
Documentation: Integration of Astro-WISE and

Grid

Zheng Meyer-Zhao

June 7, 2010

E-mail: z.zhao@rug.nl

Contents

1 Introduction 2

2 Architectural Overview 4
2.1 User authentication . 4
2.2 Job submission . 5
2.3 Storage . 6

3 Implementation Details 8
3.1 New classes in Astro-WISE . 8

3.1.1 class FileObject . 8
3.1.2 Protocol interfaces . 8
3.1.3 class StorageFactory . 10
3.1.4 class Storage . 10
3.1.5 Storage engine . 11

3.2 Modi�ed classes in Astro-WISE 11
3.2.1 class DataObject . 11
3.2.2 dataserver_proxy.py . 11

3.3 Third-party tools . 12
3.3.1 run_command.py . 12
3.3.2 jLite . 12
3.3.3 dcache_srmclient . 12
3.3.4 ldapsearch . 13
3.3.5 myproxy . 13

4 Lofar as an Example 13
4.1 LTA Storage . 13
4.2 Retrieving �les using LTA Storage 14

1

References 14

Appendix A 16
Proxy Flow Diagram . 16

Appendix B 17
Job submission in Grid . 17

Appendix C 19
srm commands . 19
ldapsearch . 20
Storage elements . 20
Port number and SRM version . 21
SAPath . 21

1 Introduction

This document describes how Astro-WISE and Grid are integrated with each
other from a technical point of view. It is meant to give developers an overview
of all the processes involved in the integration.

Astro-WISE1 stands for Astronomical Wide-�eld Imaging System for Eu-
rope. It has been developed to scienti�cally exploit the data produced by sci-
ence experiments. The idea behind Astro-WISE is to keep the data model, data
and data processing in the same system. The Astro-WISE system is written in
Python, which allows programs written in other programming languages to be
wrapped into a Python module, library or class.

The Astro-WISE system [2] consists of the following elements: dataservers,
metadata database, Astro-WISE programming environment, distributed pro-
cessing unit (DPU), computing nodes, and a concurrent versioning system. In
Astro-WISE, data servers are used to store all data �les created by users. A
metadata database is used to store a full description of each data �le with links
and references to other objects. The DPU is responsible for sending jobs to
computing clusters, monitoring the status, and retrieving results.

The well known EGEE project2 [3] is currently operating a worldwide Grid
infrastructure consisting of more than 250 sites in more than 50 countries. The
main goal of the project is to provide researchers with access to a production
level Grid infrastructure.

The EGEE Grid is built on the gLite middleware stack [4], which provides
a number of services, including information and monitoring services, workload
management services, and data management services.

The information and monitoring services provide a mechanism to publish
and consume information and to use it for monitoring purposes.

1http://www.astro-wise.org
2http://www.eu-egee.org

2

Figure 1: Components of Astro-WISE and Grid

The workload management services include computing elements (CE) and
workload management system (WMS). The CE provides the virtualization of a
computing resource, which provides information about the underlying resource
and o�ers a common interface to submit and manage jobs on the resource. The
WMS is a Grid level metascheduler that schedules jobs on the available CEs
according to user preferences and several policies.

Storage elements (SE) is one of the main serivices provided by the data
management services. The SE provides the virtualization of a storage resource
much like the CE abstracts computational resources.

gLite supports three types of storage systems, they are d-cache, DPM, and
StoRM, respectively. All three types of storage systems support the Storage
Resource Management (SRM) interface, which is described in detail in Appendix
C.

The main components involved in the integration of the two architectures
Astro-WISE and Grid are shown in Figure 1. The counterpart of the Astro-
WISE DPU in the Grid environment is the workload management system, as
the WMS is responsible for the distribution and management of tasks across
Grid resources.

The integration of Astro-WISE and the Grid needs to be considered from
three technical aspects: the authentication of users, job submission to the Grid
via Astro-WISE, and the use of Grid storage.

Section 2 gives a detailed description of the design of the integration from
each of these aspects. Implementation details of the integration are described
in Section 3. Section 4 shows how Lofar as one of the users of the integrated
system can use it.

3

Figure 2: Astro-WISE CVS Tree

2 Architectural Overview

2.1 User authentication

In Astro-WISE, user authentication is achieved using username and password.
Given the username and password, users are able to access the database, start
processing (pipelines), and store and retrieve �les to/from Astro-WISE storage.

In Grid environments, X.509 certi�cates are used for authentication and
authorization [5]. In order to use the Grid resources, users need to have a valid
Grid certi�cate which is supplied by a Certi�cation Authority (CA). VOMS [1],
which stands for Virtual Organisation Management Service, is used to provide
the information about VO membership needed to Grid resources.

Given a Grid certi�cate, a VOMS proxy can be generated which contains
information about to which virtual organisation (VO), group or role a user
belongs to. The generated VOMS proxy can then be used to perform computing
on the grid or access to grid storage.

Since the user authentication process in Grid environment is relatively com-
plicated, we refer to the proxy diagram and its description (see Appendix A)
to give an overview of the di�erent systems involved and how a proxy �ows
through these systems.

The integration of the Grid and Astro-WISE authentication mechnism can
be described from two perspectives: computing on the Grid and using Grid
Storage. To realise the integration, we use third-party tools such as MyProxy
Upload Tool3 and jLite4.

The MyProxy Upload Tool is developed by the UK National Grid Service5

(NGS). It can be used to upload a user's proxy to a MyProxy Server using
username and password. The uploaded proxy can then be retrieved by other
applications provided the corresponding username and password. The tool is a

3http://www.ngs.ac.uk/tools/certwizard
4http://code.google.com/p/jlite/
5http://www.ngs.ac.uk/

4

Java webstart application, which allows users to start the application directly
from the internet using a web browser.

Although a Java webstart application is handy to use, a command-line tool
is also useful when a use only wants to use the awe prompt. Therefore, a
command-line version of MyProxy Upload has been developed, which is added
into the Astro-WISE distribution. By doing this, a user can upload a proxy
directly from the awe prompt.

The uploaded proxy is by default valid for 2 weeks, therefore, the same
action needs to be performed every two weeks. After a proxy is uploaded to
the MyProxy Server, users can submit jobs to the Grid via the grid DPU (see
subsection 2.2).

As mentioned before, Astro-WISE makes use of username and password
for user authentication. In order to integrate it with the Grid authentication
mechanism, we use the Astro-WISE username and password for uploading user's
proxy to the MyProxy Server.

After a job is submitted, the DPU will check whether the required destination
to run the job is the Grid. If so, the DPU will retrieve a short-term proxy from
the MyProxy Server using the Astro-WISE username and password, generate a
voms-proxy using the retrieved proxy, and submit the job to the Grid.

jLite is a Java library providing simple API for accessing gLite based grid
infrastructure. It includes a tool for generating VOMS proxies, which can be
used on user's computer where no gLite middleware is available. We use this
functionality of jLite to generate VOMS proxy using a user's long-term certi�-
cate, and checks whether a user's proxy is still valid when an access to the Grid
storage is requested. This tool has been integrated in the Astro-WISE environ-
ment. The actual access to the Grid storage is done by using the dCache SRM
client.

2.2 Job submission

In Astro-WISE, the DPU is responsible for job submission. It is capable of
sending jobs to parallel clusters or single machines [2]. The system may run on
openpbs or under its own queue management software.

The EGEE gLite middleware 6 is the de-facto standard for grid job sub-
mission on all EGEE-related grids and clusters. The Workload Management
System (WMS) 7, which comes with the gLite middleware, is used for submit-
ting jobs onto the grid. The Linux shell commands to submit jobs are described
in detail in Appendix B.

To submit jobs to the Grid via Astro-WISE, three conditions need to be
satis�ed. First of all, the commands for job submission to the Grid must be
managed by the DPU. Second, a JDL �le (see Appendix B) must be generated
by the DPU. Third, the gLite middleware needs to be present. In order to
meet these requirements, a so-called grid DPU has been installed on a grid

6http://glite.web.cern.ch/glite/
7http://glite.web.cern.ch/glite/wms/

5

Figure 3: Job submission in Astro-WISE

UI machine, where the gLite middleware is available. The implementation of
the DPU is also modi�ed to be able to handle commands related to grid job
submission, such as glite-voms-proxy-init, glite-wms-job-submit, etc.

2.3 Storage

In Astro-WISE, the DataObject class represents objects that have an associated
data �le, i.e. every instance of class DataObject or every class which is derived
from class DataObject has an associated data �le. These data �les are stored on
dataservers, where each �le has a unique name. The unique �lename is stored
in the database as part of the metadata. The DataObject Class has store and
retrieve methods which can store and retrieve a �le to/from the dataserver given
the unique name. The HTTP protocol is used in this case.

To handle data in Astro-WISE, knowledge about the protocol and location of
the data is a must. Both the protocol and location can be de�ned in a URI, Uni-
form Resource Identi�er. An URI is of the form protocol://server/path/file.
Given an URI, the DataObject class can take the appropriate actions for stor-
ing and retrieving the �le, given the protocol. The URI must be stored in the
database.

Our solution is to use a seperate storage table to store the URI of a �le,
which gives the following advantages:

• The Storage table can have multiple entries for the same object, therefore
we can administrate multiple copies (replicas) of a �le

• The privileges of the Storage table can be di�erent from the privileges of
the rest of the metadata, which adds an extra security layer to the system.

6

Figure 4: Class diagram of Astro-WISE with support of di�erent types of storage

For example, everyone can see the metadata of �les, but only privileged
users can see the URI.

• The framework can easily be extended to support other storage systems
by adding the corresponding interface.

To implement this, a new class FileObject has been created which represents
the �les associated with a DataObject. This class is the storage table we refer
to. In the storage table, a FileObject contains information of a �le, such as
�lesize, creation date, hash value, and URI, etc. It also has a reference to the
DataObject to which it is associated.

The DataObject class has been modi�ed to be able to choose between dif-
ferent storage engines, for example, astro-wise and lofar. This is done by
adding a class attribute Storage. If astro-wise is selected, the DataObject

class will use the original Astro-WISE storage method, i.e. store and retrieve
�les to/from dataservers using the unique �lename. If lofar is selected, the
DataObject class will use the LTAStorage (Lofar Long-term Archive Storage)
class.

Di�erent storage interfaces have been implemented, for example, Dataserver-
Protocol and GridProtocol. These interfaces provide the actual access to the
storage using the corresponding protocol.

The GridProtocol interface has been implemented with the help of ldapsearch
and the dCache SRM client. ldapsearch is used to retrieve information, such
as Storage Element and SAPath from the Grid information system BDII, while
dCache SRM client is used to perform the actual store and retrieve actions.

7

3 Implementation Details

3.1 New classes in Astro-WISE

3.1.1 class FileObject

Location: lofar/main/FileObject.py

The FileObject class has a few attributes which describes the information of
�les that are assoacited to a certain DataObject. These attributes are:

filename The name of the associated �le

data_object The associated data object

file_size Size of the �le

hash_value Hash value of the content of the �le

hash_type Hash type used for hash value

creation_date Date this object was created

URI The uri the �le can be retrieved from

protocol The protocol used to store and retrieve the �le

The FileObject class provides the following functionalities:
Check the number of copies of a �le associated to a DataObject. Return a

list of �le objects given a �lename. Make a FileObject.

3.1.2 Protocol interfaces

class FileProtocol

Location: common/net/FileProtocol.py

The FileProtocol class handels the retrieve and store of �les on the local
computer. It has two methods: get() and put(), which check whether a �le
exists.

class DataserverProtocol

Location: common/net/DataserverProtocol.py

The DataserverProtocol class handels the retrieve and store of �les on local
and remote dataservers. When DataserverProtocol is instantiated, it is ini-
tialized with a dataserver name and a port number. The DataserverProtocol
class has two methods: get() and put(). These two methods call the corre-
sponding get() and put() methods implemented by Data_IO.

8

class GridProtocol

Location: common/net/GridProtocol.py

Related_to: jlite.py, dcache_srmclient.py, and ldapsearch.py

The GridProtocol class is the interface to Grid storage. It generates a user
proxy, and stores and retrieves �les to/from the Grid. The GridProtocol class
has:

• A constructor which initializes an instance with a default destination
where �les will be stored. This is done by calling method
set_default_destination().

• Two methods: get() and put(). These two methods perform the actual
store and retrieve tasks. They use the init_proxy() method to make
sure that before connecting to the Grid, a valid user proxy exists. The
init_proxy() method checks whether there is a valid proxy, if not, it
will generate a proxy by calling the proxy_init() function in jlite.py.
The put() method also calls method check_directory(), which checks
whether the destination directory exists.

• A check_hash() method. It checks whether the hash value and �lesize of
a local �le and a remote �le are the same. The hash value of the local �le is
generated by calling method generate_hash_value(). The information
of the remote �le is obtained by calling function srmls_parser() in �le
dcache_srmclient.py.

• Method set_default_destination(). It calls function construct_SURL()
to construct the pre�x of an srm path, appends the name of the database
user to the path, and assigns it to the destination �eld of the GridProtocol
class. It also assigns the srm_version �eld of the class, which holds the
default srm version used for putting �les to Grid storage.

construct_SURL() and some other functions also reside in �le GridProtocol.py,
but are not methods of the GridProtocol class. These functions are used to
retrieve information needed to construct the pre�x of an srm path. Here is the
list of functions:

get_availableSEhost() It returns a list of available Storage Elements for the
VO de�ned in the con�guration �le. This is achieved by calling function
ldapsearch() from ldapsearch.py.

select_SEhost() It selects a SE randomly from the list of available Storage
Elements.

get_storageElement() It checks the available Storage Elements available for
the given VO. If a user has de�ned a SE in the environment variable, and
the SE is in the available SE list, then this SE is returned. Otherwise, a
SE is selected randomly.

9

get_serviceEndpoint() It returns a list of service endpoints de�ned for the
given Storage Element.

get_port_and_srm() It uses the service endpoints to search for the srm version
and its corresponding port number for a given SE.

get_SApath() Given the SE and VO, there is a pre-de�ned path under which
a VO member is allowed to store �les. This function returns this path.

construct_SURL() A SURL has the format of
srm://<host>:<port><GlueSAPath>/<path>. This function returns a
dictionary which contains the surl and its corresponding srm version.

get_search_attribute() Given an item, e.g. PORT, there is a corresponding
attribute de�ned in the GLUE schema. This function returns the attribute
correspond to a given item.

get_SE_filter() It constructs the search �lter for a Storage Element.

get_port_filter() It constructs the search �lter for the port of a SE.

get_SAPath_filter() It constructs the search �lter for the SAPath (Storage
Area path) of a SE.

3.1.3 class StorageFactory

Location: common/net/StorageFactory.py

Related_to: DataObject.py

The StorageFactory class has only one method delegate(). It checks the
value of the environment variable storage_engine, which can be de�ned either
via the awe prompt or the con�guration �le.

Di�erent values can be assigned to storage_engine, for example astro-wise
or lofar.

If the value is astro-wise, the Astro-WISE Storage will be used. If the
value is lofar, the Lofar Storage will be used.

3.1.4 class Storage

Location: common/net/Storage.py

The Storage class is an abstract class, which contains two methods retrieve()
and store(). Classes that inherit from the Storage class have to implement
these two methods.

10

3.1.5 Storage engine

class LTAStorage

Location: lofar/net/LTAstorage.py

Related_to: FileObject.py, GridProtocol.py, FileProtocol.py, GPFSProtocol.py,
and DataserverProtocol.py

The LTAStorage class instantiates interfaces to the di�erent �le systems, i.e.
the Grid Storage, GPFS, the local dataserver, and the remote dataserver.

The LTAStorage class is a subclass of the Storage class, therefore, it imple-
ments the retrieve() and store() methods.

Given a DataObject, the retrieve() method looks up the �le objects as-
siociated to the DataObject, select one �le object from the list, and call the
get() method of the corresponding protocol to retrieve the �le.

3.2 Modi�ed classes in Astro-WISE

3.2.1 class DataObject

Location: common/database/DataObject.py

Related_to: StorageFactory.py and FileObject.py

The DataObject class has a storage attribute, which is assigned by calling the
delegate() method in the StorageFactory class.

Each time DataObject is instantiated, the storage used by the instance is
assigned.

The retrieve and store methods of the DataObject class call the corre-
sponding retrieve and store methods implemented in the assigned Storage.

A user can choose between Astro-WISE Storage and Lofar Storage (see sub-
section 3.1.3).

When Lofar Storage is used, the filename attribute of an instance of DataObject
will be an empty string, as the associated �le of the DataObject will be stored
will be represented using the FileObject class.

3.2.2 dataserver_proxy.py

Location: common/net/dataserver_proxy.py

The implementation of dataserver_proxy.py is actually not modi�ed, how-
ever, the usage is a bit di�erent than before. In this �le, a Storage class is
de�ned, which checks whether a �le exists locally. It also assigns the value of
Storage to the Storage class de�ned in common.net.dataserver_client.Storage.

11

3.3 Third-party tools

3.3.1 run_command.py

Location: common/external/run_command.py

This is not a Python interface to a third-party tool, however, it envelops Pythons
subprocess to provide a easy-to-use run method that can be used by all the
third-party tools.

3.3.2 jLite

Location: common/external/jlite.py

This is the Python interface for calling scripts from jLite, a third-party tool for
generating VOMS proxy. In this interface, six methods are implemented:

proxy_init() This method interfaces the proxy-init.sh script of jLite. It
takes the value of virtual organisation, group (if de�ned), and grid certi�-
cate passphrase (if given) from the environment variable.

proxy_destroy() This method interfaces the proxy-destroy.sh script of jLite.
It destroys the current short-term proxy.

proxy_info() This method interfaces the proxy-info.sh script of jLite. It is
used to get the information of the current short-term proxy.

proxy_info_parser() This method also interfaces the proxy-info.sh script
of jLite. However, it parses the output of the proxy-info.sh script, puts
the parsing result into a dictionary, and returns it.

proxy_time_left() This method calls proxy_info_parser(), and reads the
time left of the proxy from the dictionary returned by the proxy_info_parser()
method.

proxy_VO() This method calls proxy_info_parser(), and extract the VO of
the proxy from the dictionary returned by the proxy_info_parser()

method.

3.3.3 dcache_srmclient

Location: common/external/dcache_srmclient.py

This is the Python interface for calling scripts from d-cache srmclient. Five
methods are implemented in this interface:

srmcp() This method interfaces the srmcp script of dcache-srmclient. It can
be used to store or retrieve �les from the grid storage.

srmls() This method interfaces the srmls script of dcache-srmclient. It lists
the �les and directories under a given path on the grid storage.

12

srmls_parser() This method also interfaces the srmls script of dcache-srmclient.
However, it parses the output of the srmls script, puts the parsing result
into a dictionary, and returns it.

srmmkdir() This method interfaces the srmmkdir script of dcache-srmclient.
It creates a new directory under a given path on the grid storage.

srmrm() This method interfaces the srmrm script of dcache-srmclient. It re-
moves a �le from the grid storage.

3.3.4 ldapsearch

Location: common/external/ldapsearch.py

This is the Python interface for calling ldapsearch. In this interface, two meth-
ods are implemented:

ldapsearch() This method interfaces the ldapsearch command, and returns
the results starting with the de�ned search attribute.

ldapsearch_grep() This method also interfaces the ldapsearch command,
however, it returns the results that match the given keywords.

3.3.5 myproxy

Location: common/external/myproxy.py

This is the Python interface for calling myproxy command-line tool. In this
interfae, �ve methods are implemented:

myproxy() This method interfaces the myproxy command. It requires one ar-
gument and passes the argument to the myproxy command.

myproxy_upload() This method calls myproxy() using 'upload' as argument.

myproxy_retrieve() This method calls myproxy() using 'retrieve' as argu-
ment.

myproxy_info() This method calls myproxy() using 'info' as argument.

myproxy_version() This method interfaces the myproxy command with 'version'
as argument.

4 Lofar as an Example

4.1 LTA Storage

The LTAStorage class inherits the Storage class, both of which are new in the
Astro-WISE system. In order to use LTAStorage, the value of storage engine

in the environment need to be set to lofar. The Storage class is an abstract

13

class, it only provides two methods store() and retrieve() that should be
implemented by classes that inherit it. The LTAStorage class has four proto-
col interfaces, each of which refers to a di�erent type of storage. These four
interfaces are:

1. File Protocol (file://), which refers to the local �le system.

2. Dataserver Protocol (http://), which refers to the local and remote dataservers
that is accessed using the http protocol.

3. Grid Protocol (srm://), which refers to the Grid storage that is accessed
using the srm protocol.

4. GPFS Protocol (gpfs://)

Each interface implements two methods get() and put() to perform the ac-
tual retrieve and store actions from/to the corresponding storage system. The
FileProtocol interface checks whether the �le exists on the local �le system.
The DataserverProtocol interface uses the original Astro-WISE storage meth-
ods. The GridProtocol interface is implemented with the help of third-party
tools, i.e. jLite, dcache_srmclient, and ldapsearch (see subsection 3.3). The
GPFSProtocol interface is not yet implemented at the moment.

4.2 Retrieving �les using LTA Storage

Figure 5 shows how a Lofar user retrieves a �le from the EGEE Data Stor-
age via Astro-WISE. For example, the user wants to retrieve a �le associated
with DataObject data_obj. He/she can use the retrieve method from the
DataObject class to retrieve the �le, i.e. data_obj.retrieve(). The DataOb-
ject retrieve method in turn calls the corresponding retrieve method from a
storage, in this case, the LTAStorage. As described above, the LTAStorage has
its own logic to retrieve a �le. It searches the FileObject table, and obtains a
list of �leobjects which are associated with DataObject data_obj. It returns
the urls of these �leobjects. Based on certain criteria, one of the urls is selected.
The �leobject associated with the url is retrieved using the corresponding pro-
tocol, in this case, the GridProtocol. The retrieved �le is then returned to the
DataObject.

References

[1] R. Al�eri, R. Cecchini, V. Ciaschini, et al. From gridmap-�le to VOMS:
managing authorization in a Grid environment. Future Generation Computer
Systems, 21(4):549�558, 2005.

[2] K.G. Begeman, A.N. Belikov, D.R. Boxhoorn, F. Dijkstra, E.A. Valentijn,
W.J. Vriend, and Z. Zhao. Merging Grid Technologies. Journal of Grid

Computing, pages 1�23.

14

Figure 5: Lofar users retrieve �les using LTA Storage

[3] B. Jones. An overview of the EGEE project. Peer-to-Peer, Grid, and

Service-Orientation in Digital Library Architectures, pages 1�8, 2005.

[4] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek, O. Mulmo,
F. Pacini, F. Prelz, J. White, et al. Programming the Grid with gLite.
Computational Methods in Science and Technology, 12(1):33�45, 2006.

[5] R. Lock and I. Sommerville. Grid Security and its use of X. 509 Certi�cates.
In DIRC internal Conference.

15

Appendix A

Proxy Flow Diagram

The proxy-�ow diagram (Figure6) shows how proxies are involved in the di�erent
systems of job submission to the EGEE Grid, as well as communicating with
the Grid storage. Each case is shown with a sequence of colored lines, where
the numbers associated with the lines indicate the steps in the sequence. It is
assumed that users already have a long-term credential. In the diagram, four
cases are described:

1. Submit jobs via a grid User Interface (UI) machine where the gLite mid-
dleware is installed (color: RED) This case shows how the proxy �ows
when a user submit a job to the Grid from a grid UI machine. First of all,
a short-term proxy needs to be created, which is by default valid for 12
hours. A VOMS proxy, the lifetime of which is restricted by the VOMS
server to 12 hours, can then be created using this short-term proxy. These
two steps can be achieved by using a single command 'voms-proxy-init
--voms userVO', where userVO is the Virtual Organisation (VO) in which
a user belongs to. When a user runs 'voms-proxy-init', it contacts the
user VO's VOMS server, authenticates to the server use the user's short-
term proxy, receives the VO-speci�c attributes, and creates a new proxy
with these attributes. After a VOMS proxy is created, a user can submit
jobs to the grid. When a job is submitted, the VOMS proxy is delegated
to the Workload Management System (WMS), which will then be used for
job scheduling, running a job on a Worker Node (WN), and communicat-
ing with the Storage Element.

2. Proxy renewal for long-run jobs (color: GREY) The proxy created as
described in the �rst case poses a problem: If a job does not �nish before
the expiration time of the proxy, it is aborted. To overcome this problem,
a proxy credential repository system is used. It allows users to create
a medium-term credential using the Distinguished Name (DN) and store
it in a delegated server (MyProxy Server). The WMS can then use this
medium-term credential to periodically renew the proxy for a sumitted
job.

3. Job submission via Astro-WISE Distributed Processing Unit (DPU) (color:
BLUE) Job submission to the grid via the Astro-WISE system is handled
by the grid DPU. Before any job is submitted, a user needs to create
and upload a medium-term credential to the MyProxy Server. The DPU
will then be able to fetch a short-term proxy from the MyProxy Server.
The short-term proxy will in turn be used to create a VOMS proxy. This
VOMS proxy will be used by the DPU for job submission.

4. Store and retrieve �les to/from grid Storage Element (SE) via Astro-WISE
(color: BLACK) The �rst two steps of this case is similar to Case 1, where
a short-term proxy is �rst created, then used to create a VOMS proxy. The

16

Figure 6: Proxy �ow diagram

VOMS proxy will be presented to the Storage Element for authentication
when a user stores or retrieves �les to/from the grid SE.

Appendix B

Job submission in Grid

Several commands can be used regarding job submission in Grid. Before submit-
ting jobs, users need to have a valid proxy. The command glite-voms-proxy-init
can be used to generate a voms proxy. The output of running the command is
as follows:

[zheng@ui ~]$ glite-voms-proxy-init -voms omegac

Enter GRID pass phrase:

17

Your identity: /O=dutchgrid/O=users/O=rug/OU=rc/CN=Zheng Zhao

Creating temporary proxy Done

Contacting voms.grid.sara.nl:30020 [/O=dutchgrid/O=hosts/OU=sara.nl

/CN=voms.grid.sara.nl] "omegac" Done

Creating proxy ...

Done Your proxy is valid until Sat Mar 20 02:33:22 2010

To submit a job to the Workload Management System, a text �le containing
Job Description Language (JDL) is used. The JDL describes the job and its
requirements. Here is a simple example of a JDL �le:

[zheng@ui ~]$ cat HelloWorld.jdl

Executable = "/bin/echo";

Arguments = "Hello World";

Requirements = RegExp("rug.nl", other.GlueCEUniqueId);

Stdoutput = "message.txt";

StdError = "stderror";

OutputSandbox = {"message.txt","stderror"};

we can use the command glite-wms-job-submit to submit a job. The
syntax of the command is:

glite-wms-job-submit <delegation-opts> [options] <jdl_file>

The output of running the command is as follows:
[zheng@ui ~]$ glite-wms-job-submit -a HelloWorld.jdl

Connecting to the service

https://wmslb2.grid.sara.nl:7443/glite_wms_wmproxy_server

============ glite-wms-job-submit Success ==============

The job has been successfully submitted to the WMProxy

Your job identifier is:

https://wmslb2.grid.sara.nl:9000/4EwkSBHH4nbashKxPGZdgw

==

The job identi�er above can then be used to query the status of the job,
retrieve job output, or cancel the job. To query the status of the job, we can
use command glite-wms-job-status. The syntax of the command is:

glite-wms-job-status [options] <job Id(s)>

The output of running the command is as follows:
[zheng@ui ~]$ glite-wms-job-status

https://wmslb2.grid.sara.nl:9000/4EwkSBHH4nbashKxPGZdgw

============== glite-wms-job-status Success ============

BOOKKEEPING INFORMATION:

Status info for the Job :

https://wmslb2.grid.sara.nl:9000/4EwkSBHH4nbashKxPGZdgw

Current Status: Done (Success)

Logged Reason(s):

-

- Job terminated successfully

Exit code: 0

Status Reason: Job terminated successfully

Destination: ce.grid.rug.nl:2119/jobmanager-pbs-short

18

Submitted: Fri Mar 19 14:38:24 2010 CET

==

From the output, we can see that the job is terminated successfully. To
retrieve the job output, we can use command glite-wms-job-output. The
syntax of the command is:

glite-wms-job-output [options] <job Id(s)>

The output of running the command is as follows:
[zheng@ui ~]$ glite-wms-job-output

https://wmslb2.grid.sara.nl:9000/4EwkSBHH4nbashKxPGZdgw

Connecting to the service

https://wmslb2.grid.sara.nl:7443/glite_wms_wmproxy_server

===

JOB GET OUTPUT OUTCOME

Output sandbox files for the job:

https://wmslb2.grid.sara.nl:9000/4EwkSBHH4nbashKxPGZdgw

have been successfully retrieved and stored in the directory:

/tmp/jobOutput/zheng_4EwkSBHH4nbashKxPGZdgw

===

To cancel a submitted job, we can use command glite-wms-job-cancel.
The syntax of the command is:

glite-wms-job-cancel [options] <job Id(s)>

Here is an example of the output of running the command:
[zheng@ui ~]$ glite-wms-job-cancel

https://wmslb2.grid.sara.nl:9000/bbcfisneA_GVfYxaQgOkZw

Are you sure you want to remove specified job(s) [y/n]y : y

Connecting to the service

https://wmslb2.grid.sara.nl:7443/glite_wms_wmproxy_server

========= glite-wms-job-cancel Success =========

The cancellation request has been successfully submitted for the

following job(s):

- https://wmslb2.grid.sara.nl:9000/bbcfisneA_GVfYxaQgOkZw

==

Appendix C

srm commands

SRM client srmcp can be used to optimize the retrieval or storage of �les to or
from Mass Storage Systems (MSS) that implement SRM. The usage of srmcp
is

srmcp [command line options] source(s) destination

where source(s) and destination are of the format srm://host:port/path
Besides srmcp, other commands such as srmls, srmmkdir, srmrm are also avail-
able.

19

srmls is a �le listing command which is only available in SRM v2.2. The usage
of srmls is

srmls [command line options] destination

srmmkdir is used to create a new directory in case the directory where a user
wants to store �les doesn't exist yet. The usage of srmmkdir is

srmmkdir [command line options] destination

srmrm is used to remove �les from the storage. The usage of srmrm is
srmrm [command line options] destination

ldapsearch

The BDII (Berkley Database Information Index) has been adopted in the gLite
middleware as the Information System technology. The protocol used to query
the information system (BDII) is LDAP, an open standard. The source(s)
and destination used in srmcp can be constructed by searching the BDII us-
ing ldapsearch command.

For a speci�c VO, there is a list of Storage Elements (hosts) available which
can be used to store �les of the users of this VO. Each host has a corresponding
port number and srm version used.

Here are some examples of how to use ldapsearch to search for information
from the information system. In these examples we assume that a user's VO is
'omegac'.

Storage elements

To search for the Storage Elements available for this VO, we can use command:

ldapsearch -x -h bdii.grid.sara.nl -p 2170 -b

mds-vo-name=local,o=grid '(|(GlueSAAccessControlBaseRule=omegac)

(GlueSAAccessControlBaseRule=VO:omegac)

(GlueSAAccessControlBaseRule=VOMS:/omegac/*))'

| grep 'GlueChunkKey: GlueSEUniqueID='

The result of this query is as follows:

GlueChunkKey: GlueSEUniqueID=se.grid.rug.nl

GlueChunkKey: GlueSEUniqueID=srm.grid.sara.nl

GlueChunkKey: GlueSEUniqueID=srm.grid.rug.nl

To get a list of storage elements which can be used easily for later use, some
post-processing on the result list has to be done. Assume we want to store �les
on storage element srm.grid.sara.nl. To construct an srm path, information
such as port number and SAPath (Storage Area Path) is also needed. As the

20

di�erent SRM versions support di�erent commands, e.g. srmls is only supp-
ported by SRM v2.2, it is also import to know which SRM version is used to
store and retrieve �les.

Port number and SRM version

To search for the port number and the corresponding srm version, we can use
the following command:

ldapsearch -x -h bdii.grid.sara.nl -p 2170 -b

mds-vo-name=local,o=grid

| grep srm.grid.sara.nl | grep GlueServiceEndpoint

The result of this query is:

GlueServiceEndpoint: httpg://srm.grid.sara.nl:8443/srm/managerv1

GlueServiceEndpoint: httpg://srm.grid.sara.nl:8443/srm/managerv2

We can see from the result that the port used by srm.grid.sara.nl is 8443
for both SRM v1 and v2.

SAPath

To search for the SAPath of the SE, we can use command:

ldapsearch -x -h bdii.grid.sara.nl -p 2170 -b

mds-vo-name=local,o=grid

'(&(GlueSALocalID=omegac)(GlueChunkKey=GlueSEUniqueID=srm.grid.sara.nl))'

GlueSAPath | grep GlueSAPath

The result of this query is:

requesting: GlueSAPath

GlueSAPath: /pnfs/grid.sara.nl/data/omegac

Now we have the information we need to construct an srm path, it is:

srm://srm.grid.sara.nl:8443/pnfs/grid.sara.nl/data/omegac/UserDefinedPath

where UserDefinedPath can be any directory or �lename a user wants to
use.

21

