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Chapter 0

Introduction

0.1 Scope of ADD

This Architectural Design Document (ADD) gives an overview of the ASTRO-WISE survey system
which the consortium plans to develop and operate. It follows the organizational structure of the
project with 6 Work Packages (WP). The document gives an overview of the joint developments of
the different partners.

For each of the WP’s the document describes the components that will be supported. The text
lists the high-level ASTRO-WISE specific concepts, without much details. However, the concepts
relating to the interfaces between different components and WP’s are detailed (see also Appendix).

The document forms the backbone of the design of the ASTRO-WISE survey system. The
goals for the system are ambitious in the sense that the system should support with a minimum
of administrative manpower the massive dataflow from wide field imagers, which in the case of
OmegaCAM is planned for a 10 year period for, say, 300 nights per year. Next to this, all the raw
and processed data should be disseminated over the partner sites. Therefore, the project has a
lot of emphasis on the administrative problem which, in turn, is handled by early definitions of
standards and a common database engine which both handles the pipeline I/O, all the source lists
and the distribution of data items over the various partner sites. A key of the project is that the
administrative system at the same time facilitates overall operations, like calibrations and project
surveys, and the personal use of the system.

A key concept of the ASTRO-WISE system is that data items will be continuously added to the
database, either due to new data coming in from the telescope, or due to new versions of methods
or calibration data. ASTRO-WISE will create dynamical catalogues often computed on request of
the end user. The same system can be used to create more classical, static, catalogues when for a
particular project one wants to freeze versions of methods and calibration data. But, in fact, the
ASTRO-WISE system can contain ALL OmegaCAM data in a form which is of direct interest for
astronomical use. The system allows a user to do their own experiments with large or small subsets
of the data. The system is tuned for OmegaCAM data but other Wide field imager data will be
supported as well.

The current prototypes can deal with WFI@2.2m and INT wide field image data. The system
is designed to support other wide field imagers, such as MegaCAM and VISTA. The design of
the system is such that it is a relatively simple task to add another instrument to the system (by
specifying their own classes).

WP1 describes the ASTRO-WISE pipelines which contain a lot of OmegaCAM components. These
pipelines should either run in “standard” mode or be user tuneable, facilitating interactive analysis,
and supporting the zoo of scientific objectives (ranging from finding a single variable or moving
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CHAPTER 0. INTRODUCTION 6

object, to comparing galaxy counts in different hemispheres).
WP2 describes the various back-end tools for visualization, source extraction and querying large

(Tbyte) databases. The present documentation of WP2 in Chapter 2 provides much more details
than the other sections, and should be assessed on the Detailed Design level, while the other sections
are on the ADD level.

WP3 describes the federated databases which will support the ASTRO-WISE administration and
glue together the operations and developments at the various sites.

WP4 and WP5 list the hardware provided by the various partners to the ASTRO-WISE survey
system. This hardware will form a wide area network (WAN), both for development work and for
the astronomer using the system. It is envisaged that most WAN services will be provided by the
implementation of the database in WP3.
Network speeds are taken as a free parameter in the present concept, but in the ideal system no
data is replicated and the database always knows where to point and collect the relevant data.
In practice, replication will be needed, in the Oracle environment this will be provided by the
Advanced Replication components. The system is designed to allow to move to European direct
access, with no replication of image data, to be implemented as soon as partners are linked to the
required network throughput.

WP6 is coordinating this project, where the view is that the key to the success of the ambitious
system is to have a lot of emphasis on design and setting standards. Also it will require a lot of art,
flexibility and good-will from all partners to find compromises between local interests (the bazaar)
and the overall system (the cathedral). The ambition is indeed to find the proper balances between
the two.
ASTRO-WISE can deliver data products to the Astrophysical Virtual Observatory (AVO) and close
contact with the VO’s and the Grid projects, like AstroGRID and DataGRID, is very desirable,
particularly for the inter-operability issues.
In itself the ASTRO-WISE system, which only supports wide field imaging instruments, represents
a kind of Virtual Survey System, combining archive access, pipeline processing and user tuneable
querying and processing.

0.2 Scope, federating calibrations

This section is essentially a summary of the proposal and contract texts and serves as a reference
for the present document.

The ASTRO-WISE consortium is an initiative of the OmegaCAM and VST consortia, together
with the ESO-EIS group and Terapix. The ASTRO-WISE system initially focuses on the support
of the OmegaCAM /VST optical camera, though the design of the system should allow support of
other wide-field instruments.
Current wide field imagers, such as WFI@2.2m and INT can be supported.
It is planned to start including MegaCAM in the federation starting in 2004 and at a later phase
the system can be tuned to also host VISTA data.

The ASTRO-WISE system will facilitate distributed data reduction and calibration of the Omega-
CAM /VST data. The procedures for data acquisition at the telescope and calibrations are outlined
in the OmegaCAM URD and the CP documents. The NL-Nova team builds such components for
the ESO operations pipeline for handling the calibrations and ”removing instrument fingerprints”
from the raw data. Experience with and also libraries of the EIS programme supported this activity.
The components of these pipelines and calibration reductions will be delivered by the NOVA team
to ESO-DMD. The production of these components is part of the OmegaCAM - ESO contract and
is not part of the official ASTRO-WISE programme. ESO-DMD will operate these components in a
DFS pipeline, to maintain all calibrations thoroughly, and to do a first cut data reduction for the
VST observing programmes, in service mode.
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A general OmegaCAM /VST observing and calibrations strategy is to maintain the instrument
continuously, with standardized procedures. In this concept the ”instrument is calibrated”, any
”standard” observation done with the instrument should be calibratable with these general cali-
bration procedures (there are very few exceptions, like programmes requiring extreme photometric
accuracy - say better than 0.02mag).

The same procedures used by ESO/dmd to maintain the instrument will be used by ASTRO-
WISE . In fact, the federated system operated by ASTRO-WISE will disseminate the calibrations.
By merging these data reductions procedures with ESO-EIS components ASTRO-WISE builds an
exportable system for maintaining the calibrations. It is because of the availability of the Omega-
CAM components and the extensive EIS libraries that we feel we are in a position to go one step
further and to disseminate an integrated system through the community. Basically, the ASTRO-
WISE system can be viewed as a technique to distribute software and calibrations, together with
the raw and processed data through the community. At the same time the community can con-
tribute to the calibrations and feed back their results into the system. Data can be re-derived with
such new calibrations. Projects, such as large survey or Public Surveys can be run independently.
The work horse for the federation is a common database engine which will control both pipeline
operations and will supervise the dissemination. In the Oracle 9i era the dissemination is handled
by the Advanced Replication components. Available network speeds will determine how much data
will be replicated or only stored locally. Interoperability to external VO systems is open through
the VO table concept, while direct interoperability to external archives can be achieved through
the Oracle STREAMS components.

As all the data taking and data reduction is strongly procedurized, all OmegaCAM observations
can potentially be used in an archive. The ASTRO-WISE federation means to provide such an
archive, next to large surveys and public surveys. Contrary to the Public Surveys, such an overall
archive will have a variable quality and will change continuously. Users can define their own archive
project and re-run the calibrations, this way effectively creating dynamic catalogues. Because the
intimate coupling between the sourcelist/catalogue level and the maintaining of the calibrations,
both being disseminated and federated it is desirable to have all these handled by the same database
engine. Common interfaces for pipeline and calibration derivation procedures will be developed (the
delivery to ESO-dmd will contain an I/F to a file system, while the general ASTRO-WISE system
will interface via Python and SQL to the Oracle-db). Oracle STREAMS will be used to connect the
database to other databases, such as SyBase (as operated by ESO-DMD) and MySQL (as operated
by Terapix). These connections will allow the exchange of data files, code and calibrations. The
ASTRO-WISE federations can be used to disseminate Public Surveys over the community, but also
recursively to involve the community in the production of these surveys. Thus, the ASTRO-WISE
system can expand on the current EIS system and provide a wider dissemination and involvement
of the community.

WP3 provides such a database engine, while WP1 provides the user interface and operations of
an image reduction and calibration pipeline, which heavily leans on OmegaCAM and EIS compo-
nents. WP2 provides additional analysis and visualization tools, while WP 4 and WP5 provides
the necessary hardware to the ASTRO-WISE system.

The ASTRO-WISE project is essentially a Research and Development project, the present docu-
ment means to outline the grand context, which will be build on top on existing successful libraries
like EIS, Ldac, Eclipse, OmegaCAM. During the project the emphasis might change, as industrial
products (processors, storage, db) will evolve, AVO projects will deliver useful middleware and avail-
able network speed will increase. The ASTRO-WISE archives or certain project contexts areas out
of the the ASTRO-WISE archive will be made available with the AVO infrastructure. ASTRO-WISE
also supports a limited amount of operations of the network.
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0.3 Glossary

5LS Five lines script: handfull of user specified Python code allowing to execute complex operations
and/or queries

ADD Architectural Design Document

API Application Programmers Interface

AVO Astronomical Virtual Observatory

CP The OmegaCAM Data Flow System Calibration Plan

CGI A method to serve dynamic web pages

DB Database

DBMS Database Management System

DDL Data Definition Language, a language to define the contents of a database (see also SQL).

DFS (ESO) Data Flow System

DML Data Manipulation Language, a language to manipulate the contents of of a database (see
also SQL)

DRS The OmegaCAM Data Reduction Specifications

GID A Global Indentification within the federated database such that an ingested data item can
be uniquely referenced

GTK A software library (Graphical ToolKit) for GUIs

GUI Graphical User Interface

OOP Object Oriented Programming, a paradigm based on the notion that data and functions are
intimately related

Object The central concept in OOP, a “thing” that comprises data (attribute-values, state) and
functions (methods, behavior)

Persistence The mechanism used in OOP to save and retrieve data (i.e. the state of objects) from
a database

PHP A language for dynamic web pages.

QC Quality Control

Qt A software library (toolkit) for GUIs

RDBMS Relational Database Management Systems

SQL Structured Query Language A language for manipulating databases and their contents (SQL
is both a DDL and a DML)

Tkiniter A software library (toolkit) for GUIs

UI User Interface
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URD The OmegaCAM Data Flow System User Requirements

VO Virtual Observatory

WAN Wide Area Network, a network connecting multiple sites (using the internet)

WP Workpackage

XML eXtendable Markup Language



Chapter 1

WP1: Provide and operate
processing facility of raw image
data

1.1 Introduction

The aim of work package 1 (WP1) is to develop, implement and operate a full wide-field imaging
pipeline from raw data to astronomically calibrated images, and to populate the database with the
necessary calibration information.

Here, we give an overview of the requirements of the pipeline and the key concepts of the pipeline
architecture.

Details of the required processing capabilities of both the calibration and data-reduction pipelines
are given in the OmegaCAM User Requirement Document, the Calibration Plan and the Data Re-
duction Specification Document. These documents provide a baseline for the ASTRO-WISE require-
ments. Hence, we will focus here on additional requirements and designs. These designs define the
ASTRO-WISE pipeline environment and include:

• user-driven operations (both automatic and interactive operations),

• transparent database interfaces for pipeline administration, and

• distributed processing.

A prototype pipeline, following the present specifications, has been implemented and was used
to iterate on the present design. The aim of this prototype is to investigate solutions to the design
problems posed by the pipeline requirements. This prototype is based on design decisions that will
be clarified in this document.

The WP1 text has been organized as follows. Section 1.2 gives an overview of the requirements,
both from a user and a developer point of view. Section 1.3 translates these requirements to spec-
ifications of the ASTRO-WISE pipeline architecture, including an overview of the implementation
tasks. Section 1.4 specifies a development framework that will deliver this pipeline. Finally, section
1.5 describes the current prototype.
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ASTRO-WISE ADD: WP1 – pipeline 11

1.2 Requirements

The following OmegaCAM documents provide a detailed description of the requirements of the
OmegaCAM operations, including calibration procedures, scientific observing modes, and required
data reduction operations.

1. OmegaCAM Data Flow System User Requirements (URD) (VST-SPE-OCM-23100-
3050) gives an overview of the scientific requirements, including calibration and processing
requirements.

2. OmegaCAM Date Flow System Calibration Plan (CP) (VST-PLA-OCM-23100-3090)
gives a detailed description of all calibration procedures.

3. OmegaCAM Date Reduction Specifications (DRS) (VST-SPE-OCM-23100-3051) spec-
ifies the data reduction tasks for the calibration and science data

The ASTRO-WISE pipeline requirements obey the requirements as laid out in these documents,
but in addition involves important new features such as interoperability, user-driven processing and
archiving of all pipeline I/O. These will be discussed here.

An overview of the data processing modules as it is anticipated to operate in the ESO envi-
ronment is given in Fig. 1.1. The diagram is exhaustive and includes procedurized operations at
Paranal and at ESO headquarters both regarding quality control (QC0), calibration file derivations
(QC1), the operation of an image pipeline, and transferring raw images into astrometrically and
photometrically calibrated images. The colored boxes in the flow diagram represent data processing
modules that produce results represented by white boxes.

Main ASTRO-WISE concept are:

• to operate and distribute the same datamodel over the various ASTRO-WISE sites

• the end-results, all the I/O of the pipeline obeying this datamodel, and all infor-
mation necessary to reproduce the results, are stored in a database.

The yellow boxes in Fig. 1.1 represent the modules that will form a persistent part of the
system. The green labelled boxes will not form part of the ASTRO-WISE pipeline, they function in
the local quality control of operations (at Paranal and ESO-DMD). These modules, in general, do
not produce calibration data required for pipeline operations. The discrimination between green and
yellow boxes is one of the compromises made to keep the project manageable. For the same reason,
critical operations done at Paranal are repeated at ESO headquarters and at the ASTRO-WISE
sites, where the relevant databases are maintained.

In addition, Fig 1.1 contains blue colored modules, representing post-processing and analysis
tools, that are described in more details in WP2. Next to the image stacking, image differencing,
image mosaicing, and image monitoring which the ASTRO-WISE pipeline will support (all beyond
what is operated for the general ESO user by ESO-DMD), a number of source extraction and
visualization tools and overall source list database query tools will be supported.

• An important ASTRO-WISE concept is to integrate these tools, and the source
lists in the same environment as the pipeline operations.

A pipeline may be defined as a series of connected modules, where the output of one module is the
input of another module. It is convenient to distinguish between different pipelines, as illustrated
in Fig.1.2. Here we distinguish between the bias pipeline, the flatfield pipeline, the photometry
pipeline, and the image pipeline. Each pipeline produces a distinct result (bias, flatfield, zeropoint
and calibrated science data respectively), that provides a convenient/obvious entry-point for human
quality control.
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Figure 1.1: The OmegaCAM data model. The ASTRO-WISE pipeline encompasses the data-
reduction modules colored in yellow (all visible to the end-user).
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Figure 1.2: The OmegaCAM data model. The model distinguishes between different pipelines. The
most important are the flatfield pipeline, the zeropoint pipeline, and the image pipeline
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In addition to the requirements set forth by the OmegaCAM documents, the following high-level
requirements are specified.

1. Multi instrument support: The aforementioned documents specify the requirements of a
single instrument. The ASTRO-WISE pipeline should be easily extensible to support multiple
optical (first of all MegaCAM) and IR imaging instruments (first of all VISTA).

2. Multi site operations: The aforementioned documents specify data processing within an
ESO Data Flow System (DFS) context. The ASTRO-WISE concept assumes that processing
and administration may be distributed over multiple sites.

3. Database driven operations: DFS assumes that processing is driven by the contents of
FITS files/headers. ASTRO-WISE assumes the meta-data that drives processing is primarily
stored in a database and processing is triggered by queries of the user. Moreover, post-pipeline
analysis will ideally be accomplished within the same framework as used by standard pipeline
processing.

4. Reprocessing: The ASTRO-WISE pipeline should enable on-the- fly reprocessing of the data.
In the ideal implementation of the system, it does not matter whether a result is returned
from the database or (re)processed on the fly. This implies that (i) all information necessary
to reproduce a result should be retained and (ii) the interface should allow this.

5. Extendibility: It should be possible to add/replace processing methods and define new data
products, extending (but not modifying) the data model,

In the following sections we will detail some of the requirements:

1.2.1 Processing capabilities

Section 7 of the DRS gives a detailed description of low-level processing functionalities required by
the OmegaCAM pipeline, including:

• Image manipulation including, arithmetic, statistics, convolution, masking, and coaddition

• Catalog manipulation including source extraction, association, astrometric calibration, and
PSF measurement

• Header manipulation including reading, writing, and validation

1.2.2 Database requirements, WP1–WP3 interface

Here, we address some of the database issues related to pipeline administration and operations.
Related issues are addressed in WP3 and an implementation of persistent objects (see below) is
explained in more detail in Appendix A.

While many image pipeline algorithms are well developed nowadays an important challenge
is designing and developing the administrative aspects of a pipeline. ASTRO-WISE focus is on
handling pipelines as an administrative problem.

Our solution relies on:

• Persistence: The pipeline operates by manipulating persistent objects.
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Persistence is a concept from Object Oriented Programming (OOP). An object is said to be
persistent if it is able to ’remember’ its state across program boundaries. Persistence is usually
implemented on top of a database. The aim is to make this process transparent. This means that
modifying the state of an object (for example, assigning a value to an attribute) will automatically
lead to an update of the database. Modifying an object and storing/updating a database with the
objects contents should not be separate tasks.

• Query: The user should have maximum freedom in querying the database.

Persistence is usually implemented as a mapping from object identity to object state. That is,
given the identity of an object, retrieve its state from a database. ’Searching a database’, however,
is an activity that relies on solving the opposite problem. Namely, finding a mapping from a
(partially specified) state to object identities. This is the problem that relational databases solve
(i.e: SELECT object WHERE object.state = value). Therefore, the database requirements suggest
an implementation of an interface from persistent objects to an (object-)relational data base.

• Extendable schema: The database schema should be extendable.

Extending and modifying object attribute and method definitions through inheritance and poly-
morphism is the central concept in OO technology. The database should support these concepts,
allowing the end-user to define new persistent data products.

Because schema modification complicates history tracking, it is mandatory to use inheritance
and polymorphism to introduce new classes or processing routines to the pipeline. That way, any
new processing routines or structures that are defined will be additions to the database schema
instead of modifications to the database schema.

The ASTRO-WISE database provides an operational environment for both pipeline data pro-
cessing, data processing for specific (science) projects, and end-user data processing and analysis.
Therefore the database should provide facilities for the following related concepts:

• Multi-user: The database should allow for multiple users with different privileges (e.g.:
developer, pipeline operator, project scientist, browser).

• Multiple contexts: The objects in the database may have meaning only in specific contexts
(e.g.: development and testing, general pipeline operations, alternative pipeline operations
(reprocessing), a particular survey, a particular science project, a data mining project)

These concepts together provide a course-grained and fine-grained notion of ownership/responsibility
of data respectively. Specifically, it is understood that objects may have a limited lifetime within
the database for some users or in some contexts. The valid context(s) is an attribute of each per-
sistent object. This is implemented with a link to one or more context objects. The definition
of the corresponding (derived) types (see 1.2.7) will enable the end-users to select based on the
similarities and differences between various kinds of contexts. A number of attributes shared by
many persistent objects, that may be useful in determining a context is given in Table 1.1.

The validity of persistent object may also be limited to a particular time. Hence:

• Time-stamping The database should be able to timestamp objects with a single time or a
time range.

Calibration data have an assigned validity period. The assignment of the proper validity period
is provided by the calibration pipelines and quality control mechanisms. This is the key mechanism
for the image pipeline to identify the proper calibration files, but also other mechanisms can be
supported, like using other object attributes such as owner or project.
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Table 1.1: Some key object attributes to determine object context. These attributes are used in
selecting relevant data for particular operations.

Atribute Values
project Calibration, Science, Survey, Virtual
owner pipeline, developer, user
observing block Bias, DomeFlat, Dither
strategy Standard, Deep, Freq. (see CP)
mode Quick, Jitter, Dither (see CP)
timestamp valid time range

Table 1.2: Some key characteristics of data that can be used to select data for processing and
analysis. Attributes marked with an asterisk also describe the observing block, and, hence, can be
seen as part of the context

Atribute Values
∗RA, DEC Target position
∗filter The filter
seeing The FWHM of stellar objects
DATEOBS Date of observations
EXPTIME Exposure time

The relevance of data (to a user) is not only determined by context, but may also be determined
by physical characteristics of the data. These characteristics can be used to select data for proces-
seing and/or analysis. An overview the most important of these characteristics is given in Table
1.2

The database will store both the meta data (administrative information) and the bulk data
(FITS files and catalogs). Hence, the following requirement:

• Bulk data storage The database interface should hide the details of the storage of the bulk
data (FITS files and catalogs)

Finally, the operational environment of the pipeline (see next section) dictates the following
requirement:

• Multi-site The database should be distributable over multiple sites

1.2.3 Operational capabilities

The data rate of the instrument sets a firm constraint on pipeline performance:

• Pipeline performance The pipeline shall reduce data at a rate of at least 1 Mpix/sec (100
exposures/night, reduced in the same time as a night lasting 8 h, i.e. 3 times faster than
overall data acquisition).

It is expected that this performance target requires parallel processing. In addition, data must
be distributed over multiple sites. Hence:

• Parallel processing The pipeline shall work in a parallel processing environment (Beowulf)

• Remote processing The pipeline shall work in a remote processing environment

Both requirements are met with a single interface.
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1.2.4 User Interface

The ASTRO-WISE pipeline framework comprises a library of re-usable software components written
in Python and external packages with Python interfaces. The core of this library consists of the
definition of persistent objects which provide a binding to the Oracle database. These persistent
objects have attributes which describe the data. The persistent objects are stored in the database
and their attributes can be used to select objects from the database. The objects also provide
methods to process and analyse the data. The control of data processing is discussed in section
1.2.5. A key part of the analysis is quality control, which is discussed in section 1.2.6.

There are three different levels for the user to interact with this infrastructure:

• Command lines: Standard applications can be started from the ASTRO-WISE monitor in
Unix-type command line mode (in some cases to be covered by GUIs).

• User provided applications: Users can modify functionalities in modules and insert them
into the system when these modules obey the standard data model.

• User scripts: users can write (short) scripts allowing to glue existing pipeline applications
and data base access in a compact way (five lines script- 5LS).

User interfaces should provide pipeline operators and end users the ability to:

1. operate the pipelines (image, photometry, flatfield) in interactive (single-stepping through
modules) and batch mode;

2. retrieve and modify the (default) configuration parameters of each data reduction operation,
and, if necessary, (re-)execute the operation with the new parameters;

3. create or import alternative (calibration) data, and (re-)execute data reduction operations
using these data;

4. visually inspect the (intermediate) results of data reduction operations, using image visual-
ization tools and interactive plotting tools;

5. execute additional analysis operations on selected data in order to verify results.

6. perform trend analysis on selected results;

7. produce derived data products from default data products produced by standard pipeline
operations (e.g. color catalogs from single-pass band catalogs; deep observations or mosaics
from combined pointings).

Command lines

A user interface for applications may be a simple unix-like command line with arguments, or a
more fancy GUI. The key feature of the user interface is that it hides from the user all information
and data-processing capabilities that are not directly relevant to the task at hand. Examples of
standard applications are given in the Recipes directory of the ASTRO-WISE pipeline prototype.
The ESO Imaging Survey provides examples of how an ASTRO-WISE GUI could look like. This is
discussed in more detail in Section 1.5

User provided applications

Users can modify functionalities in modules and insert them into the system when these modules
obey the standard data model. By using the full OO inheritance machinery, the user can modify
and extend any part of the ASTRO-WISE pipeline. User-defined scripts provide a flexible way to
control data processing and analysis.
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User scripts - 5LS

User provided handful of lines of Python script - 5LS (five lines script) provide an additional
powerful tool. All data transfer is, at least on Meta-data level, passed through the data base. The
ASTRO-WISE Python binding to the Oracle database allows the end-user to write his top-level
script addressing the database exclusively in Python code. This way, the user can, from the same
script, trigger the processing of image or catalogue data (as in command lines and user provided
applications) and query the database on results, apply computations to these results and visualise
them. This facilitates, in a powerful way, complex and USER-defined add hoc operations to the
data, which will have more flexibility than pre-defined Gui’s, that are more useful for the more
routine type of operations.

In the following Python examples data is selected from the database, manipulated and plotted.
When used with a database that is populated with raw, calibration and processed data the examples
result in figure 1.3.

##############################################################################
from astro.main.RawFrame import RawBiasFrame, RawDomeFlatFrame
import Kplot
##############################################################################
# Example A
# Find all raw bias frames for a ccd named A5506-4.
q = RawBiasFrame.chip.name == ’A5506-4’

# From the query result, get the observing date in terms of the modified Julian date
x = [k.MJD_OBS for k in q]
# Get the mean pixel value of the raw bias image.
y = [k.imstat.mean for k in q]

# Make a plot of observing date vs. the mean bias value.
g1 = Kplot.simple.MarkerGraph(x=x,y=y)

##############################################################################
# Example B
# Find all raw bias frames for a ccd named ccd53.
q = RawBiasFrame.chip.name == ’ccd53’

# From the query result, get the observing date in terms of the modified Julian date
x = [k.MJD_OBS for k in q]
# Get the difference between the mean of the overscan in the x-direction and
# the mean of the prescan in the x-direction.
y = [k.overscan_x_stat.mean-k.prescan_x_stat.mean for k in q]

# Make a plot of observing date vs. difference of the pre- and overscan mean
# values in the x-direction
g2 = Kplot.simple.MarkerGraph(x=x,y=y)

##############################################################################
# Example C
# Find all raw domeflat frames for a ccd named ccd56 observed with filter
# called #841 with exposure times > 2 seconds
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Figure 1.3: Demonstrating power of a 5LS: Selection and output of mean bias as function of time
and difference in pre- and overscan as function of time, both for a single ccd.

q = ((RawDomeFlatFrame.chip.name == ’ccd56’) &
(RawDomeFlatFrame.filter.name == ’#841’) &
(RawDomeFlatFrame.EXPTIME > 2))

# From the query result, get the observing date in terms of the modified Julian date
x = [k.MJD_OBS for k in q]
# Get the mean pixel value of the domeflat divided by the exposure time.
y = [k.imstat.mean/k.EXPTIME for k in q]

# Make a plot of observing date vs. mean domeflat value divided by the
# exposure time.
g3 = Kplot.simple.MarkerGraph(x=x,y=y)
##############################################################################
# Postscript output of the plots
g1.device.hardcopy(’g1’)
g2.device.hardcopy(’g2’)
##############################################################################

1.2.5 Pipelines

The ASTRO-WISE data model describes several “pipelines”. Pipelines may be simple or complex
but basically perform the following functions:

1. determine what result should be processed

2. select the data that is needed to produce that result

3. do the processing

To facilitate re-processing we follow the make-metaphor.
’make’ is the unix utility used to keep track of dependencies in building large software packages.

The aim of this utility is to only rebuild (recompile) those parts of a package that depend on
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something that has been changed. The unix make utility works by specifying targets. Targets
have dependencies that may themselves be targets. Targets are rebuilt, in a recursive cascade,
when their dependencies change.

The ASTRO-WISE pipelines specify processing in terms of targets and dependencies, similar
to the make utility. A target is built by calling its make() method. This should be contrasted to
a more conventional implementation, where the target are the return values of a method of one of
the depending objects.

The dependencies may be filled by queries to the database, based on properties of the target.
For example, one of the dependencies in processing science data is the flatfield. A flatfield can be
selected from the database based on the date of observation of the science data and the validity
timestamp of flatfields in the database. In code:

target = ScienceFrame()
...
# select a flat based on filter and timestamp
target.flat = list((MasterFlatFrame.filter == target.filter) &

(MasterFlatFrame.valid_time_start < target.DATE_OBS) &
(MasterFlatFrame.valid_time_end > target.DATE_OBS))[0]

Data processing can depend on user-tunable parameters. In order to keep track of these param-
eters they are implemented as attributes of persistent parameter objects. In practice:

# a target
bias = BiasFrame()

# the processing parameters
pars = BiasFrameParameters()

# do overscan correction of prescan_x region (=1)
pars.OVERSCAN_CORRECTION = 1

# After selecting dependencies start processing
bias.pars = pars
bias.make()

1.2.6 Quality Control

In order to verify the results of the data processing, objects can have verify(), compare(), and
inspect() methods. These methods implement basic quality control mechanisms.

verify The verify() method inspects the values of various attributes of the object to see if these
are within the expected range for that object. The purpose of this method is mostly to
perform sanity-checks on measured results. It is assumed that the required measurements
(for example image statistics) are done during data reduction (i.e. while executing make()),
and stored in persistent attributes.

compare The compare() method is used for default trend analysis. This is done by either compar-
ing with a previous version of the same object (last weeks bias, for example) or by comparing
with a series of previous versions. This may be as simple as comparing attribute values, but
may also involve more complex computations (e.g., subtracting the two images, and analysing
the residuals)
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inspect Visual inspection of the data remains a powerful tool in quality control. The inspect()
method provides the mechanism to record the results of visual inspection for posterity.

The verify and compare methods provide simple algorithmic quality measurements. They
result in binary quality assessments that are stored in flags. For example, the verify method of
raw twilight flat frames may specify that exposures with a mean level larger than 35.000 counts
are overexposed, which sets the frame.OVEREXPOSED flag to True. Defining and implementing QC
measurements (beyond those already defined in the CP) is a vital task of WP1, necessary to achieve
the level of quality we envision for ASTRO-WISE .

The inspect method allows the user to record Quality Control assessments, based on his or her
inspection of the data. In addition to the standard inspection methods built into the recipes the
user can run interactive tools to do:

Visual Inspection Quality control will often entail no more than simple (visual) inspection of
results produced by the pipeline (e.g. the display of a reduced image, a set of numbers from
the database, or a log file.)

(Trend) Analysis Quality control can also be based on simple analysis of aggregate results (i.e.
trend analysis). This will usually involve retrieval of selected data, some simple processing
and subsequent display of that data using simple plots.

Processing Finally, quality control may be based on additional data processing steps. An example
would be the production of color catalogs, and subsequent comparison of color-magnitude
and color-color diagrams with theoretical models of stellar populations. This kind of quality
control implies running additional pipelines

1.2.7 Projects, Surveys, What’s in a name

The ASTRO-WISE framework provides an operational environment for data processing for specific
science projects and end-user data processing and analysis. The framework will, at the same time,
host individual users running their own experiment, finished projects, projects combining obser-
vations over larger areas of the sky (surveys), combining time series, or combinations of these.
Technically, these enterprises are not very different from each other, but global parameters are
required to identify individual projects, to partition them in the data base (for instance for access
privileges), but also for identifying applicable methods. Therefore ASTRO-WISE uses the abstract
term context which gives a certain meaning to data. In practice, astronomers, or groups of as-
tronomers, will have to agree what they have in mind with a certain project and how they want to
constrain their context. A set of context attributes facilitates this.

One parameter that assigns a context to data, is the project. The following types of projects
are supported:

Calibration Project All standard calibration observations belong to the same “project”

Science Project A standard science project, comprising a number of observations that may be
more or less inter-dependent, depending on the chosen strategy (normal, deep, or freq, see
CP)

Survey Project (see next section)

Virtual Project A project that uses archive data, rather than observed data, as its source.

Maintenance Project all data related to testing and maintaining the database belong to this
type of project.
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In addition to its type, a project is characterized by the following attributes:

ID A project will have a unique identifier

People A project will have people responsible

Status e.g.: Defined, Observed, Processed, Verified

(Public) Surveys

(Public) Surveys aim for coherent data products – a set of data products that are more than just
aggregates of data from individual pointings. It is an example of a project for which astronomers
have agreed about certains constraints on parameter values and methods.

That coherence is provided by:

1. the limited scope of the survey (survey area, pointings, filters);

2. uniformity of the data (sensitivity/exposure times, seeing);

3. uniform calibration procedures;

4. uniform data reduction procedures;

5. a limited, predefined, number of data products;

6. rigorous data validation, at the level of the data products;

7. preliminary scientific analysis as an integral part of the validation.

The scope of the survey (1) and uniformity of the data (2) will be determined by the observations
and not by the ASTRO-WISE specifications. The uniformity of the calibration procedures (3) and
data reduction procedures (4) are provided by the ASTRO-WISE pipeline. Furthermore, the pipeline
will provide an environment for defining data products (5), and implementing validation procedures
on these products (6, 7). However, the definition of data products and validation procedures
constitute a separate task. Some of the issues related to these aspects of surveys will be detailed
here.

Some key services provided by the ASTRO-WISE environment, that are of particular importance
for surveys are:

versioning Since surveys strive for rigorous data validation, producing survey products is very
much a process of iterative refinement of the processing operations (fine-tuning parameters).
Hence, many different versions of data products will exist.

projects The data model for describing science projects will include the notion of surveys. Surveys
differ from ordinary science projects in that they may encompass multiple observing sessions
on different telescopes. The project notion is particularly important for representing the state
of the survey.

processing interface A “survey-aware” user interface for data processing will be implemented.
This interface may complement the standard pipeline processing user interface.

data products Survey projects aim to provide self-contained data products. Data products will
be defined, and the ASTRO-WISE environment will support production, validation and distri-
bution of these data products. These data products will be “self-describing”, and compatible
with AVO standards.
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1.3 The ASTRO-WISE pipeline(s)

In the previous section we have outlined some of the requirements and concepts for the ASTRO-
WISE pipelines. Here, we will give an overview of the tasks that have to be accomplished to produce
these pipelines

1.3.1 Scope

The ASTRO-WISE data reduction pipelines should meet the ASTRO-WISE design goals like multi-
site processing/archiving, remote user access and integrated post-processing facilities.
The ASTRO-WISE pipelines will:

1. implement all procedures defined in the OmegaCAM CP and DRS needed to process the
calibration data for a multi-CCD imaging instrument.

2. implement a data-reduction process to produce calibrated co-added images of a single pointing.

In addition, WP1 will provide the tools to:

1. build maps combining data from different pointings, or different observations of the same
pointing, including large area mosaics.

2. mask defects other than CCD defects, such as cosmic rays and satellite tracks.

3. homogenize the PSF.

1.3.2 Tasks

Below, we give a tentative breakdown of tasks that need to be accomplished in order to build the
ASTRO-WISE pipeline.

Build interfaces to processing libraries

The goal of this task it to provide uniform interfaces to low-level processing libraries (eclipse, LDAC,
Sextractor, SWARP). Particular attention should be given to specifying configuration parameters.

Implement object persistence

The goal of this task is to implement the base class (DBObject) that gives derived classes the
property of being persistent. In particular, the necessary database interfaces have to be implemented
that support schema evolution and querying.

Define a persistent class hierarchy

The goal of this task it to build a class hierarchy, derived from the persistent base class (DBObject),
that supports the data model specified in the CP. This includes an implementation for all data
reduction procedures specified in the CP and DRS as methods on persistent objects. In addition a
number of persistent objects specific to the ASTRO-WISE pipeline need to be defined. In particular
a Stack type (subtypes: DeepStack and MosaicStack) needs to be defined.

Pipeline interfaces

The goal of this task is to provide high level interfaces to the various pipelines (bias, flatfield,
photometric, image). These interfaces should simplify routine data processing.
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Quality Control

The QC measurements specified in the CP give only basic insight into the quality of the data and
the data processing. Hence, an important task is to define additional QC measurements. This task
comprises a number of sub-tasks:

1. list which problems and errors can occur in data acquisition and processing.

2. define which measurement could detect these problems.

3. implement the tools to do these measurements.

4. incorporate the measurements in standard processing.

An initial list of possible problems (and solutions) is given in appendix B.
In particular, for what concerns the Derfotron tool cited in table B.2 and B.3 (appendix B), this
QC tool, which is under development at Terapix-IAP, is mainly focused on tracking background
level, background noise, source density and PSF variations across the field of view. Moreover it
will be usefull also for statistics on residual fringing and for automatic masking of trails, spikes and
large optical ghosts.

1.4 Development framework

The ASTRO-WISE pipeline will probably comprise more than 100k lines of Python code. It will
be developed and maintained by a number of programmers distributed over multiple sites. This
cannot be achieved without agreement on a common development framework.

A development framework comprises a set of methods, practices and tools that steer the devel-
opment process. Below we give an outline of the elements of the development framework currently
in place.

1.4.1 Methodology

We will not adopt a formal development methodology. However, it is necessary to establish a number
of practices aimed at what would normally be the goal of any formal development methodology1

Deliver usable code

The key word is usable. This implies, in order of importance:

• Working, meaning running, more specifically: passing the unit tests.

• Understandable, both to developers (understandable code) and to end users (understand-
able interfaces)

• Satisfying requirements, which can only be determined by using the code.
1Actually, most of the practices outlined here are part of a development methodology known as

’agile’ or ’extreme’ programming. See http://www.martinfowler.com/articles/newMethodology.html and
http://www.extremeprogramming.org/ for details.
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1.4.2 Python

ASTRO-WISE uses Python as scripting languages. It is an important glue between sites, and levels,
astronomers, and programmers. Astronomers will modify Python scripts as a means to run their
own recipes and methods. The db recognizes such actions by means of the flagging system.

The prototype has been written in Python .
Python in particular facilitates:

• Modular programming

• Object Oriented Programming

• Rapid Application Development

• In line documentation

1.4.3 Unit testing and qualification

The only way to know if the code works is to run it and see if it produces the expected results. Con-
versely, code that produces the expected results, by definition, works. Unit tests aim at specifying
the expected results. Hence, code can only be said to work if it passes the unit tests.

Establishing a proper unit testing framework relies on the following practices.

1. When adding a new feature, first write a test for the feature.

2. After modifying something, run the complete test suite, so that you know your changes didn’t
break anything.

3. When you discover a bug, first write a test that would have caught the bug, then correct the
bug.

Apart from the obvious ’knowing that your code works’, we find that unit testing provides
at least two additional benefits. Firstly, unit testing allows real maintenance of the code base,
because the developers do not have to be afraid of accidentally breaking code when they modify it.
Secondly, writing tests first forces developers to specify exactly what they wish to accomplish with
a new feature, leading automatically to better design.

Code should be tested and qualified. Unit-testing is a tool for the programmer that helps
him to prove that the code does what he thinks it should be doing. Code should be tested and
also qualified. Qualification and verification are meant to prove that the code does what the
specifications say it should be doing. This implies that:

1. Qualification is carried out by the writer of the specifications.

2. Qualification is carried out at the user interface level.

3. Qualification is carried out, as much as possible, under real-life circumstances, using real data.

Of course, qualification should be part of the development process too.

1.4.4 Inline documentation

Python allows one to attach documentation (doc-strings) to modules, classes, functions and prop-
erties.

There are several tools to give the user convenient access to the documentation provided in doc
strings, including a html-server that can be accessed with any browser. The ASTRO-WISE website
contains a link to the documentation of the ASTRO-WISE pipeline.
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1.4.5 CVS

A versioning system like CVS is essential for a collaborative project like the ASTRO-WISE pipeline.
However, the benefits of CVS go beyond maintaining a central repository of the code base. The de-
velopment methodology is based on continuous delivery of working code. CVS provides a straight-
forward delivery mechanism for the evolving ASTRO-WISE pipeline, thus facilitating continuous
feedback from the end-users (who, in the end, determine if the pipeline satisfies the requirements).

Using CVS implies that developers follow the following practices:

1. Update your local repository before committing your work. Ensure that your code is consistent
with these latest updates.

2. Commit early, commit often, but only commit working code. Hence, aim for small, localized
changes.

A convenient web interface to the ASTRO-WISE CVS repository can be found at cvs.astro-
wise.org.

1.5 Prototypes

The development effort for WP1 does not start from scratch. The EIS pipeline provides good
examples of the kind of capabilities specified in this document for ASTRO-WISE . In addition it
provides a large code base that may be integrated into ASTRO-WISE . We have also implemented
a pipeline prototype. The aim of this prototype is to investigate solutions to the design problems
posed by the pipeline requirements. This section discusses both the EIS pipeline and the ASTRO-
WISE prototype.

1.5.1 The EIS pipeline

The pipeline data processing framework for public surveys developed for the ESO Imaging Survey
(EIS) provides a good example of the kind of capabilities of a graphical user interface (GUI) that
one might want to develop as an interface to the ASTRO-WISE pipeline.

EIS has built extensive expertise and a large infra-structure to support (public) surveys on a
wide variety of instruments. ASTRO-WISE aims to leverage both the expertise and results from
EIS. However, it is important to note that two distinct concepts underly EIS and ASTRO-WISE
respectively:

data products The fundamental goal of a survey, and hence the focus of the applications devel-
oped by EIS, is to provide data products.

services The ultimate ambition of ASTRO-WISE is to provide a set of services that enable the
end-user to build their own data-products.

Although these concepts may appear somewhat orthogonal, it should be realized that:

1. A substantial amount of observing time on wide field imaging telescopes is, and will be,
committed to (public) survey work. Hence, the ASTRO-WISE environment will support the
concepts of surveys and data products.

2. Data products are built by utilizing the very same services that will also be used by end-users.
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Survey support in ASTRO-WISE is discussed in detail in Section 1.2.7
The EIS GUI comprises a number of top level interfaces to control the operation of various

pipelines (e.g. the image pipeline, the photometric pipeline, catalog production pipeline). Each
module provides interfaces to (i) select the data, (ii) build a reduction plan for the selected data,
(iii) execute the operations in the reduction plan and (iv) inspect and analyse the results. Analysis
tools include: a skycat interface to overlay generated catalogs; plotting tools to present calibration
results; facilities to inspect logs; and tools to measure pipeline performance. In addition the GUI
provides top-level modules to define and compile data-products, perform basic scientific analysis on
catalogs, and do pipeline and database administration. This description only scratches the surface.

The complete EIS pipeline processing code base, including GUIs, but excluding external libraries,
comprises more than 250k lines of Python code and is the result of over 10 man-years of full-time
development. This is, arguably, a complex application! And, although the application is probably
more complex that it would be if were written again from scratch, most of this complexity reflects
the inherent complexity of the problems that EIS and ASTRO-WISE wish to solve.

As much as 50 percent of the development effort for EIS (150k lines of code, 5+ man years)
has been spent on the user interface. It is impossible to give an exhaustive list of UI components
included in EIS, however, a large number of these components will also be present in ASTRO-
WISE UIs. Below we outline a strategy for using the EIS efforts in developing ASTRO-WISE UI
components.

To use EIS UI components within the ASTRO-WISE framework the following issues are being
addressed:

Toolkits EIS will upgrade the existing graphics toolkit (Tkinter) to either Qt or GTK, this will
provide an excellent opportunity to define interfaces that will make the UI components (wid-
gets) reusable in the ASTRO-WISE pipeline.

Libraries EIS uses a number of external packages to analyse and validate their data products. In
an effort to further modularize the EIS code base, uniform interfaces to these packages will
be developed.

1.5.2 The OmegaCAM pipeline

Scope

The goals of the pipeline prototype are the following:

1. provide a complete set of working modules capable of reducing Wide Field Image data within
the context of the ASTRO-WISE data model

2. provide a complete set of interfaces to low-level data-reduction tools

3. provide a technology demo of an object-oriented interface to an (object-)relational database

4. provide a technology demo of a parallel processing environment

5. establish the development framework

Overview

Figure 1.4 shows the various components of the ASTRO-WISE pipeline. There are three layers. The
Library layer provides (i) a number of low level interfaces for data processing, (ii) a persistence
mechanism with database interface(s), and (iii) a set of auxiliary libraries, many of which are part
of the standard Python library. The API (Application Programmers Interface) layer consists of
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Figure 1.4: Components of the ASTRO-WISE pipeline.

two components. The Persistent Object Hierarchy is the core of the pipeline. Processing is done
through invocation of methods on these objects. Since these objects are persistent, all operations are
automatically saved into a database. The API layer also provides an interface for parallel/remote
processing. Finally, the Interface layer, provides user interfaces, or applications, to invoke and
manipulate the pipeline processing.

Note that normally the user interacts with the library through the persistent object layer. That
is, the user manipulates the persistent Catalog and Stack objects, rather than Sextractor and
SWARP.

Interfaces to external packages

The library layer provides a number of interfaces to external data processing packages. These
interfaces can be used independently from the pipeline.

eclipse Low level image and header processing facilities are provided by the eclipse processing
package. Using SWIG, the Simplified Wrapper and Interface Generator, the package has
been transformed to a Python C-extension library (c eclipse). A Python wrapper around the
extension module exposes the library to the user through a number of objects. These include:

• cube an object encapsulating image data from one or more FITS files. Most of the image
processing requirements of the pipeline are provided by methods on this cube object.

• header an object that can be used to manipulate a header pretty much as one would
use a Python dictionary

• pixelmap an image for which each pixel has a value of either 1 or 0, allowing for logical
operators on pixel data.

The eclipse Python extension is currently part of the eclipse distribution but maintained by
a member (Rengelink) of the ASTRO-WISE development team.
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The ASTRO-WISE version of eclipse includes some new routines that were developed by the
consortium in order to solve a few specific problems. The new routines are:

– sigmaclip (author A. Volpicelli) used to combine BIAS and Flat-Field frames;

– Bicubic spline method (author A. Volpicelli) for 2d cubic spline fitting;

– Sign test (author A. Volpicelli) for BIAS QC.

LDAC Catalog manipulation is done through the LDAC programs. The interface provides a
number of functions that are thin wrappers around system calls to the LDAC programs.
Configuration parameters are passed to the LDAC function as keyword arguments.

The interface also provides a number of utility functions that extract data from catalogs into
native Python types.

Sextractor Source extraction is done through Sextractor. The interface provides a number of
functions that are thin wrappers around system calls to sex. Configuration parameters are
passed to functions as keyword arguments.

SWARP Coaddition is done through SWARP. The interface provides a function that is a thin
wrapper around a system call to SWARP. Configuration parameters are passed to the function
as keyword arguments.

Object hierarchy

The persistent object hierarchy provides the core functionality of the ASTRO-WISE pipeline pro-
totype. Processing steps are performed by calling methods on these objects. Values assigned to
attributes of these objects are stored in the database. The implementation is discussed in more
detail in Appendix A.

User Interfaces

The top layer of the ASTRO-WISE pipeline components consists of applications built on top of the
pipeline APIs. These applications allow users to process actual data. Currently, only a minimal set
of ’applications’ is provided, namely the recipes.

The recipes included in the pipeline prototype provide minimal examples of the use of the
ASTRO-WISE functionality. These recipes are command-line programs to perform data reduction
operations on the files provided by the user as arguments to the recipe. These recipes operate on
single-chip data, and can be used to build calibration data, and to reduce and calibrate science
data.

Note that the layer between the persistent objects and the user interface, i.e.: the pipeline
objects, are not currently part of the ASTRO-WISE prototype.

Parameters

Many processes require parameters. Default values for these parameters are set in the code. Param-
eters are themselves persistent objects, so that we can always retrieve from the DB the parameters
that were used in a particular reduction process. Parameters can be changed by:

1. Making new instances of parameter objects (with new values) in user-defined scripts

2. Providing new parameter values through a User Interface

Note that the user does not change parameters by changing the default value that is supplied
in the source code, but by providing alternative values in their own scripts.



Chapter 2

WP2: Provide tools for querying,
searching and visualisation

2.1 Visualization tools

A large part of Work-Package 2 addresses software issues related to the interface between humans
and the data.

First of all, ASTRO-WISE has to deal with pixels, lots of them: ASTRO-WISE needs a sophis-
ticated and efficient image visualization tool for both quality control and science work. This is
described in §2.1.1.

In addition to reduced image data, the ASTRO-WISE pipeline generates multi-dimensional vec-
tor data in the form of source lists and calibration statistics. Such high-dimensional data require a
somewhat more complex visualization tool than raster images, because of the stronger interaction
needed with the database. Incidentally, it is difficult to separate the aspects of “vector data visu-
alization”(§2.1.2) and “graphical query” (§2.1.3); at some level they probably should be integrated
as a single tool: a “data explorer” in the virtual observatory vocabulary. One of the important
technical issues related to the data exploration tool is that of the interface. A web-based interface
(PHP, CGI, Java,...) would be best in terms of portability and accessibility. But this approach has
severe limitations in the display capabilities it provides with currently available browsers. Possibly,
a hybrid solution based on a “standard” web-based interface, plus optional “plug-in’s” (download-
able executables) would offer the best functionalities. As a first attempt, the plug-in’s should be
made available on the Linux-x86 (Mozilla) and Windows (Explorer, Netscape) platforms, at least.

2.1.1 Raster images

The ASTRO-WISE project develops a generic visualisation tool optimized for astronomical survey
images. Indeed, existing visualisation tools are far from optimum for survey applications:

• The most popular tools are built over TCL/TK and are fairly inefficient in terms of display
speed (scrolling, zooming) and X11 bandwidth usage (see Panorapix documentation).

• Although they now handle true-colour displays (24 and 32 bit), most are still using 8 bit
look-up tables. This does not allow real-time adjustment of intensity mappings with sufficient
quality, causing banding if the dynamic range is not manually cropped initially.

• Initial display parameters (intensity range) are generally inappropriate for quick look, and
require systematic fiddling with contrast and offset adjustments to get the image right.

30
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• Many of these tools assume that the whole frame can fit into the memory of a typical worksta-
tion, which is certainly not the case for forthcoming wide-field instrument images, especially
the co-added ones.

• The capabilities of current display hardware, now dominated by accelerated graphic cards
with true-colour display, real-time resampling capabilities, and alpha channels, are not used
at all.

We may take advantage of the new possibilities of display hardware (hardware texture mapping/anti-
aliasing through the OpenGL standard) to provide a tool with unprecedented real-time function-
alities like smooth panning, zoom-in, zoom-out features, transparency, image composition, and
real-time image morphing.

A simplified, web-browser “plug-in”version may also be made available for image visualization
through a database query.

Based on our past experience at TERAPIX developing the Panorapix software, we can estimate
the time necessary to fulfil the basic requirements above to about 2 man-years for a qualified
engineer.

The AstroWISE visualisation tool will be built in 3 phases.

Phase 1

The purpose of the Phase 1 software is to provide basic functionalities and a working core for
the visualisation engine. We will benefit a lot from the work done on the visualisation engine of
the Panorapix prototype http://terapix.iap.fr/soft/panorapix developed at TERAPIX by
N. Decoussemaker in 1999. The phase 1 engine shall feature

• Modular, object-oriented approach (See Fig. 2.1 for the Panorapix model)

• optimized support for Multi-Extension FITS (MEF); it should be possible to have access to a
list of their content, and to select one or several extensions; at least in the common case where
all MEF files have identical sizes, a crude, low-resolution version of the whole field should be
displayed

• support for FITS data-cubes, where selectable 2D slices, from BITPIX=8 to BITPIX=-64
format must be readable (at least to float accuracy, with double precision as a compilation
option for instance)

• handling of very large images thanks to memory mapping; images bigger than 3GB must be
displayable on 32bit systems with filesystems that support larger files (LFS)

• ability to handle, at least partially, incomplete images if the header is correct

• optimized handling of true colour (16, 24 and 24 bit) displays with support for palettized
displays; conversion from image data to screen pixel values takes into account the gamma of
the monitor

• optimized X11 management, with emphasis on remote displays

• smooth scrolling (”hand” pointer)

• large (3×216 elements), non-linear floating-point RGB lookup-table to allow for an extremely
large dynamic range in intensity (160dB or more); the Panorapix intensity-mapping pipeline
has proven to work extremely well in this respect (Fig. 2.2)
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• adjustable 4-dimensional (R,G,B,alpha) LUTs using B-splines or linear sections; predefined
LUTs include the traditional linear, sqrt, square and log, modulated by the gray, heat, rain-
bow, and negative colour tables

• compensation for monitor gamma, adjustable in the preferences with built-in calibration tool

• intelligent default flux scaling when loading images

• simultaneous handling of at least 10 frames with a list tool ”à la Panorapix” to copy/exchange/apply
display parameters (contrast, luminosity, LUT, position in image,...) between frames

• flexible real-time magnifier

• ultra-fast blinking between frames (using the X11 backstore function), ‘curtain blink’ (à la
Gipsy), and frame tiling (à la DS9)

• zoom-in/zoom-out (with binning and decimation options) available at any time, with no limit
in both directions; the use of OpenGL texture MIP-mapping to generate in real-time anti-
aliased images has to be investigated

• fast image flipping and rotation

• portable, POSIX compliant and autoconfigurable C/C++ code; does not rely on the endianity
of the processor; note that portability to Microsoft-WindowsXP, although not required in
the professional world, would facilitate the diffusion of this tool in the amateur-astronomer
community.

• possibility to save and load a configuration files (preferences) stored in editable ASCII format;
a ”.***rc” file in the user root directory may be used as the default configuration file

• rely as much as possible on open-source, portable libraries; suggestions:

– GUI interface:

∗ Qt (http://www.trolltech.com/products/qt/index.html) or
∗ GTK (http://www.gtk.org)

– Math/numerical analysis routines:

∗ GSL (http://sources.redhat.com/gsl)

– High-level image formatting/rendering

∗ OpenGL (http://www.opengl.org)
∗ Mesa3D (ersatz of OpenGL: http://www.mesa3d.org)

– FITS input/output

∗ CFITSIO (http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html)

– World Coordinate System

∗ WCSlib (http://www.atnf.csiro.au/people/mcalabre/WCS.htm)

• support for SIMD features (MMX/SSE/3Dnow!/SSE2) and 64bit addressing

• If possible, the compiled code should fit in a single executable that can be run from any
directory path.

• Root privileges must not be necessary to install/use the program.

Additionally, the phase 1 software shall include the following basic features
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• pixel and world coordinate display; WCS keywords are recognized according to the latest
Greisen & Calabretta proposal (http://www.atnf.csiro.au/people/mcalabre/WCS.htm)

• a built-in tool to calibrate the monitor gamma

• basic Postscript and GIF1/PNG/JPEG/TIFF export function
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Figure 2.1: Panorapix object model.

The following suggestions have been brought concerning the GUI (Graphical User Interface):

• The GUI should be event-based, preferably using one of the Graphical high-level libraries
mentioned above

• important functions (zooming, display parameters) must be accessible through widgets (not
only menu items)

• the GUI should give access to redefinable keyboard shortcuts, especially for frequently used
functions like blinking

• it should be possible to have most of the widgets placed to the left or the right of the main
display area (most astronomical CCD frames are taller than wide when displayed with north-
south along the vertical axis)

1Copyright issues are in the process of being settled.
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• the pointer must be changed to a crosshair when placed over the display area. It must be
controllable with the keypad arrows at the resolution of a pixel

• at any time it must be possible to change the contrast and luminosity of each image interac-
tively by moving the mouse in both directions while holding a certain mouse button

• one mouse button allows an image to be “dragged” within its frame

• a special mouse action (e.g. double click) should result in recentering of the image at current
pixel position

• a “selective zoom” feature, by drawing a rectangle defining the closest zoomed field-of-view,
must be available

• the same rectangle feature could be used as a more general way to select part of the displayed
area for various operations

• if possible, all interface windows must be usable on a screen with VGA resolution (800x480),
down to 4 allocated colours

• a “full-screen mode”, in which the pixel raster occupies the quasi-totality of the screen, should
be available. One may also think of reconfigurable widgets à la Netscape.

• A quick display at start of available hardware features (screen depth, resolution, hardware
acceleration, OpenGL available, etc.) would be valuable

The target minimum requirements to run the program shall be (under Linux 2.4.x and above):

• 64MB of memory

• a PentiumII processor running at 500MHz

• an X11 server

The optimum configuration would have

• enough memory to fit a whole image in floats

• a fast 64bit processor (1GHz or more)

• a local, accelerated X11 server in 32bits (true-colour and alpha-channel)

• hardware OpenGL support (to be defined).

Phase 2

The phase 2 software shall complete the GUI and the visualisation engine from phase 1 with more
advanced features:

• Colour Overlays:

– region and shape editor, with lines, arrows, circles, rectangles and polygons as well as
text, at an arbitrary resolution over the image

– load/save overlay/region functionality

– coordinate grid overlay

– mini 2D plotting-tool for histogram and image profile displays
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Figure 2.2: The Panorapix intensity-mapping pipeline.

– (simplified) contour plot option (à la DS9)

• Catalog overlay tool: functionalities similar to those of Skycat, including

– automatic name-matching (CDS) queries

– region-based image queries (DSS, CFHT, HST,...)

– source catalog queries (GSC, USNO, SIMBAD,...)

– support for local catalog tables in ASCII or FITS format

– alternate highlighting/selection either on image or on the source list

– configurable symbols, symbol colours and sizes

• it should be possible to use the overlay and catalog features without actually having an image
loaded

• Import from image servers: the possibility of optimized interfacing with image servers (down-
load low resolution image, send back coordinate infos) must be investigated

• Image analysis:

– 2-dimensional Gaussian and Moffat semi-automatic profile-fitting tool, providing best-fit
position and shape parameters for any hand-picked source in the image

– aperture photometry tool, in a user-defined circular aperture for any hand-picked source
in the image; this implies robust and automatic estimation of the local background level

– geometric measurements (distance, angle to the north-south axis)

• Advanced export features:

– possibility to export, either the displayed area or the full image at an arbitrary resolution,
to popular formats including FITS (at least BITPIX=-32), TIFF (B&W and colour),
compressed if possible, with 16 bit option, JPEG (with adjustable quality), GIF, PNG,
Postscript level2 (B&W and colour) with “encapsulated” option, and MPEG/Animated
GIF animation (cycling through the frames) with adjustable frame rate

– the gamma parameter can be changed for all export formats
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– ”negative” option for all export formats

– anti-aliasing option (especially when the output resolution is less than the image resolu-
tion) for all export formats

– possibility to superimpose the overlay for all export formats

• Interfacing with other software: an interface port to control at least the most basic operations
of the software:

– load/save/update/control image, catalog or overlays

– send/receive a part of an image

– draw shapes/write text on the overlay

– change display parameters

• FITS header keyword search and display tool

• interface to manually add/edit the FITS WCS parameters of each image/extension (to be
defined)

• possibility to superimpose frames using transparency and other linear combinations, allowing
for RGB compositing, or image subtraction (to be defined)

• Geometric matching with image remapping to a common WCS projection (à la DS9)

Phase 3

In addition to the necessary debugging/maintenance of the existing code, and implementation of
not-yet foreseen functionalities, phase 3 shall be spent in investigating integration as a web-browser
plugin for remotely examining arbitrary parts of large compressed images in a grid environment
with distributed data.

2.1.2 Multidimensional vector data

2D or 3D?

The most “science-ready” output of a survey pipeline consists of multidimensional vector data:
the catalog. In feature space, each point corresponds to an individual detection. For both quality
control and scientific assessment, a powerful visualisation tool for such data is mandatory.

Compared to the traditional 2D plotting packages, programs that use 3D vector or particle
projection provide a virtual extra-dimension that proves extremely useful in many cases, for instance
with magnitude-colour-colour diagrams or magnitude-colour-stellarity. A coarse 4th dimension can
be added using colour coding, and a 5th one can be obtained through animation, although the
latter proves to be mostly useful for virtual flyby’s or revolution around 3D point clouds.

Display engine

Given the amount of source data produced by wide-field instruments — a single exposure yields
typically 105 sources —, the display engine must be quite efficient. For realtime display, reasonable
(≥ 10 fps) frame rates can only be achieved through 3D hardware rendering. Thanks to the rapid
development of 3D gaming, cheap 3D hardware solutions has become widely available on PC. Actu-
ally, all graphic cards found on modern PCs come with excellent 3D capabilities: in theory they are
able to handle from 106 to 108 vertices or particles per second. There is now both software and hard-
ware OpenGL support in Linux (see, e.g., http://www.mesa3d.org or http://www.nvidia.com),
and Windows, so a 3D plotting tool is essentially a matter of fairly high-level software development.
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Concerning a web-interface: apart from the VRML standard, there is not yet any really efficient
way of making real-time 3D visualization work through a web-browser. Hence the possibilities of
VRML concerning large data-sets should be investigated. A proprietary OpenGL plug-in tool might
prove necessary.

A tour of existing OpenGL solutions

Commercial packages with OpenGL support for 3D-plots available on Unix/Linux include

• Matlab (http://www.mathworks.com): a standard in the industry; although it does much
more than this, it is quite efficient at manipulating 3D plots with less than 106 particles.

• IDL (http://www.rsinc.com/idl): another standard package popular among physicians.
We have not measured its 3D plotting performance. It is probably similar to that of MATLAB

• Amira (http://www.tgs.com/index.htm?pro div/amira main.htm~main): this product is
fairly popular in medical applications.

Free packages available on Unix/Linux include

• XGobi/GGobi (http://www.research.att.com/areas/stat/xgobi): although it does not
seem to have OpenGL support, it is quite fast for displaying large data sets (up to 106 particles
on a fast machine) using an isometric projection, and very easy to manipulate.

• OpenDX (http://www.opendx.org): This free package features very high quality rendering
and offers an impressive set of functions. Thanks to its support of OpenGL, performance
is very good (up to 2.106 Phong-shaded-triangles/s). Unfortunately, it does not seem very
comfortable with very large datasets, and the learning curve is unusually high (it requires a
few hours for a beginner to create a decent scatterplot).

• PerlDL (http://pdl.perl.org): The PerlDL library has OpenGL support for 3D plotting.
Although the display is quite crude, it is exceedingly easy to use and performance is top notch:
we measure 107 points/s on an nVidia GeForce3 Ti200 graphic card)

2.1.3 Graphical database query tools

Most of the indexed fields in the pipeline/science database are populated with continuous numerical
values; those can be used as coordinates in parameter space. A graphical interface tool therefore
provides a particularly efficient mean of querying (groups of) data for all kinds of purposes. This
kind of data exploration tool is typical “Virtual-Observatory technology”.

Query by sky coordinates (“Astrographical query”)

The most intuitive way of querying data is to use sky coordinates, by clicking on a representation
of the celestial sphere. Two approaches can be identified at this point:

Clickable maps through a web browser A good example of this concept applied at small angu-
lar scales can be found at http://astrowww.phys.uvic.ca/grads/gwyn/pz/hdfn/spindex.html:
this page proposes a true-colour display of the Hubble Deep Field; by clicking over a given source,
one gets access to a new page that lists various measurements that concern this source (Fig. 2.3).
Such a page could be generated dynamically from the database. On a larger scale, the SDSS
Explore tool (http://skyserver.fnal.gov/en/tools/explore/# provides another example of
clickable maps directly connected to a database: the user can “browse” celestial maps and have
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access to detailed information on the nearest survey detections. The maps are dynamically updated
as new observations get registered in the database (Fig. 2.3).

The clickable-map approach works on all existing browsers without the need for any additional
plug-in. However, the display cannot be updated very fast while zooming and panning, which makes
the query rather slow and uncomfortable in a context of intensive use.

Figure 2.3: Two working examples of clickable maps linked to a database. Left: The Hubble Deep
Field (courtesy S.Gwyn, UVIC). Right: The SDDS Explore tool (SkyServer website).

A dedicated OpenGL graphical tool Using OpenGL, it is quite simple to display interactively,
in a window, a real-time projection of the night sky (Fig. 2.4). It should be easy to add clickable foot-
prints of all observations that satisfy arbitrary constraints. Such a tool responds instantaneously
to zooming and panning requests, which makes the query fast and comfortable for intensive use.

Basic graphical requirements

The purpose of the multi-dimensional visualization tool is to generate on demand plots based on
pipeline or science data (obviously, it is operated through the graphical query tool described above).
Such plots hold a significant amount of information, hence it is necessary for the tool to provide
at least high-quality, printable plots (e.g. Postscript), and low-resolution ones for display through
a WWW browser (e.g. GIF/PNG bitmaps). If a suitable 2D/3D-display engine is available (e.g.
OpenGL plug-in), the low-resolution plots can be made scrollable and zoomable in real-time.

The plotting engine must have support for the following basic properties:

• Color encoding to highlight different properties

• Choice of symbols with arbitrary size

• Different fonts and character sizes and styles
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Figure 2.4: Interactively rotatable celestial spheres made with the xplanet software, using OpenGL
(http://xplanet.sourceforge.net). The sphere is textured with a map generated from the Tycho
star catalog (http://maps.jpl.nasa.gov/stars.html).

• Line thickness parameter

...and the following graph types:

• 2-D and 3-D scatter plots with dots

• Histograms

• Points with error bars

• Connected lines

• 2-D and 3-D density plots (e.g. for very large data sets)

• Celestial maps using popular sky projections, including Aitoff(all sky), polar equal area and
tangent plane.

When dealing with very large data-sets, it is desireable to be able to use density plots (instead
of scatter plots) with zoom-in capabilitity, which will let the user grab data-sets of a ”reasonable”
number of elements.

Browser integration

The web-interface could consist of a java-based catalog browser, allowing one to generate plots
interactively from a catalog extracted from selected points and user-defined quantities. This java
tool would download data from the server to the user’s computer (in compressed mode) and interact
with the database engine via CGI, to request other pieces of information.
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2.2 Source extraction/ morphological classification tools

Source catalogs extracted from the astronomical images are required at various stages of the
pipelines, especially for astrometric and photometric calibrations. Source extraction is also needed
at the very end of the process for the final science catalog.

2.2.1 SExtractor

SExtractor, or Source-Extractor (Bertin & Arnouts 1996) is a simple, yet fairly robust source
extraction program. Since its introduction in 1995, the SExtractor package has gained wide spread
use among the astronomical community, which helped in developing new features and tracking down
bugs. It is now used in many survey pipelines including TERAPIX (IAP) and EIS (ESO).

Besides the most basic features expected from a source extraction code (modeling and sub-
traction of the background, image filtering, thresholding and measurement), two main features of
particular interest for survey pipeline operations have been added over the years:

• “Double-image” mode: detection is made on an image, while pixels from another image are
used for measurements. This technique provides the most consistent colour measurements on
registered images.

• Pixel-weighting: image pixels are weighted according to the values stored in “weight-maps”
provided as additional inputs to SExtractor. This allows one to obtain constant detection
reliability on images with variable background noise variance (this is almost always the case
on wide-field survey images).

PSF fitting

More recently, a Point-Spread-Function fitting module has been added (PSFEx). Although it has
already been used with great success in a few stellar photometry programs (e.g. Kalirai et al. 2001,
Moreau et al. 2002), it is still experimental and needs further development. This module is essential
to provide the best possible stellar photometry, especially in dense fields.

Correlated noise

The background noise on the resampled and co-added images produced by SWarp (or any other
similar software) is correlated on small scales (2-3 pixels). This correlation will extend to larger
scales once PSF homogenization is applied to the data. In the current implementation of SExtractor,
background noise is assumed to be white (uncorrelated at all scales). Both the matched filtering
(detection phase) and error estimates (measurement phase) are biased by noise correlations. A
future version of SExtractor should automatically measure the background-noise autocorrelation
function and take it into account at all stages of the source extraction process.

2.3 Quality checks/ human interface to data/ data mining

For the OmegaCAM instrument the green coloured boxes in Fig. 1.1 indicate quality control opera-
tions which are near the data aquisition (Paranal and ESO Headquarters). These quality checks go
beyond the ASTRO-WISE operations. Many of the yellow labeled QC0 and QC1 quality checks and
calibration file derivations will be operated by ESO-DMD in standard production mode, however
these processes can also be executed and reconstructed within the ASTRO-WISE environment. All
these quality control operations are extensively described in the OmegaCAM documentation and
will not be repeated here.
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The image pipeline also includes some standard quality checks which are described in the Omega-
CAM documentation.

2.3.1 Data browser/ plotting / trend-analysis

Trend analysis addresses the instrument behaviour as a function of time. This information can and
should be used by the quality controllers to model the instrument’s behaviour aiming to inprove
the final results and the end users (astronomers) to chose data which may meet their needs once
enough data is stored in the archive.

For QC and astronomers it is important to have a highly flexible tool to select any subset from
this data based on specific criteria, and perform basic operations such as the creation of plots and
histograms in order to give a snapshot of the properties of any of the involved parameters (fig. 2.5).
Flexibility means being able to set selection constraints on any database variable or combination
of variables. The constrains should be combined with any logical operators in any fashion (ie. the
system should be able to handle complex logical expressions).

Figure 2.5: Interactive data visualisation prototype developed at TERAPIX. The user communi-
cates with the database through the web server, and can plot in 2D any set of measurements from
the extracted sources.

An interactive tool will be available to let the user generate plots involving database variables,
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select/mark data on them, show the selected data in plots with different axes, and allow the user
to recover all properties of these data points by invoking the database.

The ability to visualize 3 or more dimensions/variables (eg, using color) is expected, including
the possibility to generate animations.

2.4 Near/inside database access tools

2.4.1 Basic set of queries

- basic mechanism

The basic mechanism for querying the database is provided by means of definitions in the Python
scripting language, which passes the request to the database through SQL statements(see Ap-
pendix A). For example:

selection on time: flatfield = isotime(’14-MAR-2002’) < Flat.time start < isotime(’21-MAR-2002’)

selection of sources within an area of the sky (box in α and δ)
sources = SourceList.within(20.0,-60.0, 24, -58)

complex selection:
SourceList.reduced frame.flat.time start < isotime(’21-AUG-2003’) < SourceList.reduced frame.flat.time end

The user can construct his own queries and send these to the db.

-some templates for frequent use

More frequent and more complex queries will be scripted and provided as a tool to the user, eg
queries which make use of associations made in the database between different source lists:
for example, find red objects (B-R) when seeing is better than a given value, and the atmospheric
conditions were very stable, requires access to:
– two different source lists which are associated by
– the sAssociate tools (providing a crosslink table) and
– atmospheric extinction calibration files
can be Python scripted and provided to the user.

A list of such standard queries is TBD, but will evolve continously during the project:
Summarizing, the database access tool or set of tools will provide the possibility to navigate

through and retrieve from the database the different data products, or resolve queries on multiple
dataproducts which have complex interrelations (like the coupling between atmospheric conditions
and source lists in the example above).

2.4.2 Variability tool

The ASTRO-WISE system will allow the search for objects that show photometric variability on
short time-scales, on the order of minutes-hours, provided by the images of the individual dither
exposures.

This time domain has been very poorly studied in previous surveys, normally the search for
variable objects is done only on the final mosaic images.

There are many software packages using either catalogs or image subtractions (like ISIS). Our
scope is not to duplicate these programs but to create a simple, robust and efficient tool which runs
automatically in the image pipeline.
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Methods

The variability tool uses the catalogs that are already extracted from single dither exposures for
astrometry, using SExtractor. The only additional requirement is that these catalogs should be
deeper (S/N≤5 instead of 50–100) in order to detect also faint objects. The next step will be to
normalize the fluxes (or magnitudes) in the different catalogs in order to compensate for different
air-masses and transparency variations. At this point a matching of the catalogs (which will be
done through the Sassociate tool) will identify the objects which are photometrically stable or
show brightness variations. The variability tool flags the variable candidates in the catalogs and
optionally creates a simple light curve of these objects. The major challenge is to filter the large
number of false detections that will be certainly produced.

2.4.3 Associate source lists

A tool (Sassociate) will be developed to associate source lists with each other, on the basis of the
spatial relation in order to be able to inspect the peculiarities of a given source, particularly as it
emerges from multiple exposures. The tool is meant as a workhorse for finding and identifying the
same object on mulitiple images. This can be used to find excess colour objects, variable objects
(e.g. supernova) or moving objects. The tool can be a Python script, a special purpose program,
or a database query. The tool will store the associated sources in a so called associate list which
contains database pointers to the original source list entries. Various prototypes of this tool have
been explored, in the Objectivity environment and in the Oracle 9i environment, the latter using
Oracle 9i spatial query components. Some problems with astronomical coordinate systems were
encountered and are under investigation at Oracle Headquarters. As this tool as a major workhorse
for spotting special objects in Terabyte volume source lists, its performance is crucial and is focal
point of the prototypes.

An interface to this tool will be created which allows the user to select parts of different images
and associate the sources found within the image selections.

2.4.4 Tell me everything within ASTRO-WISE tool (basic ingredients pro-
vided by WP1 and WP3)

When an astronomer identifies a certain object (in a source list or in an image), s/he should be given
the possibility to trace any bit of information that was involved in the derivation of that source info,
and s/he should be directed to all available information within the database relevant for the same
sky position. A general tool will facilitate this. The tool uses a general functionality to support
this at the database level. This functionality will form the core of tracing history and relations to
other data items, which will also be used for inspecting and triggering on the-fly-reprocessing

Typically, the functionality will output the following data items identifiers and links: Table TBD
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Figure 2.6: The ASTRO-WISE back end.
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Property nature origin
Object type scalar from accumulated knowledge
Position scalar from reference image
Positions array from images involved if µ > 0
V magnitude scalar from V image(s?)
Color indices array from same epoch images
Observing conditions array from each involved image
Reduction parameters array from the reduction DB
Light curve per filter array from any relevant observation
References (bibcode?) array Literature, may refer to relevant images
Thumbnails in various filters array From pre-processed images
Links to external DBs (VO-like) array ???

Tying together images and catalogs should be achieved. Two approaches can be expected: a)
description of objects found in an image, and b) retrieve images once an object was selected from
the catalog space; both should be implemented. Images in several filters or epochs are particularly
relevant to have a quick look at the properties of any object. Catalog query tools associated with
Panorapix should be easy to implement, in which case a click on an object viewed by a user in an
image (with a non visible position code) should pop up a window where all the properties of such
object are shown.

It is likely that b) would be the starting point in many cases, but a) will become important
once the user has a clickable image in front of his/her eyes, and what is described in the energy
distribution section should also be incorporated into this functionality.

The tool will get history tracking data from the ASTRO-WISE database through a common
interface. This interface can be used in a command line environment to show everything related to
a certain object. Everything means all data (or pointers to that data) and software that was used
to create the object, and that which might be used to recreate the object with a different setting.
The same interface can be used in a graphical user environment.

In addition, an interface to perform introspection of the data in the database is defined that
allows access to the metadata in the database in a portable (XML) form. This will make it possible
to hide database details from the “tell me everything” tool, which might therefore be used with
different databases or data providers that implement the interface.

There are a few possibilities how a tool like this will offer the required access to the database in
a structured way.

For navigation through the ASTRO-WISE data model one can think of webbrowser or explorer
type functionality for navigation in a browser or treelike way.

For more complex visualizations that require the combination of different parts of the datamodel
(e.g. all source parameters together with flatfield, bias, atmosphere condition), one can think of
a spreadsheetlike way of operation. A spreadsheet view of the underlying database allows the
manipulation and visualisation of the data in a way that people are used to. Another benefit of
such a view is that more complex operations can remain understandable.
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2.5 Spectral Energy Distribution fitting tool

The USM will contribute a Spectral Energy Distribution (SED) fitting program that will allow the
interpretation of multi-colour (from the UV to the NIR) photometric catalogues. The routine will
deliver best-fitting spectral types, photometric redshifts, and lists of specific object candidates for
follow-up observations. A large spectral library, including stellar, galactic and active galactic nuclei
objects, and taking into account dust and intergalactic absorption, is convolved with the given
filter bandpasses and matched to the dataset in a maximum likelihood sense. Additional a priori
constraints (coming from possibly known object densities, etc.) can be taken into account.

Figure 2.7: A sample output of the SED fitting routine as applied to a source in the FORS Deep
Field (FDF). Based on flux in the U,B, g, R, I, J , and K-bands the program does a maximum-
likelihood match of a library of template spectra (in this case of an elliptical galaxy) (bottom
frame), to which is also associated a redshift probability (top frame).

The current version of this SED fitting routine exists as a stand-alone program, and will be
modified to fit within the ASTRO-WISE data structure using an interface that is scripted with
Python . For large source catalogues a direct access to the database is clearly required. Whether
this is done within one of the visualization tools provided for ASTRO-WISE (see section 2.1.3 and,
in particular, figure 2.3 which shows the SED output GUI created for the Hubble Deep Field), or
whether an independent GUI is necessary remains to be determined. It should be noted that a
reliable SED fit requires a sufficiently large spectral coverage (e.g. at least 5 filters for a reasonable
source identification and spectroscopic redshift for most types of objects) and, therefore, these
routines will only be relevant to a smaller fraction of the science programs proposed. Furthermore,
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experience with the MUNICS survey and the FORS Deep Field revealed that adequate accuracy
in the photometric redshifts can only be achieved with homogeneous PSF’s across the different
passbands sampled.

2.5.1 PSF Homogenization

In order to obtain accurate colors from comparisons between catalogs obtained in different filters,
requires homogenous PSFs within the different passbands. Experience has shown that for small
PSF differences (< 30% in FWHM) a simple convolution with a Gaussian kernel suffices. One
should take into account that such homogenization leads to correlated noise and that Sextractor
will underestimate (photometric) errors in such images.

PSF measurement is a standard part of the image pipeline. We will provide a tool for image
convolution and a tool to correct error measurements from Sextractor in homogenized images.



Chapter 3

WP3: Provide Federated database

3.1 Introduction

The aim of workpackage 3 is:

to design and implement a federated database environment to distribute administra-
tive, and calibration data, as well as documentation and software over the participating
sites in support of WP1 and WP2. In addition, the database will deliver or point data
items such as raw and processed image data and will contain all source lists.

The ASTRO-WISE database will fully administrate all I/O of the various pipelines, irrespective
whether they are run in “standard production mode” or “interactive analysis type of mode” by
individual users.

ASTRO-WISE will process and store data on multiple sites, and these data should be transpar-
ently accessible from all sites. Hence the ASTRO-WISE database environment will be a federated
database environment, distributing the data through a Wide Area Network (WAN).

A baseline objective is that all partners sites have equal access, privileges and authority over the
database, though some control mechanism will have to be build in the system in order to guarantee
data property privileges, in particular for what concerns the GTO (Guarantee Time Observations).

Compromises will have to be made in distributing all the raw data and all the processed science
data. It is foreseen that different sites will focus on different sub-sets of the total datavolume.
The database should transparently “know” about the various local archives, where the amount of
replication of bulk data will be a continuous compromise between available network speeds and
available local direct access storage volumes.

WP5 addresses the on-going ASTRO-WISE activities in expanding and upgrading direct access
storage media. It is envisaged that most WAN services will be provided by the implementation of
the db in WP3. Network speeds are assumed to be a free parameter in the present concept, but in
the ideal system no data is replicated and the db always knows how to point and collect the relevant
Input. In practice, replication will be needed preferably using smart caching, such as available in
Oracle 8i. Whatever compromises between network access, replication and distribution of bulk data
volumes are made the ASTRO-WISE db will control this process and register all data-items.
For the wide-field imaging data it is useful to discriminate between

1. image data (raw or processed) which in a few years will enter the 100 Terabyte regime, but
which is dominated by noise,

2. and the event data of extracted source parameters, which exclusively contain useful data

48



ASTRO-WISE ADD: WP3 Federated db 49

items, for which nominal data volumes are of the order of 1 Terabyte/year, while exceptional
programmes (galactic plane, crowded fields, monitoring programmes) might acquire Terabytes
of event data in a period of less than a month.

The ASTRO-WISE database environment will store and provide access to:

1. All administrative data of the pipeline (WP1), including all process parameters and a full
description of all processed data (meta data).

2. All “event data” produced by the pipeline (WP1) and tools (WP2), scalable to Terabyte useful
“event” data.

3. All calibration data

4. All documentation and software

5. The WAN distribution of all raw and processed “image data”

Although it is not a priori necessary to use the same database technology to store the different
kinds of data, it is imperative that the logical relation between these data items is
preserved at all times. For example: a zeropoint, will be derived by a pipeline program, controlled
by several parameters, from a number of source lists, obtained from standard star observations
calibrated with a certain flatfield. Hence, this operation combines administrative data, sourcelists,
calibration data and software. Only by combining all these data can we reproduce how the zeropoint
was obtained.

In section 3.2 we discuss in detail the requirements posed by these different data items on
the ASTRO-WISE db environment. We also discuss which capabilities the database environment
could provide for these data items to facilitate and/or support the implementation of the software
described in WP1 and WP2.

To facilitate implementation, ASTRO-WISE uses a single object model to represent all data,
except documentation and software (in fact, the software fits the data model). This model would
be most easily supported by a federated, object oriented database. However, to support science
operations, one would like maximum flexibility in querying, which is much better supported by
relational databases. These conflicting requirements suggest a hybrid solution, an object-relational
database. In section 3.3 we discuss Oracle 9i, an object-relational database, as a back-end, for the
ASTRO-WISE database environment. We pay particular attention to the federation aspects of this
solution.

As stated previously, software and documentation will not be stored/distributed through the
same object oriented database. One advantage is that this avoids the bootstrap problem (needing
software to access a database to retrieve that software). In section 3.4 we discuss the implications
of CVS, our method of choice to provide access to the software, both in terms of source code and
in terms of bootstrapping the executables in the pipeline/db environment.

The interface/handshake between the CVS repositories as far as source code is concerned and
the ASTRO-WISE db is outlined in section 3.4.

The distribution of raw data is made possible by the use of an ingest procedure which turns this
data into persistent objects of the proper class and stores the corresponding file on a dataserver.

The ingest procedure ensures that the raw data is federated, meaning both the raw image data
and the corresponding persistent object can be accessed from all sites participating in the federation
(taking into account proprietary data privileges).

The procedure takes raw data, identifies it if possible, stores the metadata it reads from the file
in the database and stores the file on the dataserver. If required, the ingest procedure also takes
care of splitting and storing the splitted files.
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3.2 Provide database engine which supports the following
operations

3.2.1 Administration of pipeline operations as done under WP1

The administration of the pipeline comprehends administration for

i. All pipeline I/O, under version and time control. Python to OCI interface- see also WP1

ii. All pipeline modules including plug-ins.

iii. The free input parameters and input data for on-the fly reprocessing.

To achieve this goal the database implements the persistency as required by WP1. This means
that there is a direct mapping between the objects that are marked as persistent by the pipeline
and their instantiation in the database. More specifically, also each attribute that is marked as
persistent in a pipeline object will have an identical counterpart in the database. Attributes that
are not marked persistent in a persistent pipeline object are considered transient and are not stored
in the database.

In addition to the objects as identified by the pipeline references between these objects are also
stored in the database. That ensures navigation between objects that are linked by such a reference.

3.2.2 Storage for all source list data

Fast selection and manipulation of source list data is central to ASTRO-WISE . The database
design has to support this. All source list data is stored as persistent objects in the database in
the representation that allows the fastest retrieval and association—see WP2—possible. The source
lists and the sources they contain are defined as persistent objects in the same way as persistent
pipeline objects are defined.

There are several representations for source lists. In Oracle 9i they can be represented as nested
tables, varrays or partitioned tables.

3.2.3 User programs, contexts, permissions

Several different users of the database can be identified:

• The pipeline operator who runs the standard pipeline.

• The astronomer who wants to run the standard pipeline with the latest standard calibration
data.

• The astronomer who wants to run a modified standard pipeline, possibly with private cali-
bration data.

• The astronomer who wants to run personal software with personal data.

To accommodate this the database and the ASTRO-WISE software have to be used following
strict rules specified hereafter. The database and the standard pipeline will enforce these rules. Any
personal software that doesn’t adhere to the rules should have read access to the data, but only to
data that are public. If such software produces results that should contribute to the ASTRO-WISE
environment it can only do so by using the supplied interfaces and guidelines.

The contexts as defined in 1.1 are similar to Virtual Private Databases in Oracle. These appear
to the user as single logical database but are in fact subsets of a much larger database. This means
it can be used to impose access-restrictions by allowing a user access to certain contexts. At the
same time this mechanism can be used to hide data that is not of any interest for a particular use.
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3.2.4 Provide basic set of queries, including complex queries

A basic set of queries is provided that shields end users from implementation details. The reason
for this is that even questions as phrased in simple English by an astronomer can require a lengthy
and complex sentence in a standard query language. For the most common questions that arise
from calibration or data mining precooked queries give easy and optimal access to the needed
information. Complex queries involve combinations of data described in 3.2.1 and in 3.2.2.

3.3 Provide WAN for ASTRO-WISE

3.3.1 Introduction

The ASTRO-WISE database is seen as a single logical database system that is distributed over
geographically distant physical database systems.

Ideally, transparent access to the logical ASTRO-WISE database should be provided by the
database implementation itself. Although some databases come close in certain area of the federa-
tion aspect, currently no database exists that gives complete federated use over a WAN.

Some sort of middleware has to be created or used to simulate a single logical federated
database1.

3.3.2 The context of the database operations

In the logical database there is one single data definition for each class/type. This implies that for
the different physical databases there is also one single data definition. Consequently, this has to
be enforced by the database interface or middleware.

Insertions into the database are local operations and requires write/insert permission for the
physical database that is local to the user. Retrieving from and searching the database can be
remote operations and require read/select permission to the physical databases that are both local
and remote to the user. In figure 3.1 the situation is shown for a single node in the federation. All
other nodes have identical behaviour.
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Figure 3.1: ASTRO-WISE geography and I/O - all nodes behave identically.

1See also http://www.eu-datagrid.org/
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It is interesting to note that this way of operating is very similar to the world wide web. The
main additions for database operations are that searching occurs in parallel across the different
nodes and that results from searching different nodes can be combined to produce a single answer.

3.3.3 Network speeds

Considerations
– distributing all OmegaCAM data within 24 hours as taken by the telescope during one night

would require a modest average network speed of 5 Mbps.
– realistic top network speeds should be of the same order as disk access speeds, 200 Mbps.

(25 sec for one OmegaCAM image)
These considerations lead to various operational models. Having a reliable network with unlim-

ited speed makes all machines appear as local machines. For most I/O-bound operations “unlimited
network speed” is roughly equivalent to maximum harddisk I/O speed. This is by far the simplest
operational model since there is no distinction between a collection of local machines and a mixture
of local and remote machines.

In the case of modest networks speeds the major question is which data needs to be copied
from the remote to the local site and how to minimize this amount in order not to saturate the
network. When remote data is needed often it is worth keeping a local copy. For some data it is
clear beforehand whether it will be accessed frequently. In that case, it could be worth making
copies on a regular (e.g. nightly) basis. Clearly, the most general and automatic way of copying
data would be to have some caching mechanism. One has to keep in mind, however, that such a
smart mechanism might not use available bandwidth if the caching is not triggered by a process
requesting data. Even if a cache is in use, it is useful to see how to optimize the use of available
average bandwidth by selective automatic copying of data.

3.3.4 What are the options?

As explained, the optimal solution would be that the database can itself be distributed. A system
that mimicked this by means of an intelligent caching mechanism between databases was available
in the Oracle 9i Application Server.

Version 9i-second of Oracle introduces STREAMS, a concept that makes it possible to copy
data in a smart way from Oracle databases, databases from other vendors or even data that is not
part of any database. It will be very useful to find out how to mould streams in a way such that
the standard pipeline and other database operations work in a seemingly federated way.

All versions of Oracle have several ways of replicating parts of databases in a coarse manner.

• Transaction logs can be used to synchronize with all the additions that have been made to all
remote databases in the federation.

• Transportable tablespaces are another mechanism to copy parts of the remote databases to
the local database.

• Views can be used to make data on the remote databases appear as local data and materialized
views can be used to instantiate such view as physical copies in a local database.

• There may be existing - now overlooked - mechanisms or technology to give the impression of
a single logical database.

The DataGrid tries to solve the connection of distributed databases in a more general way by
providing middleware and interfaces to connect existing database. Since this is a more general
approach, it is also valid for the ASTRO-WISE database. At the same time it is clear that having a



ASTRO-WISE ADD: WP3 Federated db 53

single system can provide a more straightforward and easy solution than is necessary for a hybrid
federation.

Given that a transparent federation does not exist, the other options depend on trade-off between
simplicity of implementation, simplicity of maintenance network speed, reliability of the network
all in combination with performance.

3.4 The database interface

Access to the database is provided through Python . This means that Python is used for both the
Data Definition Language and the Data Manipulation Language.

The database interface maps class definitions that are marked as persistent in Python to the
corresponding SQL data definition statements. Likewise, any instantiation of a class is translated to
the corresponding SQL data manipulation statement. In case a persistent Python object is retrieved
from the database the corresponding SQL selection statement is performed.

It is important to note the following points. All translations from Python to SQL and vice versa
are done transparently and on the fly. The user merely marks a class and all attributes that should
be made persistent as such. Inheritance is preserved in the database; classes that inherit from a
persistent parent class in Python map to types in SQL that inherit from the SQL counterpart of that
parent class.

The database interface is described in more detail in Appendix A.
In addition to the Python objects themselves also their method need to be made persistent.

This means that a connection between the Python source that was used to create an object and this
object needs to be made. Like for the object data, also for the object methods a mapping between
Python and SQL could be created. Given the complexity of automatic translation from Python
methods to SQL this is not feasible or desirable. Also there is the need to keep track of Python
sources that are not methods of persistent objects. Therefore the connection between persistent
Python objects and the Python source used to create them is handled in a different way.

The source text is stored in a CVS database described in the next section. CVS knows about
versions of source text, but not about the meaning of its content. I.e. it does not know that a couple
of lines of text together form a method in Python . It is the connection between this method and the
created objects that we want to keep track of. By assigning versions to methods and keeping track
of which methods created an object its history can be traced at the best level of detail. Relying on
the version of the complete source text in which the method is defined is not sufficient.

3.5 CVS database for federating

All source text, documents, web pages and manuals are stored in a central repository under CVS.
At the Kapteyn Institute a fileserver hosts the central repository. All partner sites “commit”

and “update” under the CVS protocol.
All objects in the federated database as created by the ASTRO-WISE software are created with

the source text as stored in CVS. For reprocessing it is necessary that the version of the software
with which an object is created is known. Versions of CVS source text shall have a counterpart in
the federated database. To achieve this it is sufficient to store the location and version of a source
file in the federation.

For reasons of consistency a checksum is calculated for each version of a source file in CVS.
This checksum is stored in the federation along with the location of the source file and its version.
Introspection of a source file allows the detection of changes in the version the source file thinks it
has, e.g. caused by editing of the source file.
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3.6 Interoperability with WP2

3.6.1 Introduction

Interoperability of WP3 with WP2 is regarded an extension of interoperability with WP1. The
interface between WP1 and WP3 is defined in a way that allows it to be extended, hence accom-
modating WP2 in a natural way. Anything that applies to the WP1 interface applies to the WP2
interface.

3.6.2 Data types

The database interface shall provide all basic and complex data types that are needed for WP2. In
addition the database itself will store the data types in the most appropriate way. The database
shall handle all translations between the database type definition and its counterpart to Python .
The database interface is foreseen to handle all data types already needed by WP1. These are basic
types such as integer, floating point, string and time and arrays of those and more complex types
that combine (arrays of) basic types (i.e. class definitions). Additionally references to complex
types are allowed.

For WP2 another data type, a “virtual data type”, may be useful. This type is not stored, but
calculated on the fly. One can think of coordinates in different systems or epochs or projections. A
more complex example would be a virtual data type that is defined as the combination of existing
types. The database interface should know that for this virtual type the data is not stored.

A data type might have a unit attached to it for WP2, this is undefined in the WP1 context.

3.6.3 Querying

As for WP1, Python is used as the main language for queries. In addition an interface is defined
that accepts SQL directly. This interface is only for the end-user. Any tools or software layer will
have to use the standard Python database.

The database will support spatial queries as required by the core of ASTRO-WISE tools. It
should be possible to answer queries to find all sources and their parameters within a certain area
on the sky. More complicated questions, like e.g. trying to find the areas of the sky where the source
density is highest or lowest should be solvable by the database. The (spatial) association of two or
more source lists is considered a complete subject in itself and is covered as such by SAssociate.

Examples of five line scripts (5LS) which provide powerful queries in near pipeline environment
are given in Section 1.2.

An interface to allow introspection beyond what is already possible for WP1 allows the creation
of more general WP2 tools. This obviates the need for intimate knowledge of the data that a WP2
tool tries to visualize.

3.6.4 Representation

Besides Python and in SQL, it should be possible to represent both the data definition and the data
itself in XML. One can see XML as just another data definition and manipulation language. Because
of that and because the database interface already handles Python and SQL representations, the
database interface is a suitable place to handle conversions to XML.

XML will be used to interface with systems external to ASTRO-WISE . To expose data to VO’s
the standard interface defined for VO’s is used. The standards and tools to exchange data are
discussed by the Interoperability Working Group2. Regardless of the interface, a context (see 1.1)
will be used to define which selection of the data is visible to VO’s.

2http://cdsweb.u-strasbg.fr/Interoperabilitywg.htx
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3.6.5 Tell me everything within ASTRO-WISE

The tell-me-everything-within-ASTRO-WISE tool provided by WP2 and described in the WP2-tools
chapter relies on functionality provided by WP1 and WP3. The federated database achieves this by
storing

• All persistent objects.

• The connections/links between the persistent objects.

The persistent classes defining the persistent objects and the relation between them are defined by
WP1.

The Oracle 9i implementation of the database interface uses user-defined types and references to
provide the needed tell-me-everything functionality. User-defined types and references are Oracle
concepts. The user-defined type is used to define a persistent class in the database. The name of
the user-defined type is the name of the persistent class and the name of the persistent attributes
become the names of the attributes in the user-defined type. The type of the persistent attribute
translates to an equivalent atomic Oracle type. A persistent link attribute in particular translates
into an Oracle reference to a user-defined type.

To store the instances of the user-defined types a so-called object table is used. This is a
table consisting of objects only (unlike conventional tables in relational databases, which consists
of columns and rows).

In addition to the type and the object table an object view is created for each persistent class.
This object view does not contain objects. Instead this view defines a selection of the objects in
the corresponding object table and ALL objects in tables of persistent class that is derived from
the corresponding. For example, if classes X and Y are both derived from Z, then the object view
for Z will show all instances of both X and Y.

The query syntax in Oracle 9i supports the object model also when selecting data in the database
which means there is very close match between the Python query syntax and the database syntax.

Both the Python interface and the database support resolution of links/references as required
or in queries.

In figure 3.2 a tree-like view is shown of all ancestors of a reduced scienceframe. Leafs in the
tree correspond to attributes of persistent classes and branches correspond to links/references to
objects. By expanding a branch one can have a more detailed look at the referenced object. In the
figure this is done for the ‘bias’, ‘filter’ and ‘image’ attributes. When all branches are expanded the
complete history of an object is shown. This is true for all objects in the database.
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Figure 3.2: History of a single reduced scienceframe



Chapter 4

WP4: Provide parallel processing
power to ASTRO-WISE

4.1 Introduction

The aim of WP4 is to provide the necessary computing power to the prime data centers and install
and operate Linux-Beowulf 32 Gigabit PC parallel clusters.

4.2 Work description

The distributed nature of the astro-wise consortium naturally provides different environments and
different boundary conditions to start from. Initially the expertise build at the different sites will
yield different ideas of how to build a parallel cluster. Therefore at the beginning of the project a
diversity of implementations will be available for testing and evaluation.

Currently the below mentioned sites have an operating configuration which will be upgraded
and export to the other main sites according to the results of the investigations mentioned in the
next section.

A generic hardware configuration will be described in general terms based on performance
(processing speed, network speed, disk space requirements, infrastructure layout, etc.). It will not
be a precise description of which hardware vendors, types, or versions a parallel system should
consist off.

4.3 Investigations

The boundary conditions for processing the data in the ASTRO-WISE context are well established
and will not evolve dramatically during the course of the project. The evolution of computer
hardware during the project period, however, will be dramatic. What now seems barely possible will
be easy, by factors of four, by the end of the project. We need to explore a working parallel processing
environment based on the current hardware possibilities, but will incorporate the expected hardware
evolution. To facilitate the exploration the following important aspects concerning the choices of
hardware need to be addressed.

Currently and even more so in the future the ASTRO-WISE data processing is I/O bandwidth
limited. Given the curve of growth in terms of CPU speed and I/O bandwidth this limitation will
remain. There are several aspects to the I/O bandwidth problem dealing with different parts of
the computer hardware. The three major parts to consider here are network speed, machine bus
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throughput, and memory speed. Each has its own limitation and speed enhancements with time. For
the ASTRO-WISE data flow the I/O speed of each part must be evaluated, future developments must
be extrapolated from past experience and implementation choices must be made. Especially the
expected future changes and possibly shifting of relative bottlenecks of the different I/O bandwidth
components need to be addressed.

To evaluate the possible hardware implementations the processing boundary conditions must be
clearly defined. To do this several aspects of parallelization of the software need to be investigated.
Important aspects concerning the parallelization choices of software involve questions to the level at
which the distributed processing will take place. The simplest form of parallel processing is to run
individual pipelines on individual machines. This so called embarrassingly parallelized processing
is very simple in terms of its operation, but takes little advantage of the intrinsic parallel nature
of some of the pipeline processing steps. A somewhat more complex, yet still quite simple form of
parallelization can be obtained on the individual CCD level, where automatically 32 to 40 different
parallel processes can be defined.

Some pipeline processes are, by the nature of the algorithms used, not embarrassingly parallel
and therefore either need to be executed on a single CPU, or need to be recoded to allow distribution
across a cluster of CPU’s. With the parallelization at the CCD level and the deeper algorithmic
parallelization, several software and hardware aspects dealing with system resources and synchro-
nization of pipeline streams become important. The cost of software development to support higher
levels of parallelization in terms of the overall pipeline speed up needs to be weighted against the
costs of acquiring additional hardware to facilitate a similar speed up, if ever this is possible given
additional hardware.

To make parallel processing automatic and without human intervention pipelines software de-
velopment must be done to deal with the resource management in such conditions. All resources
that have direct impact on the processing speed, see above, need to be incorporated. In addition,
possible variations in the implementation details must be coped with.

4.4 Relation with WP5

The concepts in this work packages are strongly correlated with those of work package 5. Because
data needs to be fed to the processing hardware the data flow to, from and within the processing
hardware is a vital part in the total execution time of the pipeline components. This work pack-
age concentrates on the processing aspects of the data reduction task but should yield boundary
conditions for the data ingest/output speeds as well.

4.5 AstroBench

As outlined in previous paragraphs, in order to make the best hardware choice it is necessary
to benchmark different hardware solution for specific astronomical application. Also, in order to
identify bottleneck and so try to optimize both hardware and software, a profiling tool to monitor
the usage of the different hardware component during the tasks execution is needed. To address
these requirements Astro-Bench has been developed to perform a set of astronomical application
benchmarks in order to estimate the performance of single/multi processor/s platforms. At the
moment four astronomical tests are done: a production of a master bias using wfi-masterbias
(eclipse) out of five WFI@2.2 bias frames, a production of a master flat field out of five dome flats
and five sky flats using wfi-ff., a run of SExtractor on one wfi image and a run of SWarp on four wfi
images. In this last test only background subtraction and re-sampling are executed. The tool also
give the possibility (for linux platforms only) to profile the runs in the sense that the /proc files are
sampled at a settable frequency. In this way it is possible to know the CPU(s) usage, to measure
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the network and the disks traffic. Of course other applications can be easily added to Astro-Bench
as well as we plan to include in the tool the whole ASTRO-WISE pipeline.

The software has an html based graphical interface as shown in figure 4.1 and can be freely
downloaded at the URL: http://www.na.astro.it/beowulf/.

Figure 4.1: Snap-shot of Astro-Bench graphical interface.

Astro-Bench results obtained with the beowulf cluster at some of the astro-wise data center are
reported in table 4.1

4.6 Hardware at Groningen / Leiden

Beowulf system at Groningen

To run the OmegaCAM pipeline a 32-Processor cluster (16 node Beowulf system, each node having
2 processors) linked at very high speed (1Gbit/s) is optimal. Such a system allows the processing
of huge data volumes which is necessary to handle the expected data stream of the instrument.

Currently a fileserver connects the harddisk towers to a dedicated Oracle server and an 8-
node computer cluster at the Computingcenter of the University of Groningen through a dedicated
glasfiber link over a distance of 300 meters. In this experimental setup the astro-wise pipeline runs
on the remote cluster. The metadata is obtained from and updated on the local Oracle server,
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Institute Master Bias Master Flatfield SExtractor SWarp
NOVA 8 23 5 68
OAC 34 82 17 158
USM 19 43 11 142

Table 4.1: Astro-Bench results (in seconds) obtained with the astro-wise data center beowulf clusters

the raw data is retrieved from and the reduced data is stored on the local harddisk towers of the
fileserver (see WP5, Data management and Hardware at Groningen). Each node of the beowulf
cluster at the computing center has a 1.7GHz Pentium IV processor with a cache size of 256 kB
and 512 MB internal memory with a 20 GB internal IDE disk.

4.7 Hardware at Paris

Beowulf system at TeraPix

• hardware type client nodes Bi-AthlonXP at 1.53 GHz, 2GB or RAM at 266MHz

• number of processors 10 processors total, divided amount 5 towers with dual CPU’s

• network type, layout client nodes Two interfaces, 1 Gigabit, 1 Fast Ethernet. The Fast
Ethernet is form external network connections and to provide a command network. the
Gigabit network is meant for data transport.

• hardware type Server node Bi-AthlonXP at 1.53 GHz, 2GB or RAM at 266MHz

• network type, layout server node Four 1 Gigabit and 1 fast ethernet interface. The four gigabit
cards each connect to one client node. The fast Ethernet card is part of a star-node network.

• storage capacity and distribution Client nodes each have 2 x 400 GB RAID arrays and the
server node has 840 GB of RAID5 disk

• estimate of cost acquisition Computing units Euro 24k, Server unit Euro 7k, Auxiliary equip-
ment Euro 3k, which gives a total of Euro 34k.

4.8 Hardware at USM

Beowulf system at München

The following Beowulf PC cluster is currently installed and operating at the USM:

• Compaq ProLiant Rack-mounted PC cluster based on Pentium III 1.1 GHz processors, each
with 3 GB RAM.

• 16 processors total, divided among 8 racks with dual CPU’s. Our rack and Myrinet switch
has been chosen to allow expansion to 32 processors in the future.

• the network layout is based on a Myrinet switch with fiber ports for inter-node communication
at 1.5 GB rates.
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• storage is momentarily centrally distributed on the master node and comprises 28 x 72.8GB
= 2.04TB in a RAID configuration. Furthermore, we have 4 x 815.5GB spread over 4
workstation PC’s. Our rack and RAID controller will allow a future expansion to 10 TB total
storage.

• the hardware contract was awarded to a local company (Lantec) and purchased as a ”turn-key”
solution. Hardware costs totalled 123,442 Euro, with a further 4,090 Euro for installation,
maintenance, and an extended warranty.

Ancillary Hardware:

Aside from the Beowulf PC cluster, we have also installed 4 individual PC workstations that
will, eventually, be connected to the cluster to give the user a local storage and work area. Each
PC has a RAID array with 815.5 GB at RAID level 3/5.

4.9 Hardware at Capodimonte

PartenoBEO Beowulf cluster at OAC

Hardware description
1 Master with two processors + 8 Nodes with single processor
Master configuration:

• CASE cabinet rack mount 4U 19”

• MB TYAN THUNDER HE SL (S2567) dual processor

– Up to 4GB PC133

– Four 64 bit 33 MHz PCI

– Two 64 bit 66 MHz PCI

– Dual-channel Ultra 160 SCSI

– Serverset HE-SL chipset support 100/133 MHz FSB

• CPU two PIII 1 GHz

• RAM 1 GB ECC registered

• DISKS 2 HD 75 GB eide Model=IBM-DTLA-307075 + 1 HD 18 GB IBM Model: DDYS-
T18350N

• NET Gigabit Ethernet module INTEL PRO/1000

Slaves configuration:

• CASE cabinet rack mount 2U 19”

• MB TYAN TIGER 200T dual processor

– Up to 2 GB of PC100 or 1.5 GB of PC133

– Five 32 bit PCI

– Promise FastTrak 100 IDE RAID

– support for Tualatin CPU
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– Dual LAN controller

– CPU one PIII 1 GHz

– RAM 512 MB ECC registered

– DISK 1 HD 40 GB eide IC35L040AVER07-0

NETWORK
The master is connected to a network switch through Gigabit ethernet, from the switch to the

nodes there are fast ethernet connections
SWITCH

• Allied Telesyn 24 ports 100TBase

• 1 port Gigabit Ethernet

• Number of processors: ten PIII’s 1 GHz

• Network type, layout: 1 Gigabit ethernet to the master - switch - fast ethernet to the nodes.

• Storage capacity and distribution: 168 GB on the master, 40 GB disk on each node

• estimate of cost acquisition for Master,nodes,network,switch,KVM,switch,rack: 16 KEU

• estimate of cost implementation/maintenance: it is a bit difficult to estimate such costs. The
installation in total lasts few days of two people. The R&D time to extend to the 32 nodes
configuration is quite difficult to estimate and than the maintenance when the system and
the pipeline will be stable will require a person not full time

On date 22/04/2002 the order for an upgrade of the Beowulf has been placed. It consists on
putting the second CPU on the nodes, changing the case of the master from 4U to 5 U and add
a RAID controller 3ware 7850 with 7 EIDE hard disk of 40 GB each. A seconf master with the
same configuration of the previous one has also been ordered with a second Gigabit module for
the switch. In total the cluster will have two dual processor masters with 350 GB of disk space
each, both connected with Gigabit ethernet to eigth dual processor nodes. With the up grade to
two masters we plan to test parallel file system with Gigabit ethernet. Promising results have been
achieved using PVFS with fast ethernet.

The up-grade cost is about 11 KEU.
Planning
OAC plans to extend the present cluster to 32 nodes.



Chapter 5

WP5: Provide data storage to
ASTRO-WISE

5.1 Introduction

The aim of WP5 is to provide the necessary direct access data storage to the prime data centers;
typically 1 Tbyte/ site direct access, up gradable to 10 Tbyte/site within two years.

5.2 Work description

Comparable to WP4 the distributed nature of the ASTRO-WISE consortium provides different en-
vironments and different boundary conditions to the storage requirements. However, the fact that
data may reside on any or all of the different nodes in the consortium may be appealing to the
concept of a distributed environment but must be evaluated against the data access speeds of data
retrieval in terms of data reduction or archival research.

The development of a direct access data storage implementation at first was a diverse process
where different nodes investigated the storage implementation that is best-suited to their paral-
lel environment. Experience and in depth investigation of the different aspects mentioned below
provided a generic best implementation concept.

In addition a maintenance plan will be stipulated and implemented across the ASTRO-WISE
sites.

5.3 Investigations

To define proper environments for data storage facilities for the future the several hardware aspects
needed to be tackled in close correspondence with the implementation choices made for the data
processing hardware.

5.3.1 Hardware

Questions as to whether a centralized or distributed data storage implementation are preferred
involved on the one hand the I/O requirements for the data processing pipeline and on the other
hand the I/O requirements for data mining purposes. Because these two components are very
different in nature, and because the concept of a final dataset does not exist in the ASTRO-WISE
context, they are the major concern of this Work Package. From existing pipeline implementations
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and known boundary conditions the I/O requirements of the first component can be well defined.
This is not the case for the second component because, first, our knowledge of true data mining is
still sparse and, second, by the very fact that data mining is such a dynamic and versatile process.

The investigations with respect to the implementation detail to such things as the type of the
storage media. For hard drives this meant investigating the size (largest types) and their access
speeds (read/write). For tape media this would be the permanency (duration, life time) and possible
hierarchical storage facilities and total storage capacity. Most of the storage hardware needs to be
intelligent and contains or must be connected to a CPU. Either one automatically builds a Beowulf
type of system while evolving to larger disk farms or one piggy-backs on the Beowulf system to
provide these CPU’s.

It turns out that data storage units are becoming specialized systems on their own and are
not well equipped for the parallel processing task as viewed from a pipleline perspective. Given
local high speed networks a data storage facility can reside next to a processing facility in a LAN
environment. Data that is to be processed in an automated pipeline fashion can then be ingested
on the local data store while data processing necessary for data mining purposes may reside on
non-local data stores.

5.3.2 Software

A data storage unit has no value without a means of access and content description. These two
aspects are usually provided by software and databases. Therefore, it is vital for an operational data
storage facility to be described by software and data to be retrievable through software. Important
aspects concerning the choices of software involved such things as global and local administration
where distributed data (among the different nodes) is uniformly accessible. For example a data
retrieval query at one node should result in a number of distributed queries across the ASTRO-
WISE nodes.

This administrative software in its simplest form hides the UNIX files structure behind the
pipeline file administration. It needs decision mechanisms to distribute data on intake, redistribute
data for processing efficiency, and redistribute data for data mining efficiency. This is very similar
to a DBMS were the files are DBobjects. The actual important concept is the decision mechanism
that has knowledge of the underlying hardware for distribution data across local environments, such
as the Beowulf clusters, but also among the ASTRO-WISE nodes, involving internet connections.
As a first approach data to be processed as part of the ASTRO-WISE node allocated observing time
will be ingested at that ASTRO-WISE node. It can then, by default, be the master data store for
that particular data.

The above concepts worked out in more detail result in the following description.

Data identification

As the telescope acquired data is ingested into the processing system, it is given a unique identifi-
cation within the federated database environment because the associated DBObject is stored there
and the unique identification from the DBObjects is used. The place where the actual data will
reside is the place of ingest. This is the simplest means of defining the master of this data item.
Upon ingest the data is stored in a permanent storage environment from which it can not be erased.
The federated database has provided a global identification (GID) for the ingested data item so
that it can be uniquely referenced using this GID.

Data management

The manager of a particular data store is the dataserver. It is both a server of the data responding
to get requests and put requests as well as a database manager that translates the GID to a local
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UNIX filename (or any other storage configuration). The caretaker role information is stored in
the federated database where DBObjects are stored. For human readability the GID translates
to a UNIX filename which is constructed using the data description information as given by the
ASTRO-WISE data model.

Federated data store

Each data-store manager cooperates with the other data-store managers in such a way that they
communicate data and information among each other so that the ensemble of data-store managers
in itself is a federated data store. To illustrate this fact, when a client data processing unit requests
a data item by means of a GID, it will do this request to the local dataserver. In principle a
local dataserver can be running on one node of a parallel computing cluster, a single data storage
computer environment near the parallel computing cluster or even at some more remote site. The
data item retrieve request will be answered by the local dataserver either directly as the requested
data is part of the dataserver master data, or indirectly. In the latter case the local dataserver,
which does not have the data item stored locally, will peer-to-peer communicate with the other
dataservers in the federated data store to download the data item from the remote data server that
is the master of the requested data item. The downloaded data item will reside in a caching area
on the local data server, which then serves the data item to the processing client. This way often
requested data items will always be stored locally. A scratching period for the local cache area will
have to be established.

In fact it is even possible to build a hierarchical dataserver structure with for instance dataservers
running on each node of a parallel processing cluster, one central dataserver serving all these node
based dataservers. This central dataserver could then be part of the federated data store. There
is no obligation for a dataserver to be the master of any data so that it only has data in its cache
area while its permanent area is empty.

As for the storage of derived data the local dataserver will be the master of this newly created
data. This functionality operates in the same way as the ingest procedure for the raw observed data.
One might, in a hierarchical data store environment, setup a structure defining master data stores
for particular data items. For instance, processed images created at the Leiden parallel processing
cluster will have as their master data store the Groningen dataserver. This uploading procedure
will also be a multi step mechanism with data uploaded from the parallel cluster going to the cache
of the local data server and then at some time disjunct from the data processing be uploaded to
the actual designated master data store.

The federated nature of the dataservers has the advantage that the data store can dynamically
grow. A dataserver is the master of a particular set of data which might be limited as the data
storage hardware has capacity limitations. When a data storage hardware environment (e.g. a
Linux based computer with a few TB of disk space) is build and filled, one can just add another
such environment with its own dataserver running, making it the master of some new data items,
thus dynamically enlarging the federated data store.

Unit of data item

For the purpose of data storage and retrieval the unit of a data item is the FITS file. This means
that one can only retrieve and store complete FITS files, not separated FITS file extensions. This
has the consequence that multi-extension FITS files such as those coming from the telescope will
have to be split before they are ingested into the data store. The data processing pipeline operates
on single chip data. The data items are accessed through their GIDs, but the associated DBObject
in the federated database is the place where to access the information items (such as FITS header
information).
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5.3.3 Prototype

Given above considerations a dataserver prototype has been build. This dataserver program is writ-
ten in Python and uses the peer-to-peer paradigme for its communication mechanism. A dataserver
can become part of an ensemble of dataservers by giving the program a reference to one of the other
dataservers in the ensemble. At startup the new dataserver will announce its presence as part of
the ensemble. The dataserver is a multithreaded daemon process that listens for requests.

Communication is based on http post and get authenticated requests for files. The communica-
tion routines are implemented as a client - server library.

A request for data is placed by the client side (processing program) to a dataserver, usually one
that is nearby in terms of network performance. If the dataserver is not the master of the requested
data and if the requested data is not in the cache, the dataserver queries all other dataservers in
the ensemble for the data. When another dataserver has the requested data in its master or cache
area, it serves this data to the requesting dataserver, which stores it in it cache area and forwards
it to the requesting client program. The next time the same data is requested a cache copy can
quickly be delivered.

The prototype lacks a GID to filename conversion and only has a rudimentary cache cleanup
facility.

5.4 Hardware at Groningen / Leiden

5.4.1 - dataserver for CVS, dbI, observational data

The huge amount of data obtained with OmegaCAM requires a powerful computer platform, able
to process and maintain huge data volumes and the derived products on-line. This is achieved
with a Beowulf system (discussed in WP4), with a host-based RAID disk network providing the
multi-TByte storage. A typical ’storage unit’ consists of a cpu and a number of inexpensive disks
(1 TByte/host in 2002, 2 TByte/host in 2003). This is currently the most cost-effective solution,
with the important advantage that it is scalable: the storage capacity can be upgraded over time
by simply adding more units to the network. Thus we can expand the system as the data volume
grows, allowing us to always buy the most effective components. The Beowulf cluster plus storage
units will be located at the Kapteyn Institute. The scalability of the system allows the expansion
and purchasing of components on ’the last minute’ when data accumulation forces us to up-scale.

The acquiring of storage units has already started: Early 2002 a 0.5 TByte fileserver came
into operation. This machine is used primarily as CVS data server and for data storage of the
informational data (meta-data) in Oracle. In january 2003 a 2 TBytes RAID was acquired to store
the observational (test) data. Next we will procure another 2 TBytes in the summer and 4 TBytes
in the fall of 2003, 20 TBytes in the fall of 2004 and 30 TBytes at the end of 2005.

Currently each storage unit of 2TB consists of 12 200GB (7200rpm, 8MB cache) disks which
are connected to a 3ware parallel ata controller running a RAID5 system with one spare disk.
The net result is a disk of in total 2TB which is quite well manageable via the 3ware web-tools.
Experience has shown us that the 3ware solution is faster, more reliable and better maintainable
than many other RAID solutions like for instance the Promise SX6000 controller. Each storage
unit is connected to the net via a 1 Gbit/s NIC.

5.5 Hardware at Paris

A distributed data storage capability is installed at TERAPIX, with currently 10+1 nodes. Depend-
ing on when they where bought (2001, 2002 or 2003), the client nodes are equipped with 700GB,
2.5TB and 3.5TB of RAID5 securized disk space, for a total of 20TB online storage. The server
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node has 2 2.5TB RAID5 systems for storing temporarily both incoming and outcoming (reduced)
data. These RAIDs are used as a buffer for exchanging data with the archiving data centers, via in-
ternet. The amount of available online disk space is expected to grow as more observations become
available, in order to have everything online and be able to quickly reprocess any data at anytime.
One year of observing data with MEGACAM requires about 10TB of storage space.

5.6 Hardware at USM

A distributed data storage capability has been incorporated at the USM. The server node of the
Beowulf cluster has a 1TB RAID5 disk array that will be devoted to the direct pipeline reduction
of data. We foresee a total expansion of this storage to 10 TB, and have ensured that the current
rack can accommodate this volume of disks. Furthermore, four workstation PC’s will be connected
to the Beowulf cluster to give the user a local storage and work area. Each PC has a RAID3/5
array with 815.5 GB of storage.

5.7 Hardware at Capodimonte

For what concern the data storage, no decision has been taken yet. Our feeling at the moment is
that in order to have a data storage system with enough reliability we need to separate it from
the cluster. Several disk storage commercial solution are available on the market also if not cheap
compared with an “home made” disk farm. Presently we are investigating both the solutions.
The final choice will depends also on the data distribution strategy that will be adopted within
ASTRO-WISE .



Chapter 6

WP6: Coordination

6.1 Project organization

WP6 is coordinating this project. The view is that keys to the success of the system involve:

• extensive design and setting standards.

• setting up federations of source code, documentation and observational data

• frequent communications of partners sites by

– 2-weekly telekons

– mail boxes/newsletters, websites etc

– quarterly meetings

– regular work visits

WP3, providing federated databases such as CVS, Oracle and web-pages, plays a double role in
the project: it supports the administration of scientific processing, but it also provides the workhorse
for the various partners to collaborate on development and exploitation of the system, for running
scientific projects and surveys.

During the development work each partner site will provide at least a local contact person and
a local data base administrator (fraction of time), next to the various software developers.

A deliverable of the project is the emanation of the system to satellite sites. During the devel-
opment of the system it is expected that the maintenance of such satellite sites requires about 0.2
fte.

ASTRO-WISE can deliver data products to the Astrophysical observatory (AVO) and close con-
tact with the VO’s and the Grid projects, like AstroGRID and DataGRID, is considered very
desirable, particularly for the inter-operability issues.

A liaison to VISTA is organized as part of the project.
Other ASTRO-WISE associates are Sterrewacht Leiden, RuG Rekencentrum Groningen, Oracle

NL, Université de Liège, Sternwarte Bonn, ESA- GAIA.
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Appendix A

Persistency Interfaces

A.1 Introduction

This document describes the specification and Python implementation of persistent objects on top
of a relational database back end. The aim of this implementation is twofold:

1. Provide a transparent mapping from a definition of a persistent class to a table in a rela-
tional database, preserving inheritance relationships, and allowing attributes to refer to other
persistent objects.

2. Provide a native Python syntax to express queries, and leverage the advantages of the rela-
tional model (SQL) when using persistent objects.

In this paper we will first introduce a number of concepts from Object Oriented Programming
(OOP) and Relational Database Management Systems (RDBMS), in order to clarify the problem
we wish to solve. We will then provide the specification of the database interface provide by the
ASTRO-WISE prototype. Finally, we will clarify some of the implementation issues addressed by
the current prototype.

A.2 Background

A.2.1 Object Oriented Programming

It is difficult to give a meaningful definition of “object”. However, the following “definition” intro-
duces some intimately related terms that will be used throughout this document:

object An object is something that comprises type, identity and state. The type of an object,
specifies what kind of object it is, specifically what kind of behavior the object is capable of.
The identity is what distinguishes one object from another. The state of an object specifies
the values of the properties of the object.

In Object Oriented Programming (OOP) we have an operational definition of objects:

object An object is an instance of a class, and encapsulates both data and behavior

The class defines what operations (methods) can be performed on its instances, and what
attributes those instances will have. In general ‘class’ and ‘type’ are synonymous, as are ‘instance’
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and ‘object’. That is, when we talk about the type of an object we mean the class of which it is an
instance.

It is important to note that the values of the attributes of an object will themselves be objects,
although most programming languages distinguish between (instances of) primitive data types
(integers, strings, etc) and instances of classes.

Inheritance is the mechanism by which one can use the definition of existing classes to build
new classes. A child (derived) class will inherit behavior from its parent (base) class. In defining
the child class the programmer has the opportunity to extend the child class with new methods and
attributes, and/or modify the implementation of methods defined in the parent class. However, the
child class is expected to conform to the interface (specification) of the parent class, to the extent
that instances of the child class can behave as if they are instances of the parent class. In particular
it is expected that procedures taking an object of a base type as argument, should also work when
given a derived type as argument. This key property of objects is called polymorphism

A.2.2 Persistency

An object is said to be persistent if it is able to ‘remember’ its state across program boundaries.
This concept should not be confused with the concept of a program saving and restoring its data (or
state). Rather, persistency, implies that object identity is meaningful across program boundaries,
and can be used to recover object state.

Persistency is usually implemented by an explicit mapping from (user-defined) object identities
to object states and by then saving and restoring this mapping. However, this implementation
assume that the object identity of the object one is interested in can be independently and easily
obtained. For many applications this is not the case. On the contrary, one usually has a (partial)
specification of the state, and are interested in the corresponding objects that satisfy this specifi-
cation. That is, many interesting applications depend on a mapping of a partially specified object
state to object identity (and then to object). This is the domain of the relational database.

A.2.3 Relational Databases

A relational database management system (RDBMS) stores, updates and retrieves data, and man-
ages the relation between different data. A RDBMS has no concept of objects, inheritance and
polymorphism, and it is therefore not a-priory obvious that one would like to use such a database
to implement object persistence. However, using the following mapping

type ←→ table
identity ←→ row index

state ←→ row value

it is (hopefully) obvious that one might, at least in principle, implement object persistency using
a relational database. That is, given a type and object identity, one can store and retrieve state
from the specified row in the corresponding table.

Relational databases provide a powerful tool to view and represent their content using structured
queries. It would be extremely useful if we were able to leverage this power to efficiently search for
object whose state matches certain criteria. Special consideration has to be given to inheritance in
this case.

Assume, for example, that we define a persistent type DomeFlatImage, derived from a more
general type FlatfieldImage. A query for all R-band flatfield images, should result in a set
including all R-band domeflat images. This behavior of queries is what inheritance means in a
relational database context. Hence, a query for objects of a certain type maps to queries (returning
row indices/object identities) on the tables corresponding to that type, and all of its subtypes. The
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results of these queries are then combined in to a single set of all objects, of that type or one of its
sub types, that satisfy the selection.

A.3 Problem specification

The implementation of the interface (should) address(es) the following issues:

defining a persistent class Defining a persistent class (type), will give its instances the property
of being persistent. The class definition should provide sufficient information about the at-
tributes (possible state) of the objects to build the corresponding database table. This table
should be present in the database when the first object of the class is instantiated. Presently,
this is achieved by dynamically creating the table (if it doesn’t yet exist), when processing
the class definition1

retrieving state of persistent object Instantiating a persistent object with an existing object
identity should result in retrieval of state from the database.

saving state of persistent objects Persistent objects, whose state has been modified, should
save their state to the database before they cease to exist.

references persistent objects will contain references to (read: instances of) other persistent objects.
Care has to be taken that instantiation of a persistent object does not recursively instantiates
all objects it refers to. Only when the attribute corresponding to the reference are accessed
should the corresponding object be instantiated.

expressing selections It should be possible to express selections of the form

{x|x ∈ X ∧ (x.attr1 ∈ A ∧ x.attr2 ∈ B ∨ x.attr3 ∈ C...)} (A.1)

i.e.: the set of all objects of type X whose attributes have certain properties. This set should
be translated in to an SQL query to the database, and result in an iterable sequence of objects
satisfying the selection.

In addition, the following issues need to be addressed, though not necessarily by the interface
to persistent objects.

managing database connections The interface does not specify how or when the database con-
nection is established.

transactions The interface doesn’t specify if and how transactions are implemented

efficiency No effort has yet been made to maximize performance and/or scalability. Initial efforts
has focussed on a demonstration of technology and simplicity of implementation.

A.4 Interface Specification

In this section we describe how to implement and use persistent objects, using the interface defined in
the astro-wise prototype. This section includes Python source code fragments. For those not familiar
with Python we advise that they have a look at the main web site at http://www.python.org/
and at the Python tutorial at http://www.python.org/doc/current/tut/tut.html

1This implementation neatly avoids the problem of having to maintain both the class hierarchy and the corre-
sponding database schema
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A.4.1 Persistent classes

Persistent objects are instances of persistent classes, which specify explicitly which attributes (prop-
erties) are saved in the database. We call these attributes persistent properties. Executing a
program defining

Defining persistent classes

A new persistent class is defined by deriving from an existing persistent class, or by deriving from
the root persistent class DBObject. E.g.:

#example1.py
from astro.database.DBMain import DBObject
class A(DBObject):

pass
class B(A):

pass

specifies two persistent classes (A and B). Neither of them extends their parent classes, so
instances of A and B will behave exactly like instances of DBObject.

Defining persistent properties

A persistent property is defined by using the following expression in the class definition:

prop_name = persistent(prop_docs, prop_type, prop_default),

where, prop name is the name of the persistent property, and persistent is constructed using
three arguments: the property documentation, the type of the property, and the default value for
the property respectively. For example:

#example2.py
from astro.database.DBMain import DBObject, persistent
class Address(DBObject):

street = persistent(’The street’, str, ’’)
number = persistent(’The house number’, int, 0)

This program defines a persistent class ‘Address’, with two persistent properties, ‘street’ and
‘number’, of type str(ing) and int(eger) respectively.

We distinguish between 5 different types of persistent properties, based on the signature of the
arguments to persistent()

descriptors If the type of the persistent property is a basic (built-in) type, then we call the
persistent property a descriptor. Valid types are: integers (int), floating point numbers (float),
date-time objects (DateTime), and strings (str).

descriptor lists Persistent properties can also be homogeneous variable length arrays of basic built
in types, called descriptor lists. Valid types are the same as those for descriptors. descriptor
lists are distinguished from descriptors by the property default. If the default is a python list,
the the property is descriptor list, else it is a simple descriptor.

links Persistent objects can refer to other persistent objects. The corresponding properties are
called links. If the type of the persistent property is a subclass of DBObject, then the property
is a link.
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link lists Persistent properties can also refer to arrays of persistent objects, in which case they are
called link lists. Link lists are distinguished from links by the property default. If the default
is a python list, the the property is link list.

self-links A special case of links are links to other objects of the same type. These are called
self-links. if no type and default are specified for the call to persistent, then the property
is a self-link.

Keys

It is possible to use persistent properties as alternative object identifiers for the default object
identifier (object id). Only descriptors can be used as keys. Keys are alway unique and indexed.

The special attribute keys contains a list of attributes and tuples of attributes tuples, each
specifying one key. For example:

#example3.py
class Employee(DBObject):

ssi = pesistent(’Social Security Number’, str, ’’)
name = persistent(’Name’, str, ’’)
birth = persistent(’Birth data’, DateTime, None)
keys = [(’ssi’,), (’name’, ’birth’)]

In this example ssi is a key. The pair of attributes (’name’, ’birth’) is also a key.

Indices

Databases use indices to optimize queries. It is possible to specify which persistent properties should
be used as indices.Only descriptors can be used as indices.

The special attribute indices contains a list of attributes which should be indexed. E.g.:

# example4.py
class Example(DBObject):

attr = persistent(’A measurement’, float, 0.0)
indices = [’attr’]

A.4.2 Persistent Objects

Having specified persistent classes, we can now use these classes to instantiate and manipulate
persistent objects. In most respects these objects behave just like instances of ordinary classes.
There are two exceptions: special rules for instantiation, and special rules for assigning values to
persistent properties.

Object instantiation

We can distinguish between three different modes of instantiating a persistent object.

New We are creating a new persistent object, for which the object id needs to be generated. This
can be accomplished by instantiating an object without specifying object id.

Existing We are using an existing object. If the object has already been instantiated in this
application we want a copy to its reference, otherwise we want an instance, whose state has
been retrieved from the database. This can be accomplished by instantiating the object with
an existing object id.
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Transient it may be useful to build an object of a persistent type that is not itself persistent
(whose state, will not be save to the database). This can be accomplished by instantiating
the object with an object id equal to 0 (zero)

or, in code:

a = MyObject() # A new instance of MyObject
b = MyObject(object_id=1000) # An existing instance of MyObject
c = MyObject(object_id=0) # A transient instance of MyObject

In practice, objects are rarely instantiated with an explicit object id, because, we will generally
not know the object id of the objects we are interested in. Rather, objects are instantiated using
keys or as the result of a query (see below)

Instantiating an object using a key, will result a restored object (if an object of that key did
exist before) or a new object. In code:

class Filter(DBObject):
band = persistent(’the band name’, str, ’’)
keys = [’band’]

f = Filter(band=’V’) # The V-band filter

Assigning values to properties

Python is a dynamically typed language. This means that there is no such thing as the type of a
variable. However, since database values (e.g. columns) are statically typed, the interface performs
type checks when binding values to object attributes. The type is specified in the property definition,
as outlined earlier.

A.4.3 Queries

In order to represent selections in native Python code, we have defined a notation that is based
on the idea that a class is in some sense equivalent to the set of all its instances. To illustrate the
concept, let us give a few examples.

Given a persistent class X with persistent property y, then the expression

X.y == 5

represents the set of all instances x of X, or subclasses of X, for which x.y==5 is true. To obtain
these objects the expression needs to be evaluated, which can be done by passing it to the select
function, which returns a list of objects satisfying the selection.

Given a class X with a descriptor desc, a descriptor list dsc lst, and a link lnk, then

select(X.desc > 2.0 && X.dsc_lst[2]==’abc’ and X.lnk.attr == 5)

will return a list of instances x of X, or subclasses of X, for which

x.desc > 2.0 and x.dsc_lst[2]==’abc’ and x.lnk.attr == 5

is true.

A.4.4 Functionality not addressed by the interface

New persistent objects may have an owner. The owner can defined as the user running the process
in which the persistent object is created or it can be defined as an attribute of the persistent object.
In either case, it is the responsibility of the implementation of the interface for a certain database
to handle ownership of persistent objects.



Appendix B

Quality Control: possible problems
and solutions

For what concerns the Quality Control (QC) issues, the first step is to identify a list of possible
problems that may affect the OmegaCAM data. The table below contains a first version of this
list. It is clear however that not all these problems can be detected in a simple way. Therefore
the second step is to identify, among this list, those problems that can be detected through simple,
specific and robust tools which run in an automatic way when the pipeline is running. On the other
hand, the remaining problems, considered as very rare and/or too complex, will not be detected in
an automatic way by the pipeline.

For what concerns in particular the calibration pipeline, the QC tools produce, as output, a nu-
merical quality index (QI). When the QC is applied to raw frames, the frames are accepted (or
discarded) depending whether the QIs are smaller (or greater) than a tunable threshold. Although
the QC tools might not be visible directly by the user when the pipeline is running, all the QC
outputs (not only QIs but also other numbers, tables and figures that can be produced) will be
saved in the DB, in order to keep track of the whole process.

Finally the list below does NOT contain the problems related to:
– Instrumental problems (loss of focus, pointing-tracking problems, CCD sensitivity degrade over

time, optical/mechanical/electronic problems)
– Data description problems, bad header information (lacking headers, wrong headers, data differ-

ent from what they were planned to be);
– Observational constraints (e.g. Service Mode observations can have seeing constraints that are

not satisfied by the data);
– Empty/Crowded field observations (possible failure of Sextractor background subtraction and

de-blending, possible failure of astrometric calibration);
– Possibility to use only a fraction of the mosaic (e.g. if one chip contains a really bright (mag<8)

object, we might want to be able to use the other 31);
– PSF homogenization in different bands (needed to obtain accurate colors)

75
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Table B.1: Possible problems and solutions

Description Problem Solution Tool Comments
Calibration strange statist. check statistical histo.py1 under testing
frames distribution distribution (create
(general) histogram of pixel

values and compare
with Gaussian)

BIAS uncorrelated vs. compare with Signtest.py2 working
(raw) correlated noise Gaussian stat. (applied to the

the difference
between two
BIAS frames)

short-term compare with Signtest ⇒ Overscan
time variability previous (see previous correction with
(t ∼30 min) point) y dependence

desirable
BIAS long-term time compare with Signtest DB Trend Analysis
(master) stability (from one previous

night to the next)
Dome FF under/over measure median already
(raw) exposures and reject implemented in

underexposed/ the pipeline
saturated frames

strange pixels check number of count outliers3 under testing
(outliers) outliers and

reject bad frames
non-flatness measure RMS of imsurfit stat under testing

2d cubic spline fit
(through windowing)
and reject
bad frames

short-term time compare with low effect expected;
stability (from one previous probably not a
frame to the next) pipeline issue

Dome FF long-term time compare with DB Trend Analysis
(master) stability (from one previous

night to the next)

1 This tool can be used for any calibration frame and will be particularly useful during the commis-
sioning phase. It could also be linked to the graphical user interface in order to show the statistical
distribution of the pixels in each raw frame, when the pipeline is running
2 The sign test tool can be used in principle for any calibration frame provided that the noise is
mainly uncorrelated. It might be used also for DB trend analysis
3 Also this tool can be used in principle for any calibration frame; in particular it can be used to
produce bad pixel masks. It might be used also for DB trend analysis
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Table B.2: Possible problems and solutions (continue)

Description Problem Solution Tool Comments
Twilight FF under/over measure median already
(raw) exposures and reject implemented in

underexposed/ the pipeline
saturated frames

strange pixels check number of count outliers under testing
(outliers) outliers and

reject bad frames
non-flatness measure RMS of imsurfit stat under testing

2d cubic spline fit
(through windowing)
and reject
bad frames

bright objects SExtractor detection Derfotron with 10 twil. FFs
+ removal/masking and large telescope

displacements
Or use comparison count outliers bright objects
with previous frame should be removed

in any case
Twilight FF long-term time compare with DB Trend Analysis
(master) stability (from one previous

night to the next)
Super-flat bright/large SExtractor detection Derfotron

objects in raw and automatic
scientific frames masking

Fringing check quality of measure residuals Derfotron might be not
fringing removal necessary if the

fringing correction
works fine in most
cases

check stability of compare with DB Trend Analysis
fringing pattern previous (check z-band,
in time lunar phase)

Science frames saturated stars SExtractor detection Derfotron
(raw) + automatic masking

Manual masking
stellar diffraction SExtractor detection Derfotron
spikes + automatic masking

Manual masking
satellite trails SExtractor detection Derfotron

+ automatic masking
Manual masking

reflections/ SExtractor detection Derfotron
ghosts/halos + automatic masking
(oblique Manual masking
scattering)
bad cosmic rays check number of TBD the USM tool
removal detections vs expected performs also some

verification based
on the number
of detections
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Table B.3: Possible problems and solutions (continue)

Description Problem Solution Tool Comments
“Sky zero-point depends independent x-y spatial mapping
concentration” on x-y position zero-points of the zero point
(Illumination due to additional in each CCD through standard
correction) defocussed light fields during

on the focal plane commissioning
Photometric standard fields impose that same If requirement is
calibration must be reduced calibration master relaxed, specify and

exactly in the frames are used: check acceptable
same way as the compare descriptors differences
science frames
transparency compare statistics It would be
variations extremely useful
between standard to save the counts
and science fields of the guide stars

as it was proposed
some time ago

insufficient check number of
number of stars stars;
in each CCD compare zero points

with previous ones
saturated stars exclude saturated
in standard fields stars from the fit

through sigma clip
algorithm

Science frames check final track background Derfotron
(reduced) background level and backgr. (Terapix)

noise
check final check residuals
astrometry
check final check star and Derfotron
photometry galaxy counts (Terapix)
PSF homogeneity measure PSF across Derfotron

the field (Terapix)
PSF shape ellipticity, skewness Derfotron

and kurtosis stat.
Radial λ0 changes from commissioning
wavelength center to edges
dependence (for interference

filters only)


