1%)
- Improved data quality and helped to gain in depth

SExtractor tuned parameters

Foucaud et al. (2007) Almaini, Foucaud et al. (in prep.)

maglim(70%)>23.8 & spurious<3%

DR3 K-band

- 5σ(2"ap) magnitude limit
- Point-like sources simulations
- Completeness @ 70%
- Inverse image for spurious fraction estimation
- Best SExtractor parameters for magnitude limit and spurious<3%

UDS astrometry

Almaini, Foucaud et al. (in prep.)

- Comparison with CASU
- TAN projection (no radial distortions)
- $\sigma = 25 \text{mas} (\sigma_{\text{tot}} = 33 \text{mas})$
- On the edge of each chips high variations (<100mas)

UDS galaxy number counts

Almaini, Foucaud et al. (in prep.)

Clustering of K-limited samples (DR1)

Almaini, Foucaud et al. (in prep.)

Clustering of K-limited samples (DR1)

Almaini, Foucaud et al. (in prep.)

Known issues

IMAGES:

- "Hedgehogging"
- Extra background noise
- Crosstalks
- Persistence

CATALOGUES:

Bias against close pairs (deblending)

Interleave stacking

Almaini, Foucaud et al. (in prep.)

- Data undersampled (3x3 microstepping)
- Reduce drastically the amount of data to deal with
- Require ~0.1 pixel offset accuracy (generally the case)
- Extra background noise
- "Hedgehogging"

Sky-subtraction

- Artifacts fct. illumination and exposure time
- Grouping sky estimation and correction by filter, exposure time and position on the sky
- Combination using double non-linear iteratively clipped median (roughly first a median and then a 3σ clipping)
- Master sky frame formed in 2 stages:
 - Sky frames within dither offset and microstep sequence combined
 - these intermediates are then grouped and combined

(looking at each individual intermediate frames helps improving the final bakground removal)

Irwin et al. (in prep.)

Crosstalks and persistence

- Crosstalks: pickup in adjacent channels
 - between the 8 channels readout
 - @ (±128 pixels) xN of stars
 - ~1% of the differential flux (drop further)
 - all object with high central brightness (not only saturated stars)
- Modelling (CASU)
- Sigma-clipping (Nottingham)
- Flagging/Masking (WFAU)
- Persistence (from objects in the preceding frame)
- Flagging/Masking
- Change of observational strategy (random pattern)

Irwin et al. (in prep.)

Catalogues: deblending issues

- Catalogues biased toward scientific goals
- SExtractor parameters tuned
- Usage of different detection filters
- Filter kernel size
 - > PSF: low surface brightness objects
 - < PSF: close pairs objects
- Official DR3 catalogue with larger kernel
- Build a alternative catalogue "best of both world"
- Going further was even more detection filters...

Lessons learned

- 2MASS ideal for the astrometry and photometry at our required level
- Large quantity of images (big computers)
- Quality control primordial (nothing can really replace the eyes)
- Avoiding interleave stacks !!!
- Sky-subtraction = critical stage of data reduction (IR)
- Sigma-clipping stacking helps a lot but "dangerous"
- Catalogues:
 - no ideal method, always biased
 - tuning helpful
 - alternative methods (variable deblending)

Astrowise

Pros:

- no need to deal with huge quantity of data on your disks
- fast and shareable
- direct link with "sources" (directly have access to RAW frames for instance)
- highly tested

Cons:

- No control on the software? (implementation of new stacking methods for instance)
- Quality control? (play around with images on disks)
- Tuning of parameters? (simulations)

UKIDSS

Conclusions

- UKIDSS-UDS is on-going
- DR3 available for ESO and DR1 for world
- Reach K_{AB}=23.8(23.6) H_{AB}=23.4 J_{AB}=23.5
- Improved reduction method involving TERAPIX software (WeightWatcher, SWarp, SExtractor)
- Sigma clipping coaddition
 - Photometry σ ~0.02mag ; Astrometry σ ~33mas

The UKIDSS Ultra-Deep Survey

http://www.nottingham.ac.uk/astronomy/UDS

DR1: K_{AB}=23.5, J_{AB}=23.6 (85 hours) *World-wide public in january 2008*

DR3: K_{AB}=23.7, H_{AB}=23.4, J_{AB}=23.6 (120 hours) ESO public in december 2007

Final depth: K_{AB} =25, H_{AB} =24.7, J_{AB} =24.7 (200 nights)

Another 4 years of data to come... ...plus new spectroscopic ESO survey