Req 5.4.1
Title:

Bias - doit
Objective:
Determine master bias frame.

The signal in raw scientific frames contains a component that is due to a bias
current. This component shows up as an offset to the signal. The bias-offset
has the following characteristics: i) the bias level grows to its asymptotic level
in the first few hundred lines, and ii) the bias level depends on the total signal
in a given line. Therefore, an initial bias correction—the overscan correction,
is applied by averaging the overscan pixels for each line, and subtracting this
value from that line. It is noted that the bias level may jump significantly after
a cold restart of the FIERA.

In addition, the bias offset exhibits a residual pattern, which is measured by
the master bias frame. To construct the master bias a series of 10 zero-second
bias exposures is overscan-corrected, and then averaged, rejecting 50 outliers
(o = dispersion of the 10 bias exposures of individual pixels), due to particle
hits during read-out. The resulting master bias frames will be used for the
correction of all frames. For each master bias frame the mean value for each
CCD chip will be determined and evaluated in a trend analysis.

As the readout noise dominates the rms scatter in the bias frames, while the
shotnoise of the sky background dominates the rms scatter on the sky im-
ages, which is nominally much larger than the readout noise, it is sufficient to
characterize the bias value at individual pixels with an accuracy of (readout

noise/+/10).

A comparison with a previous master bias frame will be done as an evaluation
of the overall health of the instrument and the quality of the data. This will
thus measure short-term variations. Long term variations can be assessed using
trend analysis.

A comparison of the mean level with laboratory values will be used as an overall
quality check.

Fulfilling or fulfilled by:
Selfstanding. Raw data are also used for req. 522 Bad/hot pizels

Calfiles used by: req. 542 Dome flat, req. 543 Twilight flat req. 544 Night
sky flat seq. 632 Trim, de-bias, flatfield

1

When performed/frequency:

daytime- Commissioning, in RP initially daily. Later the frequency is to be
determined by experience.

Sources, observations, instrument configurations:
10 observations with 0 (zero) seconds exposure time.
Inputs:

Raw data bias frames
CalFile— 541 Master Bias frame previous versions

Laboratory values of bias levels.

Outputs:

CalFile— 541 Master Bias frame to be used by seq. 632 de-bias flat field
Required accuracy, constraints:

The required accuracy per pixel in the master bias frame is “nominal read-
outnoise/+/10" .

For the quality check: Since an overscan correction is performed, the deviation
of the mean level of master bias (bias level) from zero, should be less than
TBD.

Estimated time needed:

Observation: 15 min. Reduction: < 2 min./CCD.

Priority:

essential

TSF:

Mode— Stare N=10

TSF- OCAM _img _cal bias

Recipe:

Bias -i <raw_bias_list> -r READNOISE [-oc OVERSCAN_CORRECTION]

raw_bias_list : list of raw bias exposures
READNOISE : readnoise value in ADU (float).
Range of allowed values: 1.0 - 5.0.
OVERSCAN_CORRECTION : overscan correction mode (integer).
Description of allowed values:
0: apply no overscan correction (default)
1: use median of the prescan in the
x-direction

2

2: use median of the overscan in the
x-direction
3: use median of the prescan in the
y—direction
4: use median of the overscan in the
y-direction
5: use the per-row value of the prescan
in
the x-direction
6: use the per-row value of the overscan
in
the x-direction

Before applying this recipe, use Recipe— Split—which is documented in seq.—
631—with the -t bias option to split the raw multi-extension FITS input
files.

Needed functionality:

image - processing (eclipse.trim_and_overscan());
image - arithmetic (eclipse.image sub(), eclipse.image_mul(), eclipse.image div(),

eclipse.image_add local());
image - average (eclipse.cube_avg median());
image - statistics (eclipse.iter_stat());
image - mask (eclipse.image_threshold2pixelmap(), eclipse.pixelmap_2_image())

CA:

Processing (make):

1. Trim the input raw bias frames, and do an overscan correction on the
resulting images.

2. Combine the trimmed images into an average bias frame, using 5o rejection.
3. Measure the statisics of the combined image.

Verification (verify):
1. Check that mean bias level is zero (less than TBD).
2. Check that the rms variance of the bias level is less than TBD.

Trend Analysis (compare):
1. Check that the difference of the rms with respect to previous version is less

3

than TBD.

CAP:
MAXIMUM_ABS_MEAN : Quality Control
MAXIMUM_STDEV : Quality Control
QC Flags:

BIAS_MEAN_TOO_LARGE
BIAS_STDEV_TOO_LARGE

Constants:
SIGMA_CLIP : clipping threshold for bad pixels in raw
input data (float). Value: 3.0.
REJECTION_THRESHOLD : clipping threshold for bad pixels in the
resultant bias image (float). Value: 4.0.
MAXIMUM_ITERATIONS : number of iterations in bias statistics
measurement (integer). Value: 3.

reduced_bias_list = []

for raw_bias in raw_bias_list:
reduced_bias = eclipse.trim_and_overscan(raw_bias)
reduced_bias_list.append(reduced_bias)

first estimate of mean
median = eclipse.cube_median(reduced_bias_list)

Find outliers in first reduced bias image

dev = eclipse.image_sub(median, reduced_bias_list[0])

good = eclipse.threshold2pixelmap(dev, -SIGMA_CLIP * READNOISE,
SIGMA_CLIP * READNOISE)

good = eclipse.pixelmap_2_image (good)

record these values
sum_data = eclipse.image_mul(reduced_bias_list[0], good)
sum_pixels = good

Find outliers in remaining images, and reject these too
for reduced_bias in reduced_bias_list[1:]:

4

dev = eclipse.image_sub(median, reduced_bias)
good = eclipse.threshold2pixelmap(dev, -SIGMA_CLIP * READNOISE,
SIGMA_CLIP * READNOISE)
good = eclipse.pixelmap_2_image (good)
eclipse.image_add_local(sum_data,
eclipse.image_mul (reduced_bias, good))
eclipse.image_add_local(sum_pixels, good)

new mean

bias_image = eclipse.image_div(sum_data, sum_pixels)

bias_statistics = eclipse.iter_stat(bias_image, MAXIMUM_ITERATIONS,
REJECTION_THRESHOLD)

Quality Control

if abs(bias_statisics.avg_pix) > MAXIMUM_BIAS_MEAN:
BIAS_MEAN_TOO_LARGE = 1

if bias_statisics.stdev > MAXIMUM_BIAS_RMS:
BIAS_RMS_TOO_LARGE = 1

diff = bias_statisics.stdev-previous.bias_statistics.stdev

if abs(diff) > MAXIMUM_BIAS_RMS_DIFFERENCE:
BIAS_RMS_DIFFERENCE_TOO_LARGE = 1

